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SOCIAL INTERACTIONS IN LARGE NETWORKS: A GAME THEORETIC
APPROACH∗

BY HAIQING XU1

The University of Texas at Austin, U.S.A.

This article studies estimation of social interactions in a large network game, where all observations come from
one single equilibrium of a network game with asymmetric information. Simple assumptions about the structure
are made to establish the existence and uniqueness of the equilibrium. I show that the equilibrium strategies
satisfy a network decaying dependence condition requiring that dependence between two players’ decisions
decay with their network distance, which serves as the basis for my statistical inference. Moreover, I establish
identification and propose a computationally feasible and efficient estimation method, which is illustrated by an
empirical application of college attendance.

1. INTRODUCTION

Over the last decade, network effects on social behaviors has become important in social
theory (see, e.g., Granovetter, 1985). In particular, economics has been encouraged to broaden
its scope to the analysis of social interactions while maintaining the rigor that is emblematic
of economic analysis (Manski, 2000). Recently, game theory has played a central role in this
regard, and a leading example is the study of network formation by Bala and Goyal (2000). In
this article, I propose a network game of incomplete information to study large network-based
social interactions. Simple assumptions about the game structure are made to ensure a unique
equilibrium, and the equilibrium satisfies a decaying network effects condition. I then establish
identification and estimation of the structural primitives using data from a single large network.

The structure of my network game follows the “preference interaction” approach suggested
by Manski (2000). Specifically, a player’s payoff from choosing an action over alternatives
depends on other players’ simultaneous actions as well.2 Instead of interacting with all players
on the social network, I assume that each agent’s payoff is affected by only her choice and the
choices of her direct best friends. We call it “local” interactions, a notion that was first introduced
by Seim (2006) in the context of industrial organization. Such a specification is parsimonious,
but rich enough to generate the interdependence of all agents’ choices, which is shaped by the
way the network gets connected. For example, teenagers are inclined to be affected by their
friends in terms of adolescent risky behaviors (see, e.g., Nakajima, 2007), but such local effects
can spread through the network. In particular, they are indirectly affected by the behaviors of
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their friends’ friends, because their friends are interacting with each other. In equilibrium, all
teenagers from the same connected network will affect each other directly or indirectly.

My local interaction specification differs from the “linear-in-mean” approach widely used in
the literature on social interactions (see, e.g., Manski, 1993). The latter captures the notion that
an individual’s behavior depends on the average behavior of all other social members. The local
interaction approach is attractive in the study of large network-based social interactions: First,
my model allows us to study counterfactuals and policy effects from the change of network graph
under the network decaying dependence (NDD) condition. In contrast, much of the theoretical
literature on network interventions has long focused attention on qualitative features like the
stability, but not quantitative effects. A second advantage is that an equilibrium in my local
interaction model exhibits features that reflect how the large network connects players to each
other. Last but not least, peer effects between any pair of friends in my model are not diluted
by the large size of the network, which is a typical feature in the linear-in-mean network model
literature.

By restricting the interaction strength to be sufficiently mild, I establish the uniqueness of
the equilibrium. Uniqueness of the equilibrium is crucial and of particular interest to both
theoretical and empirical sides of game theory. In the presence of multiple equilibria, it is
difficult to characterize the whole set of equilibria in a large network game: In particular, when
the network is not regular, we cannot use a Markov type of equilibrium solution concept to
simplify empirical analysis like that in dynamic models. Another more fundamental concern is
the “incompleteness” of the econometric model due to the existence of multiple equilibria (see
Tamer, 2003).

Although there are strategic interactions among friends in a large network, players’ choices
are mutually dependent on each other. Intuitively, one would expect such a dependence to decay
with the players’ network distance. By restricting the strength of peer effects, I show that the
dependence of a player’s equilibrium strategy on her friends’ choices decays (exponentially)
with network distance, a so-called network decaying dependence condition (NDD condition)
that more or less amounts to the restrictions for a stationary solution in the autoregressive
model. My NDD condition is related to a number of dependence decay conditions used in the
time series and spatial analysis (see, e.g., Jenish and Prucha, 2009). When the data come from
the equilibrium of a single large network game, all observations are dependent on each other
due to strategic interactions. The NDD implies that any two players’ decisions are closer to
being independent if they are farther away from each other. The formulation of NDD is novel
and serves as the basis for my statistical inference.

For estimation, a key challenge arises because it is costly to solve the equilibrium analytically
or numerically. We propose a new approach that approximates the equilibrium solution of a
large n-player Bayesian games by solving games of much smaller size, one for each player.
Specifically, for player i, a Bayesian game is tailored from the original one by cutting off all
players whose network distances from i are larger than h (h ∈ N). The set of players left on
the subnetwork, as well as their payoffs, action space, information structure and so on, defines
a smaller sized Bayesian game. I solve this subnetwork game and use the equilibrium solution
of player i to approximate her equilibrium strategy in the original large network game. The
tuning parameter h is chosen carefully depending on the network size; that is, h increases with
the network size at an exponential rate such that approximation errors are negligible with
respect to the limiting distribution of the estimator. By this approximation, I then define an
approximated maximum likelihood estimator (AMLE), which is asymptotically equivalent to
the infeasible MLE. My Monte Carlo experiments results perform well.

It is worth pointing out that my asymptotic analysis is based on the number of players in a
single game going to infinity instead of the infinite repetition of the same game with a small fixed
number of players. The latter asymptotic approach is used by most of the existing empirical
game literature, for example, Bjorn and Vuong (1984), Bresnahan and Reiss (1991), Brock
and Durlauf (2001), and Tamer (2003). My asymptotic analysis applies to observations coming
from one or a small number of large networks. In a recent paper, Menzel (2015a) characterizes
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the asymptotic distribution of a large matching market. The analysis is similar in spirit to my
approach in terms of using the limiting distribution as the number of players goes to infinity
to approximate the distribution of the equilibrium in a large game. An important difference is
that in Menzel (2015a), the strategic effects that cause the endogeneity issue become negligible
as the number of players increases to infinity, which is not the case in my asymptotic analysis.

We apply our method to study college attendance decisions of high school students, using
the data from the National Longitudinal Study of Adolescent Health (Add Health). The Add
Health is a longitudinal survey containing a nationally representative sample of adolescents
in the United States during the 1994–5 school year. A unique feature in this data set is the
availability of respondents’ social network information, which is reconstructed by students’
best friends nominations in the survey. Applying the proposed estimation procedure, I find
statistically significant, positive peer effects, which has a scale similar to other empirical findings
of peer effects on youth behaviors using the same or similar data sets. See, for example, Calvó-
Armengol et al. (2009) and Gaviria and Raphael (2001).

The rest of the article is organized as follows. In Section 2, I describe the data and provide
descriptive statistics. In Section 3, I introduce the network game model and establish the
uniqueness of the Bayesian Nash Equilibrium (BNE) and the NDD condition. In Section 4,
I establish identification of the model. In Section 5, I propose an estimation procedure and
establish its asymptotic properties. Moreover, I study its finite sample performance in Monte
Carlo experiments and then illustrate it by an imperial application. Section 6 concludes, and all
the proofs are provided in the Appendix.

2. DATA

I study peer effects on college attendance of high school students by using data from the
National Longitudinal Study of Adolescent Health (Add Health), which is a longitudinal survey
containing a nationally representative sample of adolescents in the United States during the
1994–5 school year. A unique feature of the Add Health data is the availability of respondents’
social network information, as well as their social and economic characteristics (including
college attendance): Each respondent provides his or her friendship information by nominating
at most five male and female best friends, respectively. Intuitively, one can then reconstruct the
whole friendship network among respondents. All the respondents in my empirical study come
from three high school networks, and the total number of observations is n = 831. A detailed
description of the data can be found on the Web site of the Carolina Population Center.3

The college attendance decisions must have been made by individual families during a short
period. Following the literature (see, e.g., Christensen et al., 1975; Leslie and Brinkman, 1988),
the exogenous covariates that affect college attendance include age, household income, grade
point average (GPA), parents’ education level, race, gender, etc. Descriptive statistics are pre-
sented in Table 1. The demographic variables, that is, Household Income, Mother’s Education,
and Father’s Education, are recorded by some codes. These codes are natural numbers increas-
ing with the actual value of variables. The median Household Income is between $50,000 and
$74,999. Mother’s Education and Father’s Education are coded as 1 = never went to school,
2 = not graduate from high school, 3 = high school graduate, 4 = graduated from college or a
university, 5 = professional training beyond a four-year college. There is a severe missing data
issue in these two variables: I treat missing observations as value 0. For the observed subsam-
ple, both the median of Mother’s Education and that of Father’s Education are high school
graduate. Over the whole sample (i.e., including observations with value 0 for Mother’s and/or
Father’s Education), however, both medians are 0.

As a matter of fact, I only use observations from three largest schools. For schools with small
numbers of respondents, the missing data issue is severe. Therefore, the descriptive statistics in

3 See http://www.cpc.unc.edu/projects/addhealth/data.
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TABLE 1
DESCRIPTIVE STATISTICS: THREE SCHOOL NETWORKS; YEAR 1994–5

Variable Mean SD Min Max

Age 17.088 1.138 15 21
Female 0.502 0.500 0 1
Household Income 8.827 2.122 1 12
Mother’s Education* 0.516 1.676 0 11
Father’s Education 1.709 2.955 0 12
Overall GPA 2.376 0.772 0.11 4
American Indian** 0.039 0.193 0 1
Asian 0.140 0.347 0 1
Black 0.084 0.278 0 1
Hispanic 0.348 0.477 0 1
White 0.651 0.477 0 1
Other Race 0.153 0.360 0 1
Number of Friends 1.303 1.575 0 8
Network Centrality 1.303 1.780 0 13
College Attendance 0.535 0.499 0 1

*Missing observations have been treated as 0.
**Some observations are associated with more than one race.

Table 1 are slightly different from other studies on social interactions that use the whole Add
Health data set (see, e.g., Calvó-Armengol et al., 2009).

The number of friends and the network centrality are two descriptive statistics on the network
structure. Player i’s network centrality is defined by the number of players who take i as a friend,
that is,

∑
j �=i 1(i ∈ F j ). In the data, the standard deviation of the number of friends is less than the

standard deviation of the network centrality, which is a typical feature in many social networks.

3. THE MODEL

Following my empirical application, I consider a game theoretic model on social interactions
of high school students’ college attendance decisions. All these students are denoted as players
indexed by i ∈ N ≡ {1, . . . ,n}, with exogenously determined locations on the school network.
Using the terminology in graph theory, a vertex of the network denotes a student and a directed
edge connects vertex i to j if student j is (one of) i’s best friends. Following the network
distribution theory (see, e.g., Barabási and Albert, 1999), we can view the high school network
as a random graph with vertex connectivities governed by some probability distribution, and
then the observed network in my data is a single realization of the large random network. I
denote Fi as the group of i’s best friends; that is, the set of students is directly connected to i. Note
that friendship may not be symmetric; that is, j ∈ Fi does not necessarily imply i ∈ F j , which is
an important feature in my data. Moreover, let Qi = #Fi be the number of i’s best friends. In my
game theoretic model, I assume the school network structure is public information. Therefore,
Fi is known to every player .

Given the network, I assume each player i simultaneously chooses a discrete action Yi ∈ A ≡
{0, 1, 2, . . . ,K}. Following the convention, let Y−i denote a profile of actions of all other players
except for i. Let further Xi ∈ SX ⊆ Rd be a vector of player i’s payoff relevant state variables,
which are publicly observed by all players, as well as the researcher. Before making the decision,
player i observes a vector of action-specific payoff shocks labeled as εi ≡ (εi0, . . . , εiK) ∈ RK+1.
I assume that εi is i’s private information; that is, εi is not observed by j �= i.4 In my application,
Yi is binary indicating college attendance; Xi is a vector of demographic variables including, for
example, age, gender, GPA, parents’ education, household income and race. Moreover, εi is an

4 It should be noted my specification rules out unobserved heterogeneity, that is, some variables observed by players,
but not by the researcher.
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idiosyncratic preference shock for college attendance. For expositional simplicity, I denote all
the public state variables associated with student i by Si ≡ (X ′

i,Fi)′.
Players interact with each other through their utilities. Specifically, I assume player i’s payoff

from choosing an action k ∈ A as follows:

Uik(Y−i,Si, εi) = βk(Xi) +
∑
j∈Fi

αk(Yj ,Xi,Qi) + εik,(1)

where βk(·) is a choice-specific function, and αk(·, ·, ·) measures the strategic effects on i’s payoff
(of choosing k) from her best friend j ’s decision. Note that the strategic effects depend on the
state variable Xi as well as i’s network degree Qi. Because only the differences of choice-specific
payoffs matter to decision makers, w.l.o.g., I normalize the mean utility of action 0 by setting
β0(x) = α0(�, x,q) = 0 for all x ∈ SX , � ∈ A and q ∈ N. Let θk = (βk, αk)′ and θ = (θ′1, . . . , θ

′
K)′

be the structural parameters of the game, which are unknown functions.
It is worth pointing out that my model can be extended to allow for exogenous interaction

effects; that is, player i’s payoffs Uik depend on Xj for all j ∈ Fi. See, for example, Manski
(1993) and Bramoullé et al. (2009). My approach could be modified to accommodate such an
extension.5 In my empirical context, however, it seems unlikely that high school students make
their college attendance decisions according to friends’ demographic variables (e.g., Household
Income, Parents’ education level, and Overall GPA). On the other hand, my specification
allows friends’ payoff-relevant covariates to affect players’ decisions indirectly through their
beliefs/expectations on friends’ equilibrium choices.

In my setting, direct interactions on payoffs only occur among friends. Although direct inter-
actions are local, strategic effects can spread throughout the whole network if no subnetwork
is isolated from the rest. For instance, a player needs to consider the decisions made by the
friends of her friends, since those decisions are relevant to her friends’ choices, which thereafter
affect her payoffs. In the equilibrium, each player’s strategy depends on all other players’ public
observables {(Xj ,F j )}j �=i as well as her own state variables (Xi,Fi).6

3.1. Bayesian Nash Equilibrium. Let Sn = (S1, . . . ,Sn) be all the public information of the
network game. For simplicity, throughout I suppress the subscript n in Sn unless the subscript
is necessary. To discuss the equilibrium solution, I fix the public state variable S.

In this Bayesian game, player i’s strategy is a function that maps her private information εi to a
discrete choice Yi. Following the BNE solution concept, player i’s equilibrium strategy, denoted
by r∗

i (·|S; θ), maximizes her (conditional) expected payoff given all other players’ equilibrium
strategies r∗

−i(·|S; θ), that is,

r∗
i (εi|S; θ)(2)

= arg maxk∈AE [Uik(Y−i,Si, εi)|S, εi]

= arg maxk∈A

⎡
⎣βk(Xi) +

K∑
�=0

⎧⎨
⎩αk(�,Xi,Qi) ×

∑
j∈Fi

Pr
(

r∗
j (εj |S; θ) = �

∣∣S, εi

)⎫⎬
⎭ + εik

⎤
⎦ , ∀i.

Thus, Equation (2) defines a simultaneous equation system in terms of (r∗
1, . . . , r∗

n).
To characterize the BNE solution, I first make the following assumption on εi.

ASSUMPTION 1. Let εik be i.i.d. across both actions and players and conform to an extreme value
distribution with a density function f (t) = exp(−t) exp[− exp(−t)].

5 I thank a referee for this point.
6 A recent work by Manresa (2013) develops a reduced form to assess the dependence structure from social

interactions in a linear setting.
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Assumption 1 has been widely assumed in the discrete choice model literature, as well as in
empirical discrete games (see, e.g., Brock and Durlauf, 2002; Bajari et al., 2010). The indepen-
dence of εi across players implies that players’ equilibrium choices are conditionally independent
given S. Therefore, the network dependences of players’ decisions are all characterized by the
dependence of players equilibrium strategies r∗

i on the common state variable S.
By Assumption 1, we can rewrite (2) in terms of equilibrium choice probabilities. Let

σ∗
ik(S; θ) = Pr(r∗

i (εi|S; θ) = k|S) and σ∗
i (S; θ) = (σ∗

i0(S; θ), . . . , σ∗
iK(S; θ))′ be the equilibrium choice

probabilities of action k and the equilibrium choice profile, respectively. Let further �∗(S; θ) =
(σ∗

1(S; θ), . . . , σ∗
n(S; θ)) be the sequence of equilibrium choice probability profiles of all players.

By (2) and Assumption 1, we have

σ∗
ik(S; θ) =

exp
[
βk(Xi) + ∑K

l=0

{
αk(�,Xi,Qi) × ∑

j∈Fi
σ∗

j�(S; θ)
}]

1 + ∑K
q=1 exp

[
βq(Xi) + ∑K

l=0

{
αq(�,Xi,Qi) × ∑

j∈Fi
σ∗

j�(S; θ)
}] , ∀i,k.(3)

Note that solving the BNE solution {r∗
1(·|S; θ), . . . , r∗

n(·|S; θ)} to Section 2 is equivalent to solving
{σ∗

1(S; θ), . . . , σ∗
n(S; θ)} from (3). See Bajari et al. (2010).

Equation (3) is the common logit functional form, except for the presence of the equilibrium
choice probabilities of i’s friends. The existence of a solution follows Brouwer’s fixed point
theorem. Next, I establish the uniqueness of the equilibrium and show that the equilibrium
satisfies a decaying dependence condition. Both uniqueness and the decaying dependence
condition are crucial for my empirical analysis.

3.2. Unique Equilibrium. The insight for deriving the unique equilibrium comes from the
linear spatial autoregressive model literature: Strong interactions breeds multiple equilibria in a
simultaneous equation system. Hence, I first introduce an assumption to restrict the interaction
strength.

ASSUMPTION 2. Denote λ ≡ K
K+1 × sup(x,q)∈SXQ

maxk,m,�∈A q|αk(�, x,q) − αm(�, x,q)|. Let
λ < 1.

Similar to the requirement that all roots lie outside of the unit circle in spatial autoregressive
models, such a condition ensures weak dependence. In the estimation, I parametrize αk(�, x,q)
by αk�/q for some αk� ∈ R. Then, Assumption 2 becomes

max
k,m,�∈A

|αk� − αm�| < (K + 1)/K.

In my empirical application, because each student takes a binary decision for college attendance,
then the above condition can be further rewritten as

max {|α10 − α00|, |α11 − α01|} < 2.

Note that α00 − α10 and α11 − α01 describe peer effects, that is, the amount friends benefit
from choosing the same action. Following the principal in social interactions, α00 − α10 ≥ 0
and α11 − α01 ≥ 0. Therefore, Assumption 2 requires peer effects to be bounded above. In my
context, such a condition means that the college attendance decisions are mainly determined
by students’ own social and economic characteristics like GPA, household income, etc., and
their idiosyncratic preference shock on college attendance as well. If the average probabilities
of friends’ college attendance increase 1 percentage point, then the peer effects on her own
college attendance probability is limited by λ < 1 percentage point.7

7 To see this, note that Assumption 2 ensures that a quasi-Lipschitz condition holds for the best response function:
The best response function 
i(si, {σj : j ∈ Fi}) defined by (A.1) in the Appendix satisfies the following condition:

‖
i(si, {σj : j ∈ Fi}) − 
i(si, {σ̃j : j ∈ Fi})‖1 ≤ λ · max
j∈Fi

‖σj − σ̃j ‖1,
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Assumption 2 generally holds in a wide range of empirical studies of youth behaviors, in-
cluding, for example, substance use, church attendance, academic performance, and academic
cheating. See, for example, Gaviria and Raphael (2001), Sacerdote (2001), Kawaguchi (2004),
Carrell et al. (2008), and Calvó-Armengol et al. (2009). In these studies, the effects on a player’s
equilibrium choice probabilities from her friends’ choices are significantly smaller than 1. Al-
though the NDD is a natural condition for peer effects in my empirical context, numerous
prominent exceptions exist. For example, adolescent risky behaviors like substance (marijuana,
alcohol, or tobacco) use are mainly driven by influence from friends. See, for example, Gaviria
and Raphael (2001) and Kawaguchi (2004). Another leading example is the butterfly effects
widely applied to phenomena like, for example, fashion, financial crisis, and gold rush, which
characterize the sensitive dependence of players’ choices on each other.

LEMMA 1. Suppose Assumptions 1 and 2 hold.Then, there always exists a unique BNE, regard-
less of the number of players n and the realization of the state variable S.

The proof of the uniqueness relies on a contraction mapping argument. We can generalize
such a result to the exponential family distribution for the private information εi.

3.3. Network Decaying Dependence. For any positive integer h ∈ N, let N(i,h) be the subset
of players defined inductively:

N(i,0) = {i} and ∀ h ≥ 1, N(i,h) = N(i,h−1) ∪ (∪j∈N(i,h−1) F j
)
.

By definition, N(i,h) is the set of players on the social network within h-distance of i (including i
herself). Moreover, let G(i,h) be the network graph that uses vertices and edges to describe all
the connections within the subnetwork N(i,h). Let S(i,h) = ({Xj : j ∈ N(i,h)}; G(i,h)). By definition,
S(i,h) describes the subnetwork centered around i within her h-distance, that is, how do these
players connect to each other and what are the state variables at each node of the graph. Note
that players’ identities do not matter in the definition of S(i,h).

The idea of the NDD condition is to examine how player i’s equilibrium choice probability
σ∗

i (S; θ) responds to counterfactual changes of another player j ’s state variable Sj . Note that in
equilibrium σ∗

i (S; θ) depends on all the public information S, including Sj no matter whether j is
i’s friend or not. In a “stable” equilibrium, intuitively such a dependence should decay with i and
j ’s network distance. Therefore, the statistical dependence between Yi and Yj also diminishes
with the distance.

DEFINITION 1 (NDD). In above network game, the equilibrium satisfies the NDD condition
if there exists a deterministic sequence {ξh : h = 1, . . . ,∞} with ξh ↓ 0 as h → ∞ such that for
any network size n and integer h ≥ 1,

sup
s,s′∈SS: s(i,h)=s′

(i,h)

∥∥σ∗
i (s; θ) − σ∗

i (s′; θ)
∥∥

1 ≤ ξh, ∀i = 1, . . . ,n,(4)

where ‖ · ‖1 is the L1–norm; that is, for any z ∈ Rk, ‖z‖1 = ∑k
�=1 |z�|.

My notion of NDD is related to the weak dependence in the time-series/spatial literature. In
particular, NDD implies the near-epoch dependence (NED) condition in, for example, Andrews
(1988).8 Different from the time-series/spatial statistical literature that usually assumes weak
dependence of unobserved errors across observations, the dependence of players’ decisions

where ‖ · ‖ is the L1–norm. See the proof of Lemma 1.
8 This is because by Equation (4), Pr(Yi �= E[Yi|{(εj , Sj ) : j ∈ N(i,h)}]) is bounded by Kξh.
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results from network-based strategic interactions. Moreover, conditional on S, players’ decisions
are mutually independent under Assumption 1.

In Definition 1, NDD requires the causal effects from Sj on σ∗
i to be bounded above by ξρ(i,j),

where ρ(i, j) denotes the network distance from j to i. Note that the network size n is treated as
a state variable. With NDD (and Assumption 10 below), if I increase the network size to infinity
such that the probability distribution of any subgraph around player i converges to a limit, then
i’s equilibrium choice probability will converge to some limit as well. The next lemma shows
that the equilibrium in my network game satisfies NDD under weak conditions.

LEMMA 2. Suppose Assumptions 1 and 2 hold. Then the BNE satisfies NDD with ξh = 2λh+1.

With the NDD, the probability distribution of Yi given S can be nonparametrically estimated
by using data from a single large network as the network size n goes to infinity. See Appendix
Section A.4.

4. IDENTIFICATION

In this section, I discuss the identification of the structural parameter θ. Following Hurwicz
(1950) and Koopmans and Reiersol (1950), the definition of identification in a structural model
requires that there is a unique value of the structural parameter θ that generates the distribution
of the observable variables, denoted byFY1,...,Yn |S.

Because of the uniqueness of the equilibrium by Lemma 1, σ∗
ik(S; θ) is identified by σ∗

ik(S; θ) =
Pr(Yi = k|S). Let δik(S) = ln Pr(Yi = k|S) − ln Pr(Yi = 0|S) for each k ∈ A. By definition, δik(S)
is also identified. Moreover, by (3),

δik(S) = βk(Xi) +
∑
�∈A

[
αk(�,Xi,Qi) ×

∑
j∈Fi

Pr(Yj = �|S)

]
, ∀i,k.

Let further φi�(S) = ∑
j∈Fi

Pr(Yj = �|S). By definition,
∑

�∈A φi�(S) = Qi. It follows that

δik(S) = βk(Xi) + αk(0,Xi,Qi) × Qi +
K∑
�=1

{[αk(�,Xi,Qi) − αk(0,Xi,Qi)] × φi�(S)}.(5)

Similar to Robinson (1988), Equation (5) is essentially a partial linear model as shown in
Lemma 3.

Equation (5) suggests that βk(·) and αk(0, ·, ·) are not identified separately unless 0 ∈ SQ.9

Hence, I introduce the following normalization on αk.

ASSUMPTION 3. Let αk(0, ·, ·) = 0 for all k ∈ A.

Next, I assume a rank condition for identification. Let ϕi(S) = (1, φi1(S), . . . , φiK(S))′.

ASSUMPTION 4 (RANK CONDITION). Given the game size n, the matrix E[ϕi(S) × ϕi(S)′|Xi =
x,Qi = q] is invertible for all (x,q) ∈ SXQ.

Assumption 4 is testable given that the conditional choice probabilities can be consistently
estimated.

The next theorem establishes the identification of the model. For the sake of simplicity, let
αk(·, ·) = (αk(1, ·, ·), . . . , αk(K, ·, ·))′ be a K-dimensional vector of functions.

9 To see this, consider the following specification: αk(0,Xi,Qi) = α̃k(0,Xi)/Qi for Qi ≥ 1.
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LEMMA 3. Fix arbitrary n. Suppose Assumptions 1–4 hold. Then the structural parameter θ is
identified; that is, FY1,...,Yn |S(θ′) �= FY1,...,Yn |S(θ) for all θ′ �= θ. Specifically, for any (x,q) ∈ SXQ,(

βk(x)
αk(x,q)

)
= {E[ϕi(S) × ϕ′

i(S)|Xi = x,Qi = q]}−1E[ϕi(S) × δik(S)|Xi = x,Qi = q].

Note that the identification result in Lemma 3 is established for each fixed n. For the purpose
of estimation and asymptotic analysis, however, we need that n goes to infinity. Hence, I replace
the rank condition 4 by the following assumption.

ASSUMPTION 5 (RANK CONDITION FOR LARGE n). For all sufficiently large n, thematrixE[ϕi(S) ×
ϕi(S)′|Xi = x,Qi = q] is invertible, that is,

lim inf
n → ∞ det(E[ϕi(S) × ϕi(S)′|Xi = x,Qi = q]) > 0, ∀(x,q) ∈ SXi,Qi .

By relaxing conditions in Lemma 3, the next theorem establishes identification of the model
for all sufficiently large n.

THEOREM 1. Suppose Assumptions 1–3 and 5 hold.Then the structural parameter θ is identified
for all n sufficiently large.

The semiparametric identification in Theorem 1 helps the applied researcher to get a bet-
ter sense of whether a fully parametric approach relies on ad hoc specification (of the pay-
off function) for identification or merely for simplicity of estimation. An analogous rank
condition can be formulated in the fully parametric model that is used for my estimation.
Let βk(x) = x′βk and αk(�, x,q) = αk�/q, where βk ∈ Rd and αk ≡ (αk1, . . . , αkK)′ ∈ RK. Let
Wi = (X ′

i, φi1(S), . . . , φiK(S))′.

ASSUMPTION 6 (RANK CONDITION FOR LINEAR-INDEX SETUP). The matrix E(WiW ′
i ) is invertible

for all n sufficiently large.

Replace Assumption 5 with 6 in Theorem 1; then we obtain identification of θk = (β′
k, α

′
k)′ as

follows: for sufficiently large n,

θk = [E(WiW ′
i )]−1E[Wiδik(S)].

Clearly, variations in the aggregated friends’ choice probabilities φi�(S) identify the strategic
coefficients αk�.

5. ESTIMATION

This section discusses the parametric estimation of the structural parameter θ. In particular,
I specify the payoff function by

Uik(Y−i,Si, εi) = X ′
iβk +

K∑
�=1

αk� × 1
Qi

∑
j∈Fi

1(Yj = �) + εik,(6)

where βk ∈ Rd and αk = (αk1, . . . , αkK)′ ∈ RK. Let θk = (β′
k, α

′
k) ∈ RK+d. Moreover, let β =

(β′
1, . . . , β

′
K)′ ∈ �β ⊆ RKd and α = (α′

1, . . . , α
′
K)′ ∈ �α ⊆ RK×K, where �β and �α are the pa-

rameter space for β and α, respectively. Denote θ = (θ′1, . . . , θ
′
K)′ and � = �β ×�α.

Let {Xi,Fi,Yi}n
i=1 be the data generated from the equilibrium of a single large network game.

For asymptotic analysis, I consider the network size n goes to infinity, since my empirical
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application involves a few large networks. My data-generating process also requires the prob-
ability distributions of G(i,h) with fixed h converge to the same limiting distribution for all i as
the network size goes to infinity, and random graph G(i,h) be independent of G(j,h), given they
do not share any vertex in common.

I now proceed to motivate my estimation procedure. First, note that conditional on S, the
actions profile {Y1, . . . ,Yn} are conditionally independent under Assumption 1. Thus, we can
derive the (conditional) log-likelihood function as follows:

L̂(θ) = 1
n

n∑
i=1

∑
k∈A

1(Yi = k) × ln σ∗
ik(S; θ).(7)

Let θ̂MLE = arg maxc∈� L̂(c) be the MLE, which requires us to solve {σ∗
ik(S; θ) : i ∈ N; k ∈ A}

to the equation system (3). For the log-likelihood function (7), we can verify that all the
regularity conditions hold under additional weak conditions.10 In practice, however, θ̂MLE is
not computationally feasible when the network is large. This is because the equilibrium choice
probability σ∗

ik(S; θ) has no closed-form expression, and obtaining a numerical solution is costly
in the large simultaneous equation system.

The key to my approach is to approximate σ∗
ik(S; θ) by some computable solution σh

ik(S; θ) to
be defined below, where h is an integer that depends on n such that the approximation error
‖σh

ik(S; θ) − σ∗
ik(S; θ)‖1 is negligible relative to the sampling error. Thus, I define my approxi-

mated log-likelihood function

Q̂(θ) = 1
n

n∑
i=1

∑
k∈A

1(Yi = k) × ln σh
ik(S ; θ).(8)

Further, my estimator maximizes the approximated likelihood; that is, θ̂ = arg maxc∈� Q̂(c).
To define σh

ik(S; θ), we first define a Bayesian game of smaller size: let N(i,h) be the set of players
and each player j ∈ N(i,h) simultaneously makes a discrete choice Yj ∈ A. Moreover, each player
j in N(i,h) has the same state variables (Xj , εj ) as those in the original network game, but player
j ’s set of friends is restricted to be F j ∩ N(i,h). In other words, I artificially remove all the players
outside of N(i,h) from the large network game. Moreover, let {σh

ik(S; θ) : j ∈ N(i,h),k ∈ A} solve

σjk =
exp

[
β′

kXj + ∑K
�=1 αk� ×

(
1

Qj

∑
j ′∈F j ∩N(i,h)

σj ′�

)]
1 + ∑K

q=1 exp
[
β′

qXj + ∑K
�=1 αq� ×

(
1

Qj

∑
j ′∈F j ∩N(i,h)

σj ′�

)] , ∀j ∈ N(i,h),k ∈ A.(9)

By Lemma 1, there is a unique solution to (9). In the derived subnetwork game, player i is at
the center of the subnetwork, and her equilibrium choice probabilities profile is denoted by
σh

i (S; θ) = (σh
i0(S; θ), . . . , σh

iK(S; θ)).
By Lemma 2, the approximation error ‖σ∗

i (S; θ) − σh
i (S; θ)‖1 can be bounded by 2λh+1.11 To

control for the approximation error, I choose h to increase with n at a proper rate.

5.1. Asymptotic Analysis. I now establish the consistency and limiting distribution for the
proposed estimator. First, I make the following assumptions.

ASSUMPTION 7. (i) The parameter space� is compact and the support SXQ is bounded; (ii) The
true parameter θ belongs to the interior of �.

10 For instance, Lemma 7 in the Appendix ensures the differentiability of the objective function.
11 To apply Lemma 2, let Si,h denote the state of the network derived from S by eliminating all the network connections

outside of N(i,h). By definition, Si,h ∈ {s′ ∈ SS : s′
(i,h) = S(i,h)}. Moreover, note that σh

i (S; θ) = σ∗
i (Si,h; θ), since all players

outside of N(i,h) have no strategic effects on players in N(i,h).
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ASSUMPTION 8. Let

sup
a∈�α

max
k,�,m∈A

|ak� − am�| < (K + 1)/K.

ASSUMPTION 9. Given any h ∈ N, the probability distribution of G(i,h) converges to a limit-
ing distribution FG,h as n → ∞ for all i, and G(i,h) is independent of G(j,h) if N(i,h) ∩ N(j,h) = ∅.
Moreover, the payoff covariates Xi are i.i.d. across players given the exogenous random network.

ASSUMPTION 10. There exists a positive constant c0 ∈ N, which does not depend on n, such that
maxi∈N

∑
j �=i 1(i ∈ F j ) ≤ c0 with probability one.

ASSUMPTION 11. (i) Let h → ∞ as n → ∞; (ii) let further h = [h0 · na] for some constant h0 > 0
and a > 0, where [t] is the largest integer that is no larger than t.

Let P = K(d + K) denote the dimension of the parameter θ. Moreover, let f i(Yi|S; θ) =∑
k∈A 1(Yi = k) × ln σ∗

ik(S; θ) and Jn(θ) = E[ ∂
∂θ

f 1(Y1|S; θ) × ∂
∂θ′ f 1(Y1|S; θ)]. The latter is indexed

by n because of the dependence of f i on n through S and σ∗
i .

ASSUMPTION 12. There exists a nonsingular P × P matrix J (θ) such that Jn(θ) → J (θ).

Assumption 7(i) ensures that choice probabilities are bounded away from zero so that the
log-likelihood function is bounded. Unbounded regressors can be accommodated using high-
order moments restrictions (see, e.g., Van de Geer, 1990). Assumption 7(ii) is standard in the
literature. Assumption 8 strengthens Assumption 2 to hold uniformly in �.

Assumptions 9 and 10 impose restrictions on the distribution of the state variables as well as
the network connections. For the first half of Assumption 9, note that for any given n and h, the
probability distribution of G(i,h) is well defined, since the subgraph G(i,h) can be represented by
an n × n matrix with 0–1 entries. Note that the subgraph G(i,h) here refers to all subgraphs that
are homomorphic to G(i,h), because players’ identities do not matter in the definition of G(i,h).
Moreover, the first half of Assumption 9 also requires that G(i,h) should be i.i.d. across players
who are at least 2h-step far away from each other in the network. This condition generally holds
in the random graph literature, since conditional on G(i,h) and G(j,h) do not overlap, the graph
structure of G(i,h) does not provide additional information on how G(j,h) is connected in a large
network. For the second half of Assumption 9, the (conditional on the network connections)
independence of Xi is a strong assumption. In practice, positive statistical dependence across
friends’ demographic variables (e.g., age, education, race, etc.) has been emphasized in the
sociology literature (see, e.g., Easley and Kleinberg, 2010), which is the so-called homophily
phenomena. For my asymptotic results to be established, this assumption could be relaxed to
allow for some degree of dependence at the expense of longer proofs.12

12 For instance, as is suggested by spatial autoregressive models, one could assume that X ≡ (X′
1, . . . ,X ′

n)′ takes a
simultaneous autoregressive dependence structure: X = �(γ0) · X + ν, where� is an n × n weight matrix parameterized
by a q-dimensional vector γ0 such that diagonal elements of � are zeros and In −� is nonsingular. Moreover, ν ∈ Rn

is a vector of i.i.d. errors that are independent of S and (ε1, . . . , εn)′. Our asymptotic results established in Theorems 2
and 3 still hold as long as for each k ∈ A,

1
n

n∑
i=1

{
σ∗
ik(S; θ) ln σ∗

ik(S; c) − E
[
σ∗
ik(S; θ) ln σ∗

ik(S; c)
]} p→0, uniformly holds in c ∈ �.

Such a high-level condition can be satisfied if the weight matrix is modeled as �j� = ψ(min{ρ(j, �), ρ(�, j)}), where ψ
is a decreasing function that decays sufficiently fast (i.e., subject to exponential decay). Moreover, it is also possible to
allow the dependence between Xj and X�, that is, �j�, to depend not only on the network distance between j and �,
but also on the distance between j (or �) and other players that connect (directly or indirectly) to both of them. See,
for example, Pinkse et al. (2002).
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Assumption 10 imposes restrictions on the number of best friends that a single individual
could have. Note that the upper bound c0 does not depend on the network size. This condition
is crucial for the

√
n-asymptotics of the proposed estimator when the data come from one single

large network game: By Assumption 10 and the NDD condition, we can limit the dependence
among all the observations. Similar assumptions can also be found in, for example, Morris
(2000) for the contagion analysis in local interaction games.

It is worth pointing out that Assumption 10 is not imposed in most of the recent empirical
network formation models. Such a restriction, however, can be easily accommodated in those
models, for example, Christakis et al. (2010) and Mele (2010). On the theoretic side of network
formation, for example, Jackson and Wolinsky (1996) introduce a cost for players to maintain
a direct friendship link, which limits the maximum number of direct links each individual
could have. In my empirical application, each student was allowed to nominate at most 10 best
friends. Such a restriction is reasonable in light of capacity constraints (e.g., time and/or effort)
for students to maintain their friendship. Therefore, a network formation model using this data
set should impose such a restriction to rationalize the data.

Assumption 11(i) is intuitive for the approximation of σ∗
i (S; θ). Moreover, (ii) strengthens (i)

and ensures that the approximation error using h-neighborhood game is negligible.
In Assumption 12, Jn(θ) is the Fisher information matrix of the n-player game. Assumption

12 requires that the Fisher information matrix have a nondegenerate limit when the network
size goes to infinity. Note that the convergence of Jn(θ) is implied by Lemma 2 and Assumption
9, since the distribution S(i,h) convergence to a limit for all i as n → ∞. Hence, in Assumption
12, the essential restriction is the nondegeneracy of the limit.

THEOREM 2. Suppose that Assumptions 1 and 6, 7(i), 9, 10, and 11(i) hold. Then θ̂
p→ θ.

Given the consistency of θ̂, I now establish its limiting distribution, which is shown to be

identical to
θ̂

MLE under addition conditions.

THEOREM 3. Suppose that Assumptions 1 and 6–12 hold. Then
√

n(θ̂− θ)
d→ N(0, J (θ)−1).

Note that the infeasible likelihood function (7) is indeed what ultimately gives the informa-
tion equality in Theorem 3. Furthermore, the limiting Fisher information matrix J (θ) can be
consistently estimated by

1
n

n∑
i=1

[
∂

∂θ
f h

i (Yi|S; θ̂) × ∂

∂θ′
f h

i (Yi|S; θ̂)
]
,

where f h
i (Yi|S; θ) = ∑

k∈A 1(Yi = k) ln σh
ik(S; θ) and ∂

∂θ
f h

i (Yi|S; θ) = ∑
k∈A

1(Yi=k)
σh

ik(S;θ)
× ∂

∂θ
σh
ik(S; θ).

REMARK. It is a generic aspect of my asymptotic analysis that the size of the network goes to
infinity, but the maximum number of friends each player should remain fixed (i.e., Assumption
10). Therefore, the collection of state variables {S(i,h) : i ≤ n} becomes an m-dependent se-
quence, where m ≤ ch+1

0 , which is crucial for the
√

n-consistency of the estimator in the proof of
Theorem 3. This aspect rules out the “Small-World phenomenon” (see, e.g., Watts and Strogatz,
1998), often referred to as six degrees of separation (see, e.g., Guare, 1990). It should be noted
that whether the network is a “small-world” is an empirical question that can be verified from
the data. In a small-world network, the asymptotic analysis should allow the (average) number
of friends to increase with the size of the network.13 It seems to be an intriguing challenge to
consider Small-World asymptotics.

13 Watts and Strogatz (1998) develop a small-world model by rewiring a regular network with n � Qi � ln n � 1.
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It is worth pointing out that it is possible to relax Assumption 10 to accommodate some
“intermediate” case of the network structure at the expense of longer proofs. For instance,
consider a network where the maximum number of friends is not bounded from above, but
the distribution of Qi is asymptotically stable (as the network size n goes to infinity) with
finite mean and variance. Hence, there can be a few, but significant number of nodes with
a lot of connections, which, however, does not render the network a “Small-World.” In the
following Monte Carlo experiments, I consider such a specification to examine the finite sample
performance of my AMLE.

5.2. Monte Carlo Experiments. This section uses Monte Carlo to illustrate the finite sample
performance of the proposed estimator. In particular, I consider a binary game with payoff
Ui1(Y−i,Si, εi) = X ′

iβ+ α× [ 1
Qi

∑
j∈Fi

1(Yj = 1)] + εi1, where α ∈ R and Xi ∈ R2.
Moreover, I consider two representative networks: First, I consider the Circle network spec-

ified in Salop (1979), where n players are equally spaced in a circle and each player has two
friends. In the circle network, Qi = 2 for all players, and the friendship relation between each
pair of players is also symmetric. The second network is a random network. For any i �= j , we
use a random variable ��i,j ∈ {0, 1, 2, 3} to denote “no relationship,” “i is j ’s friend, but not vice
versa,” “j is i’s friend, but not vice versa,” and “mutual friendship,” respectively. For i �= j , ��i,j

is drawn independently from the probability mass distribution (1 − 4
n ,

1
n ,

1
n ,

2
n ). Moreover, set

��ii = 0 for all i. By definition, Qi = ∑n
j=1 1(��ij ∈ {2, 4}), which conforms to a Binomial Distri-

bution B(n, 3/n). As n goes to infinity, the mean of Qi remains constant and conforms to the
Poisson (3) distribution asymptotically.

Moreover, I take Xi1 ∼ U(−0.5, 0.5), Xi2 ∼ N(0, 1), and Xi1⊥Xi2. The results for other dis-
tributional specifications of X are qualitatively similar. Further, I set β = (1, 1)′, which are
invariant across all the experiments. According to Assumption 8, I choose �α = [−1.99, 1.99]
and set α = 0, 0.8, and 1.6, respectively. In particular, for α = 0, my setting is equivalent to the
classical Logit model.

I perform experiments with the number of players n = 500, 1,000, and 2,000. In each
design, we first compute the unique BNE given the underlying parameter value, that is, I
solve the equilibrium by finding a fixed point to (3). With the (numerical) solution in hand, I
am able to simulate the equilibrium decision made by each player.

Regarding estimation, it is crucial to choose the parameter h ∈ N according to the sample
size n. Following Assumption 11, I set h = [

√
n/10], that is, h = 2, 3, and 4 with respect to

the three choices of sample size. It is worth pointing out that the computation time increases
with h in a nonlinear pattern. For fixed n, I also investigate the performance of the proposed
estimator under different choices of h. The results for different sample sizes are qualitatively
similar and therefore I only report results for n =1,000. In addition, I perform 500 replications
to approximate the finite sample distribution of my estimator.

Tables 2 and 3 report the finite sample performance of the proposed estimator under the
different settings. The numbers in parentheses are the standard deviations. The estimator is
consistent for all these designs, and the standard deviation diminishes at the

√
n-rate as I

increase the sample size. In Table 4, I further investigate how the choice of h affects the
performance of θ̂. For n = 1,000, it shows that the approximation behaves well by using h ≥ 3,
and additional gains of accuracy are minor from choosing larger h.

5.3. Empirical Results for Peer Effects on College Attendance. I now apply my method to
estimate peer effects on high school students’ college attendance decisions. The specification of
the payoff function is the same as the one used in my Monte Carlo experiments.

Table 5 presents my estimation results. I also provide results using the pseudo-MLE for
comparison. The difference reflects the bias due to the misspecification of social interactions.
Note that AMLE(h) refers to the approximated MLE with the parameter value h and the
pseudo-MLE is equivalent to AMLE(0). From Table 5, the approximation of the equilibrium
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TABLE 2
FINITE SAMPLE PERFORMANCE: β = (1, 1) AND (n, h) = (1,000, 3)

True Value of α Parameters Circle Network Random Network

0 β1 1.0131 1.0292
(0.2454) (0.2493)

β2 1.0036 1.0058
(0.0826) (0.0833)

α 0.0068 0.0109
(0.1326) (0.1402)

0.8 β1 1.0018 1.0204
(0.2468) (0.2557)

β2 1.0091 1.0060
(0.0833) (0.0834)

α 0.8066 0.8023
(0.1042) (0.1114)

1.6 β1 1.0059 1.0179
(0.2464) (0.2721)

β2 1.0008 1.0064
(0.0849) (0.0839)

α 1.6256 1.6169
(0.0950) (0.0930)

TABLE 3
FINITE SAMPLE PERFORMANCE OF α̂

True Value of α Sample Size Circle Network Random Network

0 500 0.0030 0.0033
(0.1954) (0.2004)

1,000 0.0068 0.0109
(0.1326) (0.1402)

2,000 0.0044 0.0022
(0.0962) (0.0968)

0.8 500 0.8032 0.8048
(0.1570) (0.1469)

1,000 0.8066 0.8023
(0.1042) (0.1114)

2,000 0.8036 0.7964
(0.0714) (0.0716)

1.6 500 1.6254 1.6776
(0.1282) (0.1398)

1,000 1.6256 1.6169
(0.0950) (0.0930)

2,000 1.6072 1.6064
(0.0660) (0.0659)

NOTE: h = 2, 3, 4 for n = 500, 1,000, and 2,000, respectively.

is sufficiently good for h ≥ 2. So I can use AMLE(2) as my estimates. It is worth pointing out
that the estimates of peer effects satisfy Assumption 2.

The second column of Table 5 contains the corresponding estimates of the pseudo-MLE,
which has been typically adopted in the empirical analysis on college attendance. Given the
pseudo-MLE estimates, the most striking difference of my estimates (i.e., AMLE(2) in the fourth
column) is that the peer effects coefficient is significant at the 5% level, while the pseudo-MLE
implicitly sets it to be zero. Therefore, the ignorance of peer effects in the empirical analysis on
college attendance results in biased estimates, which can be corrected by increasing h from 0 to 2.

In Table 5, most of coefficients estimates are significant at the 10% significance level. Re-
garding race, the coefficients of American Indian, Asian, and Black are insignificant; this is
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TABLE 4
FINITE SAMPLE PERFORMANCE OF θ̂ AT DIFFERENT h (n = 1,000, α = 0.8)

Parameters h = 0 1 2 3 4

Circle Network β1 0.9790 1.0121 1.0155 1.0157 1.0157
(0.2501) (0.2448) (0.2461) (0.2462) (0.2462)

β2 0.9627 0.9967 1.0002 1.0004 1.0004
(0.0821) (0.0845) (0.0848) (0.0849) (0.0849)

α NA 0.8560 0.8014 0.7974 0.7972
NA (0.1118) (0.0996) (0.0986) (0.0984)

Random Network β1 0.9649 1.0063 1.0094 1.0098 1.0098
(0.2568) (0.2575) (0.2584) (0.2585) (0.2585)

β2 0.9614 0.9990 1.0023 1.0026 1.0026
(0.0823) (0.0824) (0.0825) (0.0825) (0.0825)

α NA 0.8957 0.8068 0.7979 0.7968
NA (0.1289) (0.1063) (0.1033) (0.1028)

TABLE 5
ESTIMATION RESULTS

Variable Pseudo-MLE AMLE(1) AMLE(2) AMLE(3) AMLE(4)

Age −0.140* −0.135* −0.135* −0.135* −0.135*

(0.076) (0.076) (0.076) (0.076) (0.076)
Female −0.028 −0.038 −0.035 −0.034 −0.034

(0.171) (0.171) (0.171) (0.171) (0.171)
Household Income 0.150** 0.134** 0.134** 0.134** 0.134**

(0.042) (0.043) (0.043) (0.043) (0.043)
Mother’s Education 0.066 0.064 0.064 0.064 0.064

(0.052) (0.053) (0.053) (0.053) (0.053)
Father’s Education 0.033 0.035 0.036 0.036 0.036

(0.029) (0.029) (0.029) (0.029) (0.029)
Overall GPA 1.749** 1.714** 1.717** 1.717** 1.717**

(0.147) (0.148) (0.148) (0.148) (0.148)
American Indian −0.559 −0.575 −0.574 −0.574 −0.574

(0.418) (0.423) (0.423) (0.423) (0.423)
Asian −0.050 0.035 0.043 0.043 0.043

(0.428) (0.435) (0.435) (0.435) (0.435)
Black 0.206 0.351 0.363 0.364 0.364

(0.455) (0.466) (0.467) (0.467) (0.467)
Hispanic 0.891** 1.043** 1.051** 1.052** 1.052**

(0.223) (0.233) (0.234) (0.234) (0.234)
White −0.703* −0.718* −0.717* −0.718* −0.718*

(0.393) (0.401) (0.401) (0.401) (0.401)
Other Race −1.024** −1.096** −1.097** −1.098** −1.098**

(0.422) (0.430) (0.430) (0.430) (0.430)
Constant −2.680* −2.795* −2.806* −2.806* −2.806*

(1.441) (1.445) (1.446) (1.446) (1.446)
Peer effects — 0.657** 0.642** 0.640** 0.640**

— (0.297) (0.286) (0.285) (0.285)
Log-likelihood −437.537 −435.063 −434.988 −434.990 −434.990

* Significant at the 10% level. ** Significant at the 5% level.

simply due to the fact that all these three categories have only a few observations in the sample.
Moreover, due to a missing data issue on parents’ education, one would expect noisy estimates
for the parents’ education coefficients.

My pseudo-MLE estimates are qualitatively similar to those empirical results in Light and
Strayer (2002), who estimate racial effects on college attendance with a Probit model by using
the data from the 1979 National Longitudinal Survey of Youth (NLSY79), which consists of a
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sample of respondents born in 1957–64. In particular, whites are less likely than minorities to
attend college, given that other determinants of college attendance are held constant. For such
a comparison, note that peer effects are not considered in Light and Strayer (2002). My pseudo-
MLE results are also consistent with other early empirical evidence on college attendance. See,
for example, Fuller et al. (1982).14

Peer effects estimates provided by AMLE(2) are related to those empirical results in Calvó-
Armengol et al. (2009), who also use the Add Health data to study peer effects on school
performance index. In particular, they specify a linear equation system for network-based
social interactions and obtain statistically significant peer effects estimates of similar magni-
tude (i.e., 0.5505 with a standard error 0.1247). Moreover, Gaviria and Raphael (2001) and
Kawaguchi (2004) use the National Education Longitudinal Study (NELS) data set and the
National Longitudinal Survey Youth 97 (NLSY97) data set, respectively, to study peer effects
on youth behaviors of high school students, for example, drug use, alcohol drinking, cigarette
smoking, church attendance, and dropping out. Their empirical results also provide evidence
for significant peer effects of similar magnitude to my estimates. For example, consider a typical
student in my sample whose covariates take the mean values in Table 1. Suppose all her friends
shift their college attendance probabilities together from 0% to 10%; then her college atten-
dance probability would increase about 1.52% (namely, from 37.93% to 39.45%). Similarly, if
all her friends’ college attendance probabilities shift jointly from 0% to 50%, then it would yield
an increase of 11.83%.15

6. CONCLUSION

This article provides a structural approach to study social interactions in a large network. My
benchmark model assumes that individuals are affected by their friends only but all individuals
are connected to each other directly or indirectly in a single network. By restricting the strength
of interactions among friends, I establish the existence, uniqueness of the equilibrium, and
a NDD condition. We further establish the semiparametric identification of the model and
propose a computationally feasible and novel estimation procedure. The classic MLE method
developed in single-agent binary response models is naturally nested in my approach.

An important extension of the benchmark model is to allow for interdependence between
a pair of friends’ private information. Individuals tend to bond with similar others as their
friends. In sociology, such a phenomena is called “homophily”; see, for example, Easley and
Kleinberg (2010). Homophily leads to friendship between people with similar characteristics
(age, education, race, etc.) and with positively correlated types. The former can be directly
observed from the data. To identify the latter is more challenging to the researcher. In a discrete
game with a (small) fixed number of players, Liu et al. (2017) establish the nonparametric
identification of homophily in a context of discrete game. Identification and estimation of
homophily in a large network game is an important extension.

Allowing for possible endogeneity of the network is another important research question in
the study of large network social interactions. Being popular in a high school network might
be associated with a possible high draw of payoff shocks for college attendance. Part of the
problem could be addressed by taking into account the network formation in the first stage;
see, for example, Christakis et al. (2010), Mele (2010), Badev (2013), Leung (2014), and Menzel
(2015b). In this regard, my identification and estimation results are useful for the second-stage

14 Fuller et al. (1982) use the 1972 National Longitudinal Study of the High School Class (NLSS72).
15 In a study of 10th graders’ substance use, Gaviria and Raphael’s (2001) estimates imply, for example, that moving

a typical teenager from a school where none of his classmates use drugs to one where half use drugs would increase the
probability by approximately 13%. Similar experiments would yield increases in the corresponding probabilities of 9%
for alcohol use, 8% for cigarette smoking, 11% for church attendance, and 8% for dropping out of school. Moreover,
Kawaguchi (2004) shows that if a teenager’s perception of the percentage of his/her peers who use a substance (i.e.,
marijuana, alcohol, or tobacco) increases by 10%, the probability that he/she will use the substance increases from 1.4%
to 2.6%.
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analysis of social interactions in the subgame. In a large network game, however, difficulties
arise when each player has a small opportunity set, relative to the large network size, of players
to meet with, and, more importantly, such opportunity sets are not observed in the data set. For
the majority of pairs of distinct individuals, it is unclear whether an unconnected link is due to
the lack of opportunity, or players’ unfavorable desire for such a connection.

As a matter of fact, our results go well beyond the local interaction studied here, as they can
be generalized to more general social interaction games. For instance, one can consider that
each player interacts directly with her friends, friends of friends, etc. In particular, the payoff
function can be generalized as follows: For choosing an action k ∈ A,

Uik(Y−i,Si, εi) = βk(Xi) +
∑
j �=i

αk(Yj ,dij,Xi,Qi) + εik,

where dij is the network distance from j to i. By such an extension, the interaction term
αk(Yj ,dij,Xi,Qi) depends on player j ’s choice as well as his/her network distance. In (1), direct
interactions αk have been set to zero for all j �∈ Fi. By a similar argument, our uniqueness
and NDD condition of the equilibrium can be established. A major difficulty in developing
nonparametric identification and estimation, however, is to consider a model with an increasing
parameter space, since the support of dij expands with the size of the network. Though significant
progress has been made in the regression context (see, e.g., Belloni and Chernozhukov, 2011),
the different nature of the structural analysis calls for further work.

APPENDIX

A.1. Equilibrium Uniqueness and Network Stability.

A.1.1. Proof of Lemma 1. Fix n and S = s. I prove by contradiction. Suppose there are two
different BNEs, denoted by {σ∗

i : i = 1, . . . ,n} and {σ†i : i = 1, . . . ,n}. For notational simplicity,
I suppress their dependence on S and θ.

For a given choice probability profile (σ1, . . . , σn) where σi is a (K+1)-choice probability
distributions, let


ik(si, {σj : j ∈ Fi}) =
exp

{
βk(xi) + ∑K

�=0

[
αk(�, xi,qi)

∑
j∈Fi

σj�

]}
1 + ∑K

�′=1 exp
{
β�′(xi) + ∑K

�=0

[
α�′(�, xi,qi)

∑
j∈Fi

σj�

]} .(A.1)

Let further 
i(si, {σj : j ∈ Fi}) = (
i0(si, {σj : j ∈ Fi}), . . . , 
iK(si, {σj : j ∈ Fi}))′. By Equation
(3), we have σ∗

i = 
i(si, {σ∗
j : j ∈ Fi}) and σ†i = 
i(si, {σ†j : j ∈ Fi}) for all i ∈ N.

Therefore, for any i ∈ N,

σ∗
i − σ

†
i = 
i

(
si,

{
σ∗

j : j ∈ Fi
}) − 
i(si, {σ†j : j ∈ Fi})

=
∑
j∈Fi

∑
�∈A

∂
i(si, {σ̃j : j ∈ Fi})
∂σj�

(σ∗
j� − σ

†
j�),

where {σ̃j : j ∈ Fi} is a vector between {σ∗
j : j ∈ Fi} and {σ†j : j ∈ Fi}. By definition, we have

∂ ln
ik
∂σj�

= αk(�, xi,qi) −
K∑
�′=1


i�′ · α�′(�, xi,qi) =
K∑
�′=0


i�′ · αk(�, xi,qi) −
K∑
�′=0


i�′ · α�′(�, xi,qi),
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where the last step is because (i)
∑K

�′=0 
i�′ = 1 and (ii) α0(�, x,q) = 0. It follows that

∂
ik

∂σj�
= 
ik

∑
k′ �=k

[
ik′ · {αk(�, xi,qi) − αk′(�, xi,qi)}].

It follows that

∑
k∈A

∣∣∣∣∂
ik∂σj�

∣∣∣∣ ≤ �(xi,qi) ·
∑
k∈A

[
ik(1 − 
ik)] ≤ �(xi,qi) · K
K + 1

,

where�(x,q) ≡ maxk,�,m∈A |αk(�, x,q) − αm(�, x,q)| and the last step comes from the fact that
(i) 0 ≤ 
ik ≤ 1 and (ii)

∑K
k=0 
ik = 1. Hence,

∥∥∥σ∗
i − σ

†
i

∥∥∥
1

=
∑
k∈A

∣∣∣∣∣∣
∑
j∈Fi

∑
�∈A

∂
ik(si, {σ̃j : j ∈ Fi})
∂σj�

· (σ∗
j� − σ

†
j�)

∣∣∣∣∣∣
≤
∑
j∈Fi

∑
�∈A

{∣∣∣σ∗
j� − σ

†
j�

∣∣∣ · ∑
k∈A

∣∣∣∣∂
ik(si, {σ̃j : j ∈ Fi})
∂σj�

∣∣∣∣
}

≤ �(xi,qi) · K
K + 1

·
∑
j∈Fi

∑
�∈A

∣∣∣σ∗
j� − σ

†
j�

∣∣∣
≤ �(xi,qi) · K

K + 1
· qi · max

j∈Fi

∥∥∥σ∗
j − σ

†
j

∥∥∥
1

≤ λ · max
j∈Fi

∥∥∥σ∗
j − σ

†
j

∥∥∥
1
.

Therefore,

max
i∈N

∥∥∥σ∗
i − σ

†
i

∥∥∥
1

≤ λ · max
i∈N

max
j∈Fi

∥∥∥σ∗
j − σ

†
j

∥∥∥
1

≤ λ · max
j∈N

∥∥∥σ∗
j − σ

†
j

∥∥∥
1
,

which leads to contradiction by λ < 1 under Assumption 2.

A.1.2. Proof of Lemma 2. I prove by mathematical induction. Fix any n,h ∈ N and s, s′ ∈ S
such that s(i,h) = s′

(i,h).
First, for all j ∈ N(i,h), sj = s′

j . I now derive σ∗
j (s; θ) − σ∗

j (s′; θ) by Taylor expansion, that is,

σ∗
j (s′; θ) − σ∗

j (s; θ) =
∑
j ′∈F j

∑
�∈A

∂
j (sj , {σ̃j ′ : j ′ ∈ F j })
∂σj ′�

· (σ∗
j ′�(s′; θ) − σ

†
j ′�(s; θ)),

where {σ̃j ′ : j ′ ∈ F j } is a vector between {σ∗
j ′(s; θ) : j ′ ∈ F j } and {σ∗

j ′(s′; θ) : j ′ ∈ F j }. By a argument
similar to the proof of Lemma 1, we have
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∥∥σ∗
j (s; θ) − σ∗

j (s′; θ)
∥∥

1
≤ λ · max

j ′∈F j

∥∥σ∗
j ′(s; θ) − σ∗

j ′(s′; θ)
∥∥

1

≤ λ · max
j ′∈F j

{∥∥σ∗
j ′(s; θ)‖1 + ‖σ∗

j ′(s′; θ)
∥∥

1

}
= 2λ,

where the last inequality comes from the triangular inequality. Because for all j ∈ N(i,h−1), any
friend j ′ of j belongs to N(i,h), then

∥∥σ∗
j (s; θ) − σ∗

j (s′; θ)
∥∥

1
≤ λ2 · max

j ′′∈F j ′ ,j ′∈F j

∥∥σ∗
j ′′(s; θ) − σ∗

j ′′(s′; θ)
∥∥

1
≤ 2λ2.

By induction, for all j ∈ N(i,h−q) where q ≤ h, there is

∥∥σ∗
j (s; θ) − σ∗

j (s′; θ)
∥∥

1
≤ 2λq+1.

Hence, for any q ≤ h, we have

max
j∈N(i,h−q)

∥∥σ∗
j (s; θ) − σ∗

j (s′; θ)
∥∥

1
≤ 2λq+1.

Because i ∈ N(i,0), then ‖σ∗
i (s; θ) − σ∗

i (s′; θ)‖1 ≤ 2λh+1. By Assumption 2, 2λh+1 ↓ 0 as h → ∞.

A.1.3. Proof of Lemma 3. First, by Assumption 3, (5) can be rewritten as

δik(S) = ϕ′
i(S) ×

(
βk(Xi)

αk(Xi,Qi)

)
.

I further multiply by ϕi(S) on both sides and obtain

ϕi(S) × δik(S) = ϕi(S) × ϕ′
i(S) ×

(
βk(Xi)

αk(Xi,Qi)

)
.

Moreover, I take conditional expectation on both sides given Xi = x and Qi = q:

E[ϕi(S) × δik(S)|Xi = x,Qi = q] = E[ϕi(S) × ϕ′
i(S)|Xi = x,Qi = q] ×

(
βk(x)
αk(x,q)

)

from which we invert the coefficients vector (βk(x), α′
k(x,q))′.

A.2. Asymptotic Properties Under Parametric Setting. For any c ∈ �, let Ln(c) =
1
n

∑n
i=1

∑
k∈A E[σ∗

ik(S; θ) ln σ∗
ik(S; c)]. For arbitrary ε > 0, let Bε(θ) be an open ball centered at θ

with ε radius in the space �.

A.2.1. Proof of Theorem 2. By Lemma 4, it suffices to check the conditions (i)–(iii) in the
lemma. By the identification argument and Assumption 6, Condition (i) holds. Moreover,
Condition (iii) also holds by Lemma 5. Hence, it suffices to verify Condition (ii), that is,
supc∈� |L̂(c) − Ln(c)| p→ 0.

By Lemmas 6 and 7,
∑K

k=0 1(Yi = k) ln σ∗
ik(S; ·) is bounded and continuous on �. Since � is

compact, then Fn = {∑k∈A 1(Yi = k) ln σ∗
ik(S; c) : c ∈ �} can be covered by a finite number of

ε-brackets. To apply the classical Glivenko-Cantelli argument, it suffices to show the point-wise
law of large number, that is, for any c ∈ �, L̂(c) − Ln(c)

p→ 0.
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I pick an integer dn ∝ 0.5 ln n/ ln c0. Clearly, dn → ∞ as n → ∞. Then we have

L̂(c) − Ln(c) = 1
n

n∑
i=1

∑
k∈A

{
1(Yi = k) − σ∗

ik(S; θ)
}

ln σ∗
ik(S; c)

+ 1
n

n∑
i=1

∑
k∈A

{
σ∗
ik(S; θ) ln σ∗

ik(S; c) − σ
dn
ik (S; θ) ln σdn

ik (S; c)
}

+ 1
n

n∑
i=1

∑
k∈A

{
σ

dn
ik (S; θ) ln σdn

ik (S; c) − E
[
σ

dn
ik (S; θ) ln σdn

ik (S; c)
]}

+ 1
n

n∑
i=1

∑
k∈A

{
E
[
σ

dn
ik (S; θ) ln σdn

ik (S; c)
]

− E [σ∗
ik(S; θ) ln σ∗

ik(S; c)]
}
.(A.2)

For the first term of right-hand side in Equation (A.2), we have

E

⎧⎨
⎩
[

1
n

n∑
i=1

∑
k∈A

(1(Yi = k) − σ∗
ik(S; θ)) ln σ∗

ik(S; c)

]2 ∣∣∣∣∣S
}

= 1
n2

n∑
i=1

E

⎧⎨
⎩
[∑

k∈A

(1(Yi = k) − σ∗
ik(S; θ)) ln σ∗

ik(S; c)

]2
∣∣∣∣∣∣ S

⎫⎬
⎭ ≤ 1

n
(K + 1)2(ln σ0)2 → 0,

where the first step is because of the reasons that Yi is conditionally independent given S
and that E(Yi|S) = σ∗

ik(S; θ), and the last inequality is due to the fact that ln σ0 ≤ (1(Yi = k) −
σ∗

ik(S; θ)) ln σ∗
ik(S; c) ≤ − ln σ0 under Lemma 6.

Next, for the second term of the RHS in Equation (A.2), note that

E
∣∣∣σ∗

ik(S; θ) ln σ∗
ik(S; c) − σ

dn
ik (S; θ) ln σdn

ik (S; c)
∣∣∣

≤ E
[∣∣∣σ∗

ik(S; θ) − σ
dn
ik (S; θ)

∣∣∣ · ∣∣ln σ∗
ik(S; c)

∣∣] + E
[∣∣∣σdn

ik (S; θ)| · | ln σ∗
ik(S; c) − ln σdn

ik (S; c)
∣∣∣]

≤ − ln σ0 · E
∣∣∣σ∗

ik(S; θ) − σ
dn
ik (S; θ)

∣∣∣ + 1
σ0

· E
∣∣∣σ∗

ik(S; c) − σ
dn
ik (S; c)

∣∣∣ → 0.

Similarly, I can show that the last term in Equation (A.2) is also op (1).
Therefore, it suffices to show that the third term of the RHS in Equation (A.2) is also op (1).

Note that

E

{
1
n

n∑
i=1

∑
k∈A

[
σ

dn
ik (S; θ) ln σdn

ik (S; c) − Eσdn
ik (S; θ) ln σdn

ik (S; c)
]}2

= 1
n2

n∑
i,j=1

Cov

(∑
k∈A

σ
dn
ik (S; θ) ln σdn

ik (S; c),
∑
k∈A

σ
dn
jk (S; θ) ln σdn

jk (S; c)

)
.

By definition and Assumption 9, σdn
i (S; θ) is independent of σdn

j (S; θ) if there does not exist a

player m ∈ N(i,dn) ∩ N(j,dn). By Assumption 10, there are at most n · (1 + c0 + · · · cdn
0 ) ≤ ncdn+1

0

pairs of (i, j) such that σdn
i (S; θ) and σdn

j (S; θ) are dependent on each other. Moreover, for any i
and j ,
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2Cov

(∑
k∈A

σ
dn
ik (S; θ) ln σdn

ik (S; c),
∑
k∈A

σ
dn
jk (rmS; θ) ln σdn

jk (S; c)

)

≤ E

(∑
k∈A

σ
dn
ik (S; θ) ln σdn

ik (S; c)

)2

+ E

(∑
k∈A

σ
dn
jk (S; θ) ln σdn

jk (S; c)

)2

≤ 2(1 + K)2(ln σ0)2.

Therefore,

E

{
1
n

n∑
i=1

∑
k∈A

{
σ

dn
ik (S; θ) ln σdn

ik (S; c) − Eσdn
ik (S; θ) ln σdn

ik (S; c)
}}2

≤ 1
n2

· ncdn+1
0 2(1 + K)2(ln σ0)2 ∝ 1√

n
2c0(1 + K)2(ln σ0)2 → 0.

LEMMA 4. Suppose (i) lim supn→∞ supc�∈Bε(θ)(Ln(c) − Ln(θ)) < 0 holds for any ε > 0; (ii) L̂n

converges uniformly in probability to Ln, that is, supc∈� |L̂n(c) − Ln(c)| p→ 0; and (iii) L̂n(θ̂) ≥
supc∈� L̂n(c) − op (1). Then θ̂

p→ θ.

PROOF. To prove the lemma, I modify the proofs in Newey and McFadden (1994), Theorem
2.1. Note that the objective function Ln(·) in my case depends on n, and it converges to a limit
as n goes to infinity. By (ii) and (iii), with probability approaching one (w.p.a.1),

Ln(θ̂) > L̂n(θ̂) − η/3 > L̂n(θ) − 2η/3 > Ln(θ) − η, ∀η > 0.

Then, for any ε > 0, choose η = − 1
2 lim supn→∞ supc�∈Bε(θ)(Ln(c) − Ln(θ)) > 0. It follows that

w.p.a.1,

Ln(θ̂) − Ln(θ) >
1
2

lim sup
n→∞

sup
c�∈Bε(θ)

(Ln(c) − Ln(θ)).

Because for sufficient large n,

sup
c �∈Bε(θ)

(Ln(c) − Ln(θ)) − lim sup
n→∞

sup
c�∈Bε(θ)

(Ln(c) − Ln(θ))

≤ η = −1
2

lim sup
n→∞

sup
c�∈Bε(θ)

(Ln(c) − Ln(θ)),

which implies 1
2 lim supn→∞ supc�∈Bε(θ)(Ln(c) − Ln(θ)) ≥ supc�∈Bε(θ)(Ln(c) − Ln(θ)).

Therefore, w.p.a.1,

Ln(θ̂) − Ln(θ) > sup
c�∈Bε(θ)

(Ln(c) − Ln(θ)),

which implies that θ̂ ∈ Bε(θ) w.p.a.1. Because ε can be arbitrarily small, θ̂
p→ θ. �

LEMMA 5. Suppose that Assumptions 1, 7(i), and 8 hold. Then,

L̂(θ̂) ≥ sup
c∈�

L̂(c) − op (1).
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PROOF. By the definition of θ̂, it suffices to show that supc∈� |Q̂(c) − L̂(c)| → 0.
Because

sup
c∈�

|Q̂(c) − L̂(c)| ≤ sup
c∈�

1
n

n∑
i=1

∑
k∈A

∣∣∣ln σh
ik(S; c) − ln σ∗

ik(S; c)
∣∣∣ .

By Taylor expansion,

∑
k∈A

∣∣∣ln σh
ik(S|c) − ln σ∗

ik(S; c)
∣∣∣ = 1

σ†
∑
k∈A

∣∣∣σh
ik(S; c) − σ∗

ik(S; c)
∣∣∣ ≤ 2λh+1

σ0
,

where σ† is some real value between σh
ik(S; c) and σ∗

ik(S; c), and σ0 is the lower bound of the
equilibrium choice probability. The last step uses Lemmas 2 and 6. Thus,

sup
c∈�

|Q̂(c) − L̂(c)| ≤ 2λh+1

σ0
.

Because of Assumption 11 and λ < 1, we have supc∈� |Q̂(c) − L̂(c)| p→ 0. �

A.2.2. Proof of Theorem 3. First, by the proof of Lemma 5 and Assumption 11(ii),

sup
c∈�

|Q̂(c) − L̂(c)| ≤ 2(K + 1)λh

σ0
= op (n−1).

Hence, L̂(θ̂) ≥ supc∈� L̂(c) − op (n−1), which implies that ∂L̂(θ̂)/∂c = op (n−1/2).
By the Taylor expansion, we have

∂L̂(θ)
∂c

+ ∂2L̂(θ†)
∂c∂c′ (θ̂− θ) = op (n−1/2)

for some θ† between θ and θ̂. Now it suffices to show

√
n × ∂L̂(θ)

∂c
d→ N(0, J (θ)),(A.3)

∂2L̂(θ†)
∂c∂c′

p→ −J (θ).(A.4)

I first show Equation (A.3). Let ζi = ∂
∂c

∑
k∈A 1(Yi = k) ln σ∗

ik(S; c)|c=θ. Note that the true
parameter θ always maximizes the likelihood function E[

∑
k∈A 1(Yi = k) ln σ∗

ik(S; ·)|S] for any n
and S. Thus, E(ζi|S) = 0.

By definition, ∂L̂(θ)/∂c = n−1 ∑n
i=1 ζi. Then, it suffices to show that n−1/2 ∑n

i=1 ζi
d→

N(0, J (θ)). Equivalently, I need to show n−1/2 ∑n
i=1 J (θ)− 1

2 ζi
d→ N(0, 1P), where 1P is the P × P

identity matrix. For this, I show that the conditional distribution of
√

n
∑n

i=1 J (θ)− 1
2 ζi given S

always converges to the same limiting normal distribution N(0, 1P).
Because ζi is conditionally independent across i given S. Then

E

[(
n−1/2

n∑
i=1

ζi

)
·
(

n−1/2
n∑

i=1

ζ′i

)
|S
]

= n−1
n∑

i=1

E (ζi · ζ′i|S) .
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By an argument similar to that in the proof of Theorem 2, we have

n−1
n∑

i=1

E(ζi · ζ′i|S) = n−1
n∑

i=1

E(ζi · ζ′i) + op (1) = Jn(θ) + op (1) = J (θ) + op (1).

Thus,

E

[(
n−1/2

n∑
i=1

ζi

)
·
(

n−1/2
n∑

i=1

ζ′i

) ∣∣∣S
]

p→ J (θ).

Hence, by the Lindeberg-Feller Theorem (see, e.g., Van der Vaart, 2000), conditional on S,

n−1/2
n∑

i=1

J (θ)− 1
2 ζi

d→ N(0, 1P).

I now show Equation (A.4). Under Assumption 7, Lemmas 6 and 7 imply that
‖ ∂2

∂c∂c′
∑

k∈A 1(Yi = k) ln σ∗
ik(S; c)‖ is bounded above uniformly on n, S and θ, and

∂2

∂c∂c′
∑

k∈A 1(Yi = k) ln σ∗
ik(S; c) are smooth functions of c ∈ �. Hence by an argument similar to

the proofs in Theorem 2,

sup
c∈�

[
∂L̂(c)
∂c∂c′ − 1

n

n∑
i=1

E

{
∂2

∂c∂c′
∑
k∈A

1(Yi = k) ln σ∗
ik(S; c)

}]
p→ 0.

Because θ†
p→ θ and by Assumption 9, we have

∂2L̂(θ†)
∂c∂c′ = E

{
∂2

∂c∂c′
∑
k∈A

1(Y1 = k) ln σ∗
1k(S; θ)

}
+ op (1).

Moreover, by the information matrix equality,

E

{
∂2

∂c∂c′
∑
k∈A

1(Y1 = k) ln σ∗
1k(S; θ)

}
= −Jn(θ) = −J (θ) + o(1).

Then Equation (A.4) is proved. �

A.3. Auxiliary Lemmas.

LEMMA 6. Suppose Assumption 1 and 7(i) hold. Then there exists σ0 ∈ (0, 1) such that
σ∗
ik(S; c) ≥ σ0 for all n ∈ N, i ∈ N, k ∈ A, and c ∈ �.

PROOF. By Assumption 1, for all (i,k) ∈ N × A,

σ∗
ik(S; c) =

exp
[
(X ′

i,Qi) · bk + ∑
�∈A ak�

(
1

Qi

∑
j∈Fi

σ∗
j�(S; c)

)]
1 + ∑K

�′=1 exp
[
(X ′

i,Qi)b�′ +
∑

�∈A a�′�
(

1
Qi

∑
j∈Fi

σ∗
j�′(S; c)

)] .

Because 0 ≤ 1
Qi

∑
j∈Fi

σ∗
j�(S; c) ≤ 1 and by Assumption 7(i), the RHS has a lower bound, denoted

as σ0 > 0. Note that the above argument does not depend on the value of n, i, k, and c. �
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LEMMA 7. Suppose that Assumptions 1 and 8 hold. Then, σ∗
ik(S; ·) ∈ C∞(�) for all n ∈ N, S,

i ∈ N, k ∈ A, and c ∈ �.

PROOF. I fix an arbitrary n and S in the following analysis. By Lemma 1, {σ∗
i (S; c) : i ∈ N} is

the unique solution to the equation system: for all (i,k) ∈ (N,A),

σ∗
ik =

exp
{

bk(Xi,Qi) + ∑K
l=0

[
ak(�,Xi,Qi) · ∑j∈Fi

σ∗
j�

]}
1 + ∑K

q=1 exp
{

bq(Xi,Qi) + ∑K
l=0

[
aq(�,Xi,Qi) · ∑j∈Fi

σ∗
j�

]} .

Let �∗ = (σ∗
1, . . . , σ

∗
n). Then the above equation system can be represented as

�∗ = BR(S, �∗; c),

where BR is the n(K + 1) dimensional mapping representing the best response functions for all
(i,k) ∈ (N,A). Fix S. Clearly, BR belongs to C∞(Rn(K+1) ×�). Then by the implicit function
theorem, the solution σ∗

i (S; ·) ∈ C∞(�) for all i ∈ N. �

A.4. ConsistentNonparametric Estimator ofFYi|S. The NDD condition is important for large
network asymptotics. In particular, it allows us to nonparametrically estimate the probability
distribution FYi|S using observations from one single large network. To illustrate, I consider
the simple circle network where each player has two direct friends and the friendship is sym-
metric. Such a specification helps highlights key features of the consistency argument for the
nonparametric estimation.

Because my asymptotic analysis considers a sequence of games with n → ∞, I use Sn with
subscript n to emphasize its dependence on the network size in the following analysis. The
sequence of games is described as follows: Let the set of players {1, 2, . . . ,n} for n ≥ 2 be
located on a circle network as follows: First I randomly pick a location for player 1 on the circle.
Next, players 2 and 3 are on 1’s left and right, respectively; then players 4 and 5 are further
located on 2’s left and 3’s right, respectively, and so on and so forth. Thus, we obtain a circle
network with n = +∞ in the limit. Given the network, state variables Xi are i.i.d. across all
the players. Similarly to the probability theory in time series, the probability distribution of the
sequence {Sn : n ≥ 2} is well defined.

For simplicity, let A = {0, 1} and Xi ∈ R. W.o.l.g., I consider the estimation of Pr(Yi = 1|Sn =
sn) for i = 1. To begin with, I first consider the case where Xi is binary, that is, Xi ∈ {0, 1}.
It is straightforward that my arguments can be generalized to the case of multiple valued
Xis. The continuous Xis case will be discussed later. Intuitively, a nonparametric estimator
P̂r(Y1 = 1|Sn = sn) can be defined as follows:

∑n
j=1 1(Yj = 1) · 1[G(j,h) = g(1,h)] · 1[Xj(�) = x1(�), for � = −h, . . . ,h]∑n

j=1 1[G(j,h) = g(1,h)] · 1[Xj(�) = x1(�), for � = −h, . . . ,h]
,

where j(�) denotes the |�|th left vertex of j if � < 0; otherwise it refers to the |�|th right vertex
of j . Note that because of the circle network, G(j,h) = g(1,h) a.s.. Then, the term 1[G(j,h) = g(1,h)]
is redundant in the above expression. As is shown in the proof of the next lemma, the above
estimator is essentially a kernel estimator with a specific choice of bandwidth and a uniform
kernel.

In the above estimator, it is crucial to choose h for its consistency, which carries a bias and
variance trade off: Intuitively, h ∈ N needs to increase properly with n such that Pr(Y1 = 1|S(1,h))
converges to Pr(Y1 = 1|Sn) (note that the approximation error is bounded by 2ξh+1 where
|ξ| < 1). On the other hand, I require that the number of observations G(j,h) = g(1,h) goes to
infinity with the network size, so that the variance of the estimator decreases to zero as n → ∞.
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W.l.o.g., suppose Pr(Xi = 0) ≤ 1/2. Let ph ≡ Pr(S(1,h) = s(1,h)) = ∏2h+1
j=1 Pr(Xj = xj ). By def-

inition, Pr(Xi = 0)2h+1 ≤ ph ≤ Pr(Xi = 1)2h+1. Therefore, we have ph → 0 as h → ∞.

LEMMA 8. Suppose that Assumptions 1 and 6,7(i),9,and 10 hold.Suppose h → ∞ and h
nph

→ 0
as n → ∞. Then

P̂r(Y1 = 1|Sn = sn) − Pr(Y1 = 1|Sn = sn)
p→ 0.

PROOF. First note that

P̂r(Y1 = 1|Sn = sn)

=
1
nph

∑n
j=1 1(Yj = 1) · 1[G(j,h) = g(1,h)] · 1[Xj(�) = x1(�), for � = −h, . . . , h]

1
nph

∑n
j=1 1[G(j,h) = g(1,h)] · 1[Xj(�) = x1(�), for � = −h, . . . , h]

.

I now show that the denominator and numerator converge to 1 and Pr(Y1 = 1|S(1,h) = s(1,h)),
respectively. First, I look at the denominator and show

E

⎧⎨
⎩ 1
nph

n∑
j=1

1[G(j,h) = g(1,h)] · 1[Xj(�) = x1(�), for � = −h, . . . , h]

⎫⎬
⎭ → 1;(A.5)

Var

⎧⎨
⎩ 1
nph

n∑
j=1

1[G(j,h) = g(1,h)] · 1[Xj(�) = x1(�), for � = −h, . . . ,h]

⎫⎬
⎭ → 0.(A.6)

Regarding (A.5), we have

E

⎧⎨
⎩ 1
nph

n∑
j=1

1[G(j,h) = g(1,h)] · 1[{X� : � ∈ N(j,h)} = {x� : � ∈ N(1,h)}]
⎫⎬
⎭ = 1

ph
E{1[S(1,h) = s(1,h)]} = 1.

To establish (A.6), note that

Var

⎧⎨
⎩ 1
nph

n∑
j=1

1
[
G(j,h) = g(1,h)

] · 1
[{

X� : � ∈ N(j,h)
} = {

x� : � ∈ N(1,h)
}]⎫⎬⎭

= 1
n2 p 2

h

n∑
�=1

∑
j �=�

Cov
{
1
[
S(j,h) = s(1,h)

]
, 1

[
S(�,h) = s(1,h)

]} + 1
np2

h

Var
{
1
[
S(1,h) = s(1,h)

]}

= 1
np2

h

∑
j �=1

Cov
{
1
[
S(j,h) = s(1,h)

]
, 1

[
S(1,h) = s(1,h)

]} + 1 − ph

nph

= 1
np2

h

2h+1∑
j=2

Cov
{
1
[
S(j,h) = s(1,h)

]
, 1

[
S(1,h) = s(1,h)

]} + 1 − ph

nph
,

where the last step comes from the assumption that S(j,h) is independent of S(1,h) if N(j,h) does not
overlap with N(1,h). Thus,

Var

⎧⎨
⎩ 1
nph

n∑
j=1

1[G(j,h) = g(1,h)] · 1[{X� : � ∈ N(j,h)} = {x� : � ∈ N(1,h)}]
⎫⎬
⎭
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≤ 2h

np2
h

× Var{1[S(j,h) = s(1,h)]} + Var{1[S(1,h) = s(1,h)]}
2

+ 1 − ph

nph

= (2h + 1)(1 − ph)
nph

∝ h
nph

→ 0.

It follows that

1
nph

n∑
j=1

1[G(j,h) = g(1,h)] · 1[Xj(�) = x1(�) : � = −h, . . . , h]
p→ 1.

By a similar argument, we have

E

⎧⎨
⎩ 1
nph

n∑
j=1

1(Yj = 1) · 1[G(j,h) = g(1,h)] · 1[Xj(�) = x1(�) : � = −h, . . . ,h]

⎫⎬
⎭

= Pr(Y1 = 1|S(1,h) = s(1,h)) = Pr(Y1 = k|Sn = sn) + o(|ξ|h)

and

Var

⎧⎨
⎩ 1
nph

n∑
j=1

1(Yj = 1) · 1[G(j,h) = g(1,h)] · 1[Xj(�) = x1(�) : � = −h, . . . ,h]

⎫⎬
⎭ → 0.

Moreover, by Slutsky’s theorem, I establish the consistency of the proposed estimator. �

In Lemma 8, it is required that h should increase to infinity with n, but sufficiently slowly.
In particular, the conditions imply ph → 0 and nph → ∞ as n → ∞. This suggests that the
term ph plays the same role as the bandwidth in kernel estimation. In addition, because of the
dependence between S(j,h) and S(i,h) for ρ(i, j) ≤ h, I require that nph increase to infinity faster
than h. Suppose one chooses h = [h0 × ln n] for some constant h0 > 0. Then, ph ∝ n−κ, where
κ > 0, which is determined by h0 and P(Xi = 0). Then the restrictions on h in Lemma 8 are
satisfied if κ is sufficiently small.

Suppose Xi is continuously distributed. Let f X be the pdf of Xi. For simplicity, I assume 0 <
infx∈R f X(x) < supx∈R f X(x) < ∞. As usual, additional assumptions on the structural parameters
are needed to ensure Pr(Y1 = 1|Sn = sn) is Rth (R ≥ 2) order continuously differentiable in each
argument of Sn. Moreover, a nonparametric estimator is defined by

P̂r(Y1 = 1|Sn = sn) =
∑n

j=1 1(Yj = 1) · 1[G(j,h) = g(1,h)] · ∏2h+1
�=1 K

(
X�−x�

b�

)
∑n

j=1 1[G(j,h) = g(1,h)] · ∏2h+1
�=1 K

(
X�−x�

b�

) ,

where K and b� for � = 1, . . . , 2h + 1 are Rth order kernel function and bandwidth, respectively.
For consistency, I need to choose h → ∞ and b� → 0 for � = 1, . . . , 2h + 1 properly as n →

∞. For simplicity, let b�f X(x�) = p for some p ≡ pn > 0. Moreover, let h → ∞, p → 0 and
h/(np 2h+1) → 0 as n → ∞. By an argument similar to Lemma 8 and Bochner’s Lemma, we can
show consistency of the kernel estimator. In particular, we have

E

⎧⎨
⎩ 1
np2h+1

n∑
j=1

1[G(j,h) = g(1,h)] ·
2h+1∏
�=1

K
(

X� − x�
b�

)⎫⎬
⎭ = 1 + O(p R)
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and

Var

⎧⎨
⎩ 1
np2h+1

n∑
j=1

1[G(j,h) = g(1,h)] ·
2h+1∏
�=1

K
(

X� − x�
b�

)⎫⎬
⎭ = O

(
h

np 2h+1

)
,

and similar expressions hold for the numerator of the kernel estimator, which thereafter provide
the consistency.

REFERENCES

ANDREWS, D. W., “Laws of Large Numbers for Dependent Non-identically Distributed Random Vari-
ables,” Econometric Theory 4 (1988), 458–67.

BADEV, A., “Discrete Games in Endogenous Networks: Theory and Policy,” PSC Working Paper, 2013.
BAJARI, P., H. HONG, J. KRAINER, AND D. NEKIPELOV, “Estimating Static Models of Strategic Interactions,”

Journal of Business and Economic Statistics 28(4) (2010), 469–82.
BALA, V., AND S. GOYAL, “A Noncooperative Model of Network Formation,” Econometrica 68(5) (2000),

1181–229.
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