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We study the estimation of static games of incomplete information with multiple equilibria. A static game
is a generalization of a discrete choice model, such as a multinomial logit or probit, which allows the
actions of a group of agents to be interdependent. While the estimator we study is quite flexible, in most
cases it can be easily implemented using standard statistical packages such as STATA. We also propose an
algorithm for simulating the model which finds all equilibria to the game. As an application of our esti-
mator, we study recommendations for high technology stocks between 1998–2003. We find that strategic
motives, typically ignored in the empirical literature, appear to be an important consideration in the rec-
ommendations submitted by equity analysts.

KEY WORDS: Discrete choice; Stock analyst recommendation; Structural estimation.

1. INTRODUCTION

Game theory is one of the most commonly applied tools
in economic theory, with substantive applications in all major
fields in economics. In some fields, particularly industrial or-
ganization, game theory has not only transformed the analysis
of market interactions, but also serves as an important basis for
policy recommendations. Given the importance of gaming in
economic theory, it is not surprising that the empirical analysis
of games has been the focus of a recent literature in economet-
rics and industrial organization.

In much of the literature, a discrete game is modeled much
like a standard discrete choice problem, such as the multino-
mial logit. An agent’s utility is often assumed to be a linear
function of covariates and a random preference shock. How-
ever, unlike a discrete choice model, utility is also allowed
to depend on the actions of other agents. A discrete game
strictly generalizes a standard random utility model, but does
not impose the often strong assumption that agents act in isola-
tion. Early attempts at the econometric analysis of such games
included Bjorn and Vuong (1984) and Bresnahan and Reiss
(1991a, 1991b). Recent contributions include Haile, Hortacsu,
and Kosenok (2008), Aradillas-Lopez (2008), Ho (2009), Ishii
(2008), Pakes et al. (2007), Augereau, Greenstein, and Rysman
(2006), Seim (2006), Sweeting (2008), and Tamer (2003). In
particular, Aguirregabiria and Mira (2002) propose a two-step
method to estimate static games of incomplete information and
illustrate it using an example of a static game of market entry.

An important insight in the recent literature is that it is often
most straightforward to estimate discrete games in two steps.
The static model of strategic interaction with incomplete infor-
mation is a particular case when the discount rate is zero of the

dynamic games considered in Aguirregabiria and Mira (2007),
Bajari, Benkard, and Levin (2007), Berry, Pakes, and Ostrovsky
(2007), and Pesendorfer and Schmidt-Dengler (2003). In a first
step, the economist estimates the reduced forms implied by the
model. This often boils down to using standard econometric
methods to estimate the probability that one of the finite num-
ber of possible choices is observed, conditional on the relevant
covariates. In the second step, the economist estimates a single
agent random utility model, including as controls the equilib-
rium beliefs about the behavior of others from the first step.

In this paper, we study semiparametric estimation of static
games of strategic interaction with multiple equilibria. Like the
two-step approach discussed above, we estimate the reduced
form choice probabilities in a first stage, and use them to sim-
plify the estimation of the finite dimensional mean payoff para-
meters in the second stage.

The two-step approach pioneered in Aguirregabiria and Mira
(2007) can be implemented both nonparametrically and semi-
parametrically. It is closely related to nonparametric identifica-
tion of the mean utility functions, does not depend on whether
the first-stage regressors are discrete or continuous, and does
not require a correctly specified first-stage parametric model.
The two-step estimator has desirable computational and statis-
tical properties. First, when the regressors are continuous, de-
spite the fact the first stage is nonparametric and might con-
verge at a slow rate, the structural parameters estimated in the
second stage have normal asymptotics and converge at a rate
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proportional to the square root of the sample size. This fol-
lows from arguments based on Newey (1994). Under suitable
regularity conditions, the asymptotic variance of the second
stage estimator is invariant to whether the first stage nonpara-
metric estimator is implemented using kernel methods or sieve
methods. Second, in many cases the two-step nonparametric
and semiparametric estimators can be implemented with cor-
rect standard errors using a two-stage least squares procedure
in a standard statistical package like STATA. The simplicity of
this approach makes the estimation of these models accessible
to a larger audience of researchers.

In the context of discrete regressors, Pesendorfer and
Schmidt-Dengler (2003) demonstrate that exclusion restrictions
are sufficient for identification in a particular set of dynamic
entry games. A related exclusion restriction, which excludes
payoff-relevant covariates for a particular player from the util-
ities of the other players, is also required when the regressors
are continuous. For instance, in an entry model, if the produc-
tivity shock of firm i influences its own entry decision, but only
indirectly influences the entry decisions of other firms, then
the mean payoff function is nonparametrically identified. The
condition for nonparametric identification can be formulated
as standard rank conditions for an appropriately defined lin-
ear system regardless of whether the regressors are continuous
or discrete. This identification strategy relies crucially on the
assumption that data in each market is generated from a sin-
gle equilibrium. An alternative identification strategy that is
not considered in this paper is to search for events that change
which equilibrium to the game is played, but otherwise do not
influence payoffs. Sweeting (2008) demonstrates that multiplic-
ity of equilibrium can assist with identification in a symmetric
location game.

The assumption that the data come from a single equilib-
rium has very different implications for discrete and continuous
explanatory variables. If the vector of observable explanatory
variables has a discrete support and the nonparametric estima-
tor in the first step does not impose any smoothness condition
(e.g., an unrestricted frequency estimator), then the assump-
tion needed is that for a given value of explanatory variables,
the data come from the same equilibrium. However, when the
explanatory variables contain continuous variables, the first-
step estimator usually imposes smoothness conditions for the
second-step estimator to converge at a parametric rate to a nor-
mal distribution. This requires smoothness conditions with re-
spect to continuous state variables in the equilibrium selec-
tion mechanism. These smoothness conditions can be stated in
terms of pseudo-norms and may not allow for nondifferentiabil-
ity in a set of measure zero; see, for example, Chen, Linton, and
Van Keilegom (2003). In the presence of multiple equilibria, the
points of nondifferentiability typically occurs when the equilib-
rium path bifurcates. The smoothness condition does require
the equilibrium paths to not bifurcate for almost all values of
the continuous state variable, or a smooth path is chosen at the
points of bifurcation. If a substantial amount of discontinuity is
present in selecting among multiple equilibria of the game, in
which case an alternative approach is to incorporate an equi-
librium selection mechanism using exclusion restrictions, ei-
ther a full solution method or a version of the recursive method
proposed by Aguirregabiria and Mira (2007) applied to a static
game must be used.

As an application of our methods, we model the determina-
tion of stock recommendations (e.g., strong buy, buy, hold, sell)
issued by equity analysts for high technology stocks listed in
the NASDAQ 100 between 1998 and 2003. The determination
of recommendations during this time period is of particular in-
terest in the wake of the sharp stock price declines for technol-
ogy firms in 2000. Recommended stocks underperformed the
market as a whole during this period by a wide margin. Highly
publicized allegations of conflicts of interest have called into
question whether analysts were more concerned with helping
their firms win investment banking business than with produc-
ing accurate assessments of the prospects of the firms under
scrutiny. While there is a fairly large literature in finance on
recommendations, we are not aware of any papers that formally
consider the simultaneity of recommendations due to strategic
motives.

In our model, recommendations submitted by analysts de-
pend on four factors. First, recommendations must depend on
fundamentals and commonly shared expectations about the fu-
ture profitability of the firm. These expectations will be embed-
ded in the stock price. Second, analysts are heterogeneous, both
in terms of talent and perhaps in terms of access to information.
We try to capture an individual analyst’s private belief about
the stock by looking at the difference between the quarterly
earnings forecast submitted by the analyst (or the analyst’s bro-
kerage firm) and the distribution of forecasts from other firms.
Mindful of the large number of inquiries into possible conflicts
of interest among research analysts, we include as a third fac-
tor a dummy variable for an investment banking relationship
between the firm and the analyst’s employer.

Finally, we consider the influence of peers on the recommen-
dation decision. Peer effects can impact the recommendation in
different ways. Individual analysts have incentive to condition
their recommendation on the recommendations of their peers,
because even if their recommendations turn out to be unprof-
itable ex-post, performance evaluation is typically a compari-
son against the performance of peers. More subtly, recommen-
dations are relative rankings of firms and are not easily quan-
tifiable (or verifiable) objects. As such, ratings scales usually
reflect conventions and norms. The phenomenon is similar to
the college professor’s problem of assigning grades. If a pro-
fessor were to award the average student with a C while other
faculty gave a B+ to the average student, the professor might
incorrectly signal his views of student performance. Even while
there is heterogeneity in how individual professors feel about
grading, most conform to norms if only to communicate clearly
with students (and their potential employers) about their per-
formance. Similarly, analysts might have an incentive to bench-
mark their recommendations against perceived industry norms.

The paper is organized as follows. In Section 2 we outline
the general economic environment. For purposes of exposition,
we develop many of the key formulae within the context of a
simple entry model. In Section 3 we discuss the problem of
nonparametric identification of the mean payoff functions. In
Section 4 we show how to derive nonparametric and semipara-
metric estimates of the structural parameters for our class of
models. Section 5 contains the empirical application to equity
analyst recommendations. Section 6 concludes the paper.
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2. THE MODEL

In the model, there are a finite number of players, i =
1, . . . ,n and each player simultaneously chooses an action ai ∈
{0,1, . . . ,K} out of a finite set. We restrict players to have the
same set of actions for notational simplicity. However, all of our
results will generalize to the case where all players have differ-
ent finite sets of actions. Let A = {0,1, . . . ,K}n denote the vec-
tor of possible actions for all players and let a = (a1, . . . ,an)

denote a generic element of A. As is common in the litera-
ture, we let a−i = (a1, . . . ,ai−1,ai+1, . . . ,an) denote a vector
of strategies for all players, excluding player i. We will abstract
from mixed strategies since in our model, with probability one
each player will have a unique best response.

Let si ∈ Si denote the state variable for player i. Let S = ∏
i Si

and let s = (s1, . . . , sn) ∈ S denote a vector of state variables for
all n players. We will assume that s is common knowledge to all
players in the game and in our econometric analysis, we will as-
sume that s is observable to the econometrician. The state vari-
able is assumed to be a real valued vector, but Si is not required
to be a finite set. Much of the previous literature assumes that
the state variables in a discrete game lie in a discrete set. While
this assumption simplifies the econometric analysis of the esti-
mator and identification, it is a strong assumption that may not
be satisfied in many applications.

For each agent, there are also K + 1 state variables which
we label as εi(ai) which are private information to each agent.
These state variables are distributed iid across agents and ac-
tions. Let εi denote the 1 × (K + 1) vector of the individual
εi(ai). The density of εi(ai) will be denoted as f (εi(ai)). How-
ever, we shall sometimes simplify the notation and denote the
density for εi = (εi(0), . . . , εi(K)) as f (εi).

The period utility function for player i is

ui(a, s, εi; θ) = πi(ai,a−i, s; θ) + εi(ai). (1)

The utility function in our model is similar to a standard ran-
dom utility model such as a multinomial logit. Each player i
receives a stochastic preference shock, εi(ai), for each possi-
ble action ai. In many applications, this will be drawn from
an extreme value distribution as in the logit model. In the
literature, the preference shock is alternatively interpreted as
an unobserved state variable (see Rust 1994). Utility also de-
pends on the vector of state variables s and actions a through
�i(ai,a−i, s; θ). For example, in the literature, this part of util-
ity is frequently parameterized as a simple linear function of ac-
tions and states. Unlike a standard discrete choice model, how-
ever, note that the actions a−i of other players in the game enter
into i’s utility. A standard discrete choice model typically as-
sumes that agents i act in isolation in the sense that a−i is omit-
ted from the utility function. In many applications, this is an
implausible assumption.

In this model, player i’s decision rule is a function ai =
δi(s, εi). Note that i’s decision does not depend on the ε−i since
these shocks are private information to the other −i players in
the game and, hence, are unobservable to i. Define σi(ai|s) as

σi(ai = k|s) =
∫

1{δi(s, εi) = k}f (εi)dεi.

In the above expression, 1{δi(s, εi) = k} is the indicator func-
tion that player i’s action is k given the vector of state vari-
ables (s, εi). Therefore, σi(ai = k|s) is the probability that i

chooses action k conditional on the state variables s that are
public information. We will define the distribution of a given s
as σ(a|s) = ∏n

i=1 σ(ai|s).
Next, define Ui(ai, s, εi; θ) as

Ui(ai, s, εi; θ) =
∑
a−i

πi(ai,a−i, s; θ)σ−i(a−i|s) + εi(ai),

where σ−i(a−i|s) =
∏
j�=i

σj(aj|s). (2)

In (2), Ui(ai, s, εi; θ) is player i’s expected utility from choos-
ing ai when the vector of parameters is θ . Since i does not
know the private information shocks, εj for the other play-
ers, i’s beliefs about their actions are given by σ−i(a−i|s). The
term

∑
a−i

�i(ai,a−i, s, θ)σ−i(a−i|s) is the expected value of
�i(ai,a−i, s; θ), marginalizing out the strategies of the other
players using σ−i(a−i|s). The structure of payoffs in (2) is quite
similar to standard random utility models, except that the prob-
ability distribution over other agents’ actions enter into the for-
mula for agent i’s utility. Note that if the error term has an atom-
less distribution, then player i’s optimal action is unique with
probability one. This is an extremely convenient property and
eliminates the need to consider mixed strategies as in a standard
normal form game.

We also define the deterministic part of the expected payoff
as

�i(ai, s; θ) =
∑
a−i

πi(ai,a−i, s, θ)σ−i(a−i|s). (3)

It follows immediately then that the optimal action for player i
satisfies

σi(ai|s) = Prob{εi|�i(ai, s; θ) + εi(ai)

> �i(aj, s; θ) + εi(aj) for j �= i}. (4)

2.1 A Simple Example

For expositional clarity, consider a simple example of a dis-
crete game. Perhaps the most commonly studied example of a
discrete game in the literature is a static entry game (see Bresna-
han and Reiss 1991a, 1991b; Berry 1992; Tamer 2003; Ciliberto
and Tamer 2009, and Manuszak and Cohen 2004). In the em-
pirical analysis of entry games, the economist typically has data
on a cross section of markets and observes whether a particular
firm i chooses to enter a particular market. In Berry (1992) and
Ciliberto and Tamer (2009), for example, the firms are major
United States airlines such as American, United, and Northwest
and the markets are large, metropolitan airports. The state vari-
ables, si, might include the population in the metropolitan area
surrounding the airport and measures of an airline’s operating
costs. Let ai = 1 denote the decision to enter a particular market
and ai = 0 denote the decision not to enter the market. In many
applications, πi(ai,a−i, s; θ) is assumed to be a linear function,
for example,

πi(ai,a−i, s; θ) =
⎧⎨
⎩

s′ · β + δ
∑
j�=i

1{aj = 1} if ai = 1

0 if ai = 0.

(5)
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In Equation (5), the mean utility from not entering is set equal to
zero. We formally discuss this normalization in our section on
identification. The term δ measures the influence of j’s choice
on i’s entry decision. If profits decrease from having another
firm enter the market then δ < 0. The parameters β measure the
impact of the state variables on πi(ai,a−i, s).

The random error terms εi(ai) are thought to capture shocks
to the profitability of entry that are private information to firm i.
Suppose that the error terms are distributed extreme value.
Then, utility maximization by firm i implies that for i = 1, . . . ,n

σi(ai = 1|s) = exp
(
s′ · β + δ

∑
j�=iσj(aj = 1|s))

1 + exp
(
s′ · β + δ

∑
j�=iσj(aj = 1|s))

(6)
= 
i(β, δ, σj(1|s),∀j).

In the system of equations above, applying the formula in Equa-
tion (3) implies that �i(ai, s; θ) = s′ · β + δ

∑
j�=iσj(aj = 1|s).

Since the error terms are distributed extreme value, Equation (4)
implies that the choice probabilities σi(ai = 1|s) take a form
similar to a single agent multinomial logit model. We note in
passing that it can easily be shown using Brouwer’s fixed point
theorem that an equilibrium to this model exists for any finite s
(see McKelvey and Palfrey 1995).

We exploit the convenient representation of equilibrium in
Equation (6) in our econometric analysis. Suppose that the
econometrician observes t = 1, . . . ,T repetitions of the game.
Let ai,t denote the entry decision of firm i in repetition t and let
the value of the state variables be equal to st. By observing en-
try behavior in a large number of markets, the econometrician
could form a consistent estimate σ̂i(ai = 1|s) of σi(ai = 1|s) for
i = 1, . . . ,n. In an application, this simply boils down to flexi-
bly estimating the probability that a binary response, ai, is equal
to one, conditional on a given set of covariates. This could be
done using any one of a number of standard techniques. Given
first-stage estimates of σ̂i(ai = 1|s), we could then estimate the
structural parameters of the payoff, β and δ, by maximizing
a pseudo-likelihood function using 
i(β, δ, σ̂j(1|s),∀j). There
are two attractive features to this strategy. The first is that it is
not demanding computationally. First-stage estimates of choice
probabilities can be done using a strategy as simple as a lin-
ear probability model. The computational burden of the second
stage is also light since we only need to estimate a logit model.
A second attractive feature is that it allows us to view a game
as a generalization of a standard discrete choice model. Thus,
techniques from the voluminous econometric literature on dis-
crete choice models can be imported into the study of strategic
interaction. While the example considered above is simple, it
nonetheless illustrates many of the key ideas that will be essen-
tial in what follows.

We can also see a key problem with identification in the sim-
ple example above. Both the first-stage estimates σ̂i(ai = 1|s)
and the term s′ · β depend on the vector of state variables s.
This suggests that we will suffer from a collinearity problem
when trying to separately identify the effects of β and δ on the
observed choices. The standard solution to this type of prob-
lem in many settings is to impose an exclusion restriction. Sup-
pose, for instance, a firm specific productivity shock is included
in s. In most oligopoly models, absent technology spillovers,
the productivity shocks of firms −i will not directly enter into

firm i’s profits. These shocks only enter indirectly through the
endogenously determined actions of firms −i, for example,
price, quantity, or entry decisions. Therefore, if we exclude the
productivity shocks of other firms from the term s′ · β , we will
no longer suffer from a collinearity problem. While this idea is
quite simple, as we shall discover in the next section, similar
restrictions are required to identify more general models.

3. IDENTIFICATION

In this section, we consider the problem of identifying the de-
terministic part of payoffs, without making particular assump-
tions about its functional form (e.g., that it is a linear index as
in the previous example). In the context of this section, we let θ

be completely nonparametric and write πi(ai,a−i, s) instead of
πi(ai,a−i, s; θ).

Definition 1. We will say that πi(ai,a−i, s) is identified if
πi(ai,a−i, s) �= π ′

i (ai,a−i, s) for some i = 1, . . . ,n implies that
for the corresponding equilibrium choice probabilities σi(ai =
1|s) �= σ ′

i (ai = 1|s) for some i = 1, . . . ,n.

Formally, identification requires that different values of the
primitives generate different choice probabilities. If this con-
dition is not satisfied, then it will be impossible for us to
uniquely recover the structural parameters πi(ai,a−i, s) (for
i = 1, . . . ,n) from knowledge of the observed choice probabil-
ities, σi(ai = 1|s). While the mean payoff function is nonpara-
metric, the model is semiparametric because the distribution of
the unobservables is parametrically specified. Even in a single
agent problem, it is well known that it is not possible to non-
parametrically identify both the mean utility functions and the
joint distribution of the error terms F(εi) without making strong
exclusion and identification at infinity assumptions (see, e.g.,
Matzkin 1992).

To take the simplest possible example, consider a simple bi-
nary response model and assume that the error terms are nor-
mally distributed, as in the probit model. Let σi(ai = 1|s) de-
note the probability that the response is equal to one in the data
conditional on s. Define �i(ai = 0|s) = 0 and �i(ai = 1|s) =
F−1(σi(ai = 1|s)), where F−1 denotes the normal cdf. It can
easily be verified that this definition of �i perfectly rationalizes
any set of choice probabilities σi(ai = 1|s). Since even a single
agent discrete choice model is not identified without a paramet-
ric assumption on the error term, assumptions at least as strong
will be required in the more general setup with strategic interac-
tions. In what follows, we will typically impose the assumption
that the error terms are distributed iid with a known distrib-
ution function, since both independence and parametric form
assumption on the error terms are required for identification.

Based on the discussion above, we shall impose the following
assumption in order to identify the model:

A1. The error terms εi(ai) are distributed iid across ac-
tions ai and agents i. Furthermore, the parametric form
of the distribution F comes from a known family.

Analogous to the notation in the previous section, define
�i(k, s) = ∑

a−i
πi(ai = k,a−i, s)σ−i(a−i|s). It is straightfor-

ward to show that the equilibrium in this model must satisfy

δi(s, εi) = k if and only if
(7)

�i(k, s) + εi(k) > �i(k
′, s) + εi(k

′) for all k′ �= k.
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That is, action k is chosen if and only if the deterministic ex-
pected payoff and error term associated with action k is greater
than the analogous values of k′ �= k. An implication of (7) is
that the equilibrium choice probabilities σi(a|s) must satisfy

σi(ai|s) = Pr
{
εi(ai) + �i(ai, s) − �i(0, s)

> εi(k) + �i(k, s) − �i(0, s),

∀k = 0, . . . ,K, k �= ai
}
. (8)

Equation (8) is a simple consequence of (7) where we can sub-
tract �i(0, s) from both sides of the inequality.

Suppose we generate εi(ai) from an extreme value distri-
bution as in the multinomial logit model. Then (8) implies
that σi(ai|s) = exp(�i(ai, s) − �i(0, s))/(

∑K
k=0 exp(�i(k, s)−

�i(0, s))). Alternatively, in an ordered logit model, for the lo-
gistic function �(·), σi(ai = k|s) = �(�i(k + 1, s)) − �(�i(k,
s)). A key insight similar to Hotz and Miller (1993) is that
Equation (8) implies that the equilibrium choice probabilities,
σi(ai|s), have a one-to-one relationship to the “choice specific
value functions,” �i(ai, s) − �i(0, s). It is obvious that we
should expect the one-to-one mapping in any model where the
distribution of εi has full support. We let 
 : {0, . . . ,K} × S →
[0,1] denote the map in general from choice specific value
functions to choice probabilities, that is,

(σi(0|s), . . . , σi(K|s))
= 
i(�i(1, s) − �i(0, s), . . . ,�i(K, s) − �i(0, s)). (9)

We will denote the inverse mapping by 
−1:

(�i(1, s) − �i(0, s), . . . ,�i(K, s) − �i(0, s))

= 
−1
i (σi(0|s), . . . , σi(K|s)). (10)

The above analysis implies that we can invert the equilibrium
choice probabilities to nonparametrically recover �i(1, s) −
�i(0, s), . . . ,�i(K, s) − �i(0, s). However, the above analysis
implies that we will not be able to separately identify �i(1, s)
and �i(0, s); we can only identify the difference between these
two terms. Therefore, we shall impose the following assump-
tion:

A2. For all i and all a−i and s, πi(ai = 0,a−i, s) = 0.

The above assumption is similar to the “outside good” assump-
tion in a single-agent model where the mean utility from a par-
ticular choice is set equal to zero. In the context of the entry
model, this assumption is satisfied if the profit from not enter-
ing the market is equal to zero regardless of the actions of other
agents. Just as in the single-agent model, there are alternative
normalizations that we could use to identify the πi(ai,a−i, s).
However, for expositional simplicity we shall restrict attention
to the normalization in A2.

Given assumption A2 and knowledge of the equilibrium
choice probabilities, σi(ai|s), we can then apply the mapping
in (10) to recover �i(ai, s) for all i, ai, and s. Recall that the
definition of �i(ai, s) implies that

�i(ai, s) =
∑
a−i

σ−i(a−i|s)πi(ai,a−i, s),

∀i = 1, . . . ,n,ai = 1, . . . ,K. (11)

Even if we know the values of �i(ai, s) and σ−i(a−i|s) in
the above equation, it is not possible to uniquely determine the
values of πi(ai,a−i, s). To see why, hold the state vector s fixed,
then determination of the utilities of all agents involves solving
for n × K × (K + 1)n−1 unknowns. That is, there are n agents,
for each action k = 1, . . . ,K, utility depends on the (K + 1)n−1

possible actions of the other agents. However, the left-hand side
of (11) only contains information about n × (K + 1) scalars
holding s fixed. It is clearly not possible to invert this system in
order to identify πi(ai,a−i, s) for all i, all k = 1, . . . ,K, and all
a−i ∈ A−i.

Obviously, there must be cross-equation restrictions across
either i or k in order to identify the system. One way to
identify the system is to impose exclusion restrictions. Parti-
tion s = (si, s−i), and suppose πi(ai,a−i, s) = πi(ai,a−i, si) de-
pends only on the subvector si. We can demonstrate this in the
context of an entry model. In this type of model, the state is usu-
ally a vector of productivity shocks. While we might expect the
profit of firm i to depend on the entry decisions of other agents,
it should not depend on the productivity shocks of other agents.
If such an exclusion restriction is possible, we can then write

�i(ai, s−i, si) =
∑
a−i

σ−i(a−i|s−i, si)πi(ai,a−i, si). (12)

Clearly, a necessary order condition for identification is that for
each si, there exists (K +1)n−1 points in the support of the con-
ditional distribution of s−i given si. Note that this assumption
will be satisfied as long as s−i contains a continuously distrib-
uted variable with �i(ai,a−i, si) sufficiently variable. A suf-
ficient rank condition will require that for almost all si, the
system of equations obtained by varying the values of s−i is
nonsingular and invertible.

Theorem 1. Suppose that A1 and A2 hold. A necessary or-
der condition for identifying the latent utilities �i(ai,a−i, si)

is that for almost all si, there exists (K + 1)n−1 points in
the support of the conditional distribution of s−i given si.
A sufficient rank condition for identification is that for al-
most all values of si, the conditional second moment matrix of
E[σ−i(a−i|s−i, si)σ−i(a−i|s−i, si)

′|si] is nonsingular.

Note that the rank condition holds regardless of whether the
regressors are discrete or continuous. Because the rank condi-
tion is stated in terms of the observable reduced form choice
probabilities, it is a testable assumption that can be verified
from the data. It is analogous to the standard rank condition
in a linear regression model. The difference is that the “regres-
sors,” σ−i(a−i|s−i, si) themselves have to be estimated from the
data in the first stage. Intuitively, to identify strategic interaction
models in which the primitive payoffs depend on the expected
action of the opponent, the reduced form choice probabilities
are required to depend on the opponent’s idiosyncratic states.
In the single-agent model with no strategic interactions, the left-
hand side of (12) does not depend on s−i and the right hand side
does not depend on a−i. The probabilities σ−i(a−i|s−i, si) sum
up to one, and Equation (12) becomes an identity.
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4. ESTIMATION

In the previous section, we demonstrated that there is a
nonparametric inversion between choice probabilities and the
choice-specific value functions, �(ai, s). Furthermore, we
demonstrated that the structural parameters of our model are
identified if appropriate exclusion restrictions are made on pay-
offs. In this section, we exploit this inversion to construct non-
parametric and semiparametric estimates of our structural para-
meters.

Step 1: Estimation of Choice Probabilities. Suppose the
economist has access to data on t = 1, . . . ,T repetitions of the
game. For each repetition, the economist observes the actions
and state variables for each agent (ai,t, si,t). In the first step we
form an estimate σ̂i(k|s) of σi(k|s) using sieve series expansions
(see Newey 1990 and Ai and Chen 2003). We note, however,
that we could alternatively estimate the first stage using other
nonparametric regression methods such as kernel smoothing or
local polynomial regressions.

The usual approach in the nested fixed point algorithm is to
discretize the state space, which is only required to be precise
enough subject to the constraints imposed by the computing fa-
cility. However, increasing the number of grids in a nonpara-
metric or two-stage semiparametric method has two offsetting
effects. It reduces the bias in the first-stage estimation but in-
creases the variance. In fact, when the dimension of the contin-
uous state variables is larger than four, it can be shown that it
is not possible to obtain

√
T consistency through discretization

and asymptotically normal parameter estimates in the second
stage, where T is the sample size. Therefore, discretizing the
state space does not provide a solution to continuous state vari-
ables, which requires a more refined econometric analysis.

Let {ql(s), l = 1,2, . . .} denote a sequence of known ba-
sis functions that can approximate a real valued measurable
function of s arbitrarily well for a sufficiently large value
of l. The sieve could be formed using splines, Fourier Series,
or orthogonal polynomials. We let the basis become increas-
ingly flexible as the number of repetitions of the game T be-
comes large. Let κ(T) denote the number of basis functions
to be used when the sample size is T. We shall assume that
κ(T) → ∞, κ(T)/T → 0 at an appropriate rate to be speci-
fied below. Denote the 1 × κ(T) vector of basis functions as
qκ(T)(s) = (q1(s), . . . ,qκ(T)(s)), and its collection into a regres-
sor data matrix as QT = (qκ(T)(s1), . . . ,qκ(T)(sT)).

One potential sieve estimator for σ̂i(k|s), k = 1, . . . ,K, is a
linear probability model, that is,

σ̂i(k|s) =
T∑

t=1

1(ait = k)qκ(T)(st)(Q
′
TQT)−1qκ(T)(s). (13)

Equation (13) is the standard formula for a linear probability
model where the regressors are the sieve functions qκ(T)(s). We
note that in the presence of continuous state variables, the sieve
estimator σ̂i(k|s) will converge to the true σi(k|s) at a nonpara-
metric rate slower than

√
T .

Second Step: Inversion. In our second step, we take as given
our estimates σ̂i(k|s) of the equilibrium choice probabilities. We
then form an estimate of the expected deterministic utility func-
tions, �̂i(k, st) − �̂i(0, st) for k = 1, . . . ,K and t = 1, . . . ,T .

This can be done by evaluating (10) using σ̂i(k|s) in place of
σi(k|s). That is,(
�̂i(1, st) − �̂i(0, st), . . . , �̂i(K, st) − �̂i(0, st)

)
= 
−1

i (σ̂i(0|st), . . . , σ̂i(K|st)).

In the specific case of the binary logit model, this inversion
would simply be

�̂i(1, st) − �̂i(0, st) = log(σ̂i(1|st)) − log(σ̂i(0|st)).

In an alternative model, such as one with normal shocks, we
would need to solve a nonlinear system. In what follows, we
shall impose A2 so that �̂i(0, s) = �̂i(0,a−i, s) = 0 for all a−i.

Third Step: Recovering the Structural Parameters. In the
first step we recovered an estimate of σ̂i(ai, s) and in the sec-
ond step we recovered an estimate of the choice specific value
function �̂i(k, s). In our third step, we use the empirical analog
of (11) to form an estimate of π(ai,a−i, si). We shall assume
that we have made a sufficient number of exclusion restrictions,
as discussed in the previous section, so that the model is iden-
tified. For a given value of si, for a given a = (ai,a−i), we esti-
mate πi(ai,a−i, si) by minimizing the following weighted least
square function:

�i(ai,a−i, si), which are taken to be a vector of coefficients

T∑
t=1

(
�̂i(ai, s−it, si) −

∑
a−i

σ̂−i(a−i|s−it, si)πi(ai,a−i, si)

)2

× w(t, si),

where the nonparametric weights w(t, si) can take a variety of
forms. For example,

w(t, si) = k

(
sit − si

h

)/ T∑
τ=1

k

(
siτ − si

h

)

uses kernel weights, and other local weights are also possible.
The identification condition in the previous section ensures that
the regressor matrix in this weighted least squares regression is
nonsingular asymptotically.

4.1 A Linear Model of Utility

The nonparametric estimation procedure described in the
previous section follows the identification arguments closely
and offers the advantage of flexibility and robustness against
misspecification. However, without a huge amount of data, non-
parametric estimation methods can be subject to a severe curse
of dimensionality when we intend to control for a large di-
mension of state variables s. Also, in small samples, differ-
ent implementations of nonparametric procedures may lead to
drastically different point estimates. Therefore, in the following
we consider a semiparametric estimation where the determinis-
tic utility components πi(ai,a−i, s) are specified to be a linear
function of a finite dimensional parameter vector θ . This is the
typical econometric specification that is commonly used in the
empirical literature. In this section we describe a straightfor-
ward estimation and inference procedure for this model.



Bajari et al.: Estimating Static Models of Strategic Interactions 475

The mean utility is assumed to take the form of πi(ai,a−i,

si) = �i(ai,a−i, si)
′θ . In the above expression, the determin-

istic part of utility is a linear combination of a vector of ba-
sis functions, �i(ai,a−i, si). For instance, we might let utility
be a linear index as in our simple entry game example of the
previous section. Alternatively, we might choose �i(ai,a−i, si)

to be a standard flexible functional form, such as a high-order
polynomial, spline function, or orthogonal polynomial. The es-
timator we discuss below can easily be generalized to allow for
the possibility that θ enters the utility nonlinearly. However, the
exposition of the properties of the estimator is facilitated by the
linearity assumption. Also, most applications of discrete choice
models and discrete games usually are linear in the structural
parameters of interest.

This linearity assumption implies that the choice specific
value function, given ai and s, takes the convenient form
�i(ai, s) = E[πi(ai,a−i, si)|s,ai] = �i(ai, s)′θ , where �i(ai, s)
is defined as

�i(ai, s) = E[�i(ai,a−i, si)|ai, s]
=

∑
a−i

�i(ai,a−i, si)
∏
j�=i

σ(aj = kj|s).

Equation (4) implies that each σi(ai|s) depends on σj(aj|s),
j �= i, through (14). We denote this mapping as

σi(ai|s) = 
i,ai(s, σj(k|s), j �= i, k = 1, . . . ,K). (14)

If we define σ(s) to be the stacked vector of choice probabili-
ties σi(k|s) for all k = 1, . . . ,K, i = 1, . . . ,n, then we can col-
lect (14) into a fixed point mapping: σ(s) = 
(σ(s)). To em-
phasize the dependence on the parameter θ , we can also write

σ(s; θ) = 
(s, θ;σ(s; θ)). (15)

4.2 Semiparametric Estimation

Step 1: Estimation of Choice Probabilities. The simple
semiparametric procedure we propose proceeds in two steps.
We begin by forming a nonparametric estimate of the choice
probabilities, σ̂i(k|s). We will do this like above using a sieve
approach, though one could alternatively use kernels or a local
polynomial method.

σ̂i(k|s) = qκ(T)(s)′(Q′
TQT)−1

T∑
τ=1

qκ(T)(sτ )1(ai = k). (16)

Given our estimates of the choice probabilities, we can then
estimate �i(k, s) correspondingly by

�̂i(k, s) =
∑
a−i

�i(ai = k,a−i, si)
∏
j�=i

σ̂ (aj|s).

For instance, take the example presented in (5). In this ex-
ample, �i(ai = 1,a−i, s) = (s,

∑
j�=i 1{aj = 1}) · (β, δ), where

“·” denotes an inner product. Thus, in the above formula,
�′

i(ai = 1,a−i, s) = (s,
∑

j�=i 1{aj = 1}) and θ = (β, δ). Then,
given our first-stage estimates of the choice probabilities,
�̂′(ai = 1,a−i, s) = (s,

∑
j�=i 1{aj = 1}σj(aj|s)). For each pa-

rameter value θ , we can evaluate the empirical analogue of
(15). For example, in the binary logit case, it is denoted as
σi(ai = 1|s, �̂, θ).

Step 2: Parameter Estimation. In the second stage, a vari-
ety of estimators can be used to recover the value of θ . Most
of these estimators can be written as GMM estimators with
a properly defined set of instruments. To describe the second
stage, define yikt = 1 if ait = k and yikt = 0 otherwise, for
k = 0, . . . ,K. Define yit = (yi1t, . . . , yiKt) and the vector

σi(st, �̂, θ) = (σi(k|st, �̂, θ), k = 1, . . . ,K).

Furthermore, collect yit, i = 1, . . . ,n, into a long vector yt with
n × K elements, and similarly collect σi(st, �̂, θ), i = 1, . . . ,n,
into a long vector σ(st, �̂, θ) with corresponding n × K ele-
ments. Then for any dimension dim(θ)× (nK) matrix of instru-
ments Â(st), a GMM estimator θ̂ can be defined by solving the
sample equations

1

T

T∑
t=1

Â(st)(yt − σ(st, �̂, θ̂ )) = 0. (17)

The instrument matrix Â(st), known as A(st), may be estimated
in the first stage (such as two-step optimally weighted GMM),
or may be estimated simultaneously (such as pseudo MLE). It
is well known that the estimation errors in Â(st) will not affect
the asymptotic distribution of θ̂ defined by (17), regardless of
whether Â(st) is estimated in a preliminary step or is estimated
simultaneously with θ̂ . Therefore, next we will focus on deriv-
ing the large sample properties of θ̂ defined by (17) where A(st)

is known.
The estimator that we consider falls within the class of semi-

parametric estimators considered by Newey (1994). A some-
what surprising conclusion is that even though the first stage is
estimated nonparametrically and can be expected to converge
at a rate slower than

√
T , the structural parameters will be as-

ymptotically normal and will converge at a rate of
√

T . More-
over, under appropriate regularity conditions, the second stage
asymptotic variance will be independent of the particular choice
of nonparametric method used to estimate the first stage (e.g.,
sieve or kernel). As a practical matter, these results justify the
use of the bootstrap to calculate standard errors for our model.

In the Appendix, we derive the following result, applying the
general framework developed by Newey (1990). Under appro-
priate regularity conditions, the asymptotic distribution of θ̂ de-
fined in (17) satisfies

√
T(θ̂ − θ)

d−→ N(0,G−1�G−1′),

where G = EA(st)
∂
∂θ

σ (st,�0, θ0), and � is the asymptotic vari-

ance of A(st)(yt − σ(st, �̂, θ0)). In the Appendix, we also com-
pare the asymptotic variance of alternative estimators.

4.3 Market Specific Payoff Models

If a large panel data with a large time dimension for each
market is available, both the nonparametric and semiparamet-
ric estimators can be implemented market by market to allow
for a substantial amount of unobserved heterogeneity. Even in
the absence of such rich datasets, market specific payoff effects
can still be introduced into the two-step estimation method if
we are willing to impose a somewhat strong assumption on the
market specific payoffs, αt, which is observed by all the players
in that market but not by the econometrician. We will assume
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that αt is an unknown but smooth function of the state variables
st = (st1, . . . , stn) in that market, which we will denote as α(st).
In principal, we would prefer a model where the fixed effect
was not required to be a function of the observables. However,
in highly nonlinear models, such as ours, similar assumptions
are commonly made. See, for example, Newey (1994). Strictly
speaking, our assumption is stronger than and implies Newey
(1994), who only assumes that sum of αt and the idiosyncratic
errors is homoscedastic and normal conditional on the observed
state variables. This assumption, albeit strong, is convenient
technically since it implies that the equilibrium choice proba-
bilities, σi, can still be written as a function of the state st.

With the inclusion of a market-specific component, the mean
period utility function in (1) for player i in market t is now mod-
ified to πi(ai,a−i, s) = α(ai, s) + π̃i(ai,a−i, s). In the above,
and what follows, we drop the market specific subscript t for
notational simplicity.

Under the normalization assumption that �i(0,a−i, s) ≡ 0
for all i = 1, . . . ,n, our previous results show that, as in (11), the
choice-specific value functions �i(ai, s) are nonparametrically
identified. Note that the choice specific value functions must
satisfy ∀i = 1, . . . ,n,ai = 1, . . . ,K:

�i(ai, s) =
∑
a−i

σ−i(a−i|s)πi(ai,a−i, s)

= α(ai, s) +
∑
a−i

σ−i(a−i|s)π̃i(ai,a−i, si).

Obviously, since α(ai, s) is unknown but is the same function
across all market participants, it can be differenced out by look-
ing at the difference of �i(k, s) and �j(k, s) between different
players i and j. By differencing (18) between i and j one obtains

�i(k, s) − �j(k, s) =
∑
a−i

σ−i(a−i|s)π̃i(ai,a−i, si)

−
∑
a−j

σ−j(a−j|s)π̃j(aj,a−j, sj).

Here we can treat π̃i(ai,a−i, si) and π̃j(aj,a−j, sj) as coeffi-
cients, and σ−i(a−i|s) and σ−j(a−j|s) as regressors in a linear
regression. Identification follows as in Theorem 1. As long as
there is sufficient variation in the state variables si, sj, the coeffi-
cients π̃i(ai,a−i, si) and π̃j(aj,a−j, sj) can be nonparametrically
identified.

We could nonparametrically estimate π̃j(aj,a−j, sj) using an
approach analogous to the nonparametric approach discussed in
section Section 4. However, in practice, semiparametric estima-
tion will typically be a more useful alternative. Denote the mean
utility (less the market specific fixed effect) as: π̃i(ai,a−i, si) =
�i(ai,a−i, si)

′θ . In practice, we imagine estimating the struc-
tural model in two steps. In the first step, we estimate the equi-
librium choice probabilities nonparametrically. In the second
stage, we estimate π̃i treating α(st) as a fixed effect in a discrete
choice model. Estimating discrete choice models with fixed ef-
fects is quite straightforward in many cases.

For instance, consider a model of entry and suppose that the
error terms are distributed extreme value. In the first step, we
nonparametrically estimate �̂i(1, sit), the probability of entry
by firm i when the state is sit. As in the previous section, we

could do this using a sieve linear probability model. In the sec-
ond stage, we can form a conditional likelihood function as in
Chamberlain (1984). This allows us to consistently estimate θ

when market specific fixed effects α(st) are present. Alterna-
tively, we can also apply a panel data rank estimation type pro-
cedure as in Manski (1987), which is free of distributional as-
sumptions on the error term. It is worth emphasizing that the
assumption of market specific payoff being a smooth function
of observed state variables is a very strong one that is unlikely
to hold in many important applications. In these cases a more
general approach of coping with unobserved heterogeneity, as
developed in Aguirregabiria and Mira (2007), is required.

5. APPLICATION TO STOCK MARKET ANALYSTS’
RECOMMENDATIONS AND PEER EFFECTS

Next, we discuss an application of our estimators to the prob-
lem of analyzing the behavior of equity market analysts and the
stock recommendations that they issue (e.g., strong buy, buy,
hold, sell). There is a fairly sizeable empirical literature on this
topic. However, the literature does not allow for strategic inter-
actions between analysts. We believe that this is an important
oversight. Accurate forecasts and recommendations are highly
valued, of course. But the penalty for issuing a poor recom-
mendation depends on whether competitor analysts also made
the same poor recommendation. Therefore, the utility an ana-
lyst receives from issuing a recommendation is a function of
the recommendations issued by other analysts. Therefore, we
apply the framework discussed in the previous sections to al-
low payoffs to be interdependent.

The focus in this paper is on the recommendations gener-
ated for firms in the high-tech sector during the run-up and sub-
sequent collapse of the NASDAQ in 2000; see also Barber et
al. (2003), Chan, Karceski, and Lakonishok (2007), Womack
(1996), Lin and McNichols (1998), and Michaely and Womack
(1999). Given the great uncertainty surrounding the demand for
new products and new business models, the late 1990s would
seem to have been the perfect environment for equity analysts to
add value. Yet analyst recommendations were not particularly
helpful or profitable during this period. For example, the ana-
lysts were extremely slow to downgrade stocks, even as it was
apparent that the market had substantially revised its expecta-
tions about the technology sector’s earnings potential. The re-
markably poor performance of the analysts during this time nat-
urally led to questions that the recommendations were tainted
by agency problems (see Barber et al. 2003). Allegedly, analysts
faced a conflict of interest that would lead them to keep rec-
ommendations on stocks high in order to appease firms, which
would then reward the analyst’s company by granting it un-
derwriting business or other investment advisory fees. Indeed,
these suspicions came to a head when then New York State At-
torney General Eliot Spitzer launched an investigation into con-
flicts of interest in the securities research business.

In this application we develop an empirical model of the rec-
ommendations generated by stock analysts from the framework
outlined in Section 1. We quantify the relative importance of
four factors influencing the production of recommendations in
a sample of high technology stocks during the time period be-
tween 1998 and 2003.
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5.1 Data

Our data consist of the set of recommendations on firms that
made up the NASDAQ 100 index as of year-end 2001. The
recommendations were collected from Thomson I/B/E/S. The
I/B/E/S data is one of the most comprehensive historical data
sources for analysts’ recommendations and earnings forecasts,
containing recommendations and forecasts from hundreds of
analysts for a large segment of the set of publicly traded firms. It
is common for analysts to rate firms on a 5-point scale, with 1
denoting the best recommendation and 5 denoting the worst.
When this is not the case, these nonstandard recommendations
are converted by Thomson to the 5-point scale.

We have 51,194 recommendations from analysts at 297 bro-
kerage firms (see Table 1) submitted between March 1993 and
June 2006 for firms in the NASDAQ 100. In a given quarter, for
a given stock, we also merge a quarterly earnings forecast with
a recommendation from the same brokerage firm. When there
were multiple recommendations by the same analyst within a
quarter, we chose to use the last recommendation in the results
that we report. This merge will allow us to determine if analysts
that are more optimistic than the consensus tend to give higher
recommendations. In the I/B/E/S data, quarterly earnings fore-
casts are frequently made more than a year in advance. In order
to have a consistent time frame, we limit analysis to forecasts
that were made within the quarter that the forecast applies.

We chose to merge the brokerage field, instead of the analysts
field, because the names and codes in the analysts field were not
recorded consistently across I/B/E/S data sets for recommen-
dations. It was possible to merge at the level of the brokerage.
Note that not every recommendation can be paired with an earn-
ings forecast made in the contemporaneous quarter. However,
qualitatively similar results were found for a dataset where this
censoring was not performed. We choose not to report these
results in the interests of brevity. The variables in our data
include numerical recommendations (REC) for stocks in the
NASDAQ 100, the brokerage firm (BROKERAGE) employing
the analyst, an accompanying earnings per share forecast (EPS)
for each company with a recommendation, an indicator stating
whether the brokerage firm has an investment banking relation-
ship (RELATION) with the firm being recommended, and an
indicator stating whether the brokerage firm has any investment
banking relationship with a NASDAQ 100 company (IBANK).

The investment banking relationship was identified from sev-
eral different sources. First, we checked form 424 filings in the
U.S. Securities and Exchange Commission’s (SEC) database
for information on the lead underwriters and syndicate mem-
bers of debt issues. When available, we used SEC form S-1 for
information on financial advisors in mergers. We also gathered
information on underwriters of seasoned equity issues from
Securities Data Corporation’s Platinum database. To be sure,

Table 1. Summary statistics

Mean Standard deviation Min Max

Recommendation 2.225 0.946 1 5
Relation 0.069 0.236 0 1
IBANK 0.778 0.416 0 1
Observations 51,194

transaction advisory services (mergers) and debt and equity is-
suance are not the only services that investment banks provide.
However, these sources contribute the most to total profitability
of the investment banking side of a brokerage firm.

The average recommendation in our dataset is 2.2, which is
approximately a buy recommendation (see Table 1). About 6%
of the analyst–company pairs in the sample were identified as
having a potential conflict of interest due to some kind of invest-
ment banking activity for the stock in question. A full 78% of
the recommendations come from brokerage firms that had an in-
vestment banking relationship with at least one firm in the NAS-
DAQ 100. Both of these variables are potentially useful mea-
sures of potential conflict of interest. The variable RELATION
is more direct, since it indicates that the brokerage is engaged in
investment banking with the same company it is making recom-
mendations about, during the same quarter the recommendation
was issued. However, brokerages might view any company it is
giving a recommendation to as a potential client, particularly
in the NASDAQ 100, where many of the companies generated
considerable investment banking fees.

We also make use of analyst earnings forecasts. In a given
quarter, for a given stock, we merge the quarterly earnings fore-
cast with the recommendation from the same brokerage. This
allows us to determine if analysts that are more optimistic than
the consensus tend to give higher recommendations.

5.2 Empirical Model

An observation is a recommendation submitted for a partic-
ular stock during a specific quarter. We will let t = 1, . . . ,T
denote a quarter, j = 1, . . . , J a stock, and i = 1, . . . , I an ana-
lyst. We will denote a particular recommendation by ai,j,t. The
recommendation can take on integer values between 1 and 5,
where 1 is the highest recommendation and 5 the lowest. Since
the dependent variable can be naturally ranked from highest to
lowest, we will assume that the utilities come from an ordered
logit. Let s(i, j, t) denote a set of covariates that influence the
recommendation for analyst i for stock j during quarter t. Let
s(j, t) denote a vector of (s(i, j, t)) of payoff relevant covariates
that enter into the utility of all the analysts who submit a recom-
mendation for stock j during quarter q. Let z(j, t) denote a set of
covariates that shift the equilibrium, but which do not influence
payoffs.

Define the utility or payoff to analyst i for a recommendation
on stock j in quarter t to be,

πi,j,t = β ′s(i, j, t) + ηE(a|s(j, t), z(j, t)) + εi,j,t. (18)

In Equation (18), the term E(a|s(j, t), z(j, t)) is the expected rec-
ommendation for stock j during quarter t and εi,j,t is an error
term drawn from an extreme value model. Thus, conforming
to the expected actions of peers enters into an individual ana-
lyst’s utility. The model is the familiar ordered logit, where the
probability that a particular recommendation is observed is de-
termined as follows, where we let μ0 = 0

P(a = 1) = �
(−β ′s(i, j, t) − ηE(a|s(j, t), z(j, t))

)
,

P(a = k) = �
(
μk−1 − β ′s(i, j, t) − ηE(a|s(j, t), z(j, t))

)
− �

(
μk−2 − β ′s(i, j, t) (19)

− ηE(a|s(j, t), z(j, t))
)
, k = 2,3,4,

P(a = 5) = 1 − �
(
μ3 − β ′s(i, j, t) − ηE(a|s(j, t), z(j, t))

)
.



478 Journal of Business & Economic Statistics, October 2010

Table 2. Ordered logit estimates of the effect of fundamentals

Variable Coefficient Coefficient Coefficient Coefficient

%DEV −0.0038 −0.0044
(−1.12) (−1.24)

ABS DEV −0.0194 −0.0114
(−6.33) (−3.73)

Fixed effects none quarterly, stock none quarterly, stock
Log likelihood −16,082.6 −15,211.7 −14,861.2 −14,861.4
Pseudo-R2 0.0 0.054 0.001 0.054
Observations 51,194 51,194 51,194 51,194

In Equation (19), the likelihood that determines the probability
that the recommendation is a depends on the latent estimated
covariates β and η along with the cut points μ1 − μ3.

The analysis of the previous section suggests that identifi-
cation depends crucially on having appropriate exclusion re-
strictions. First, we need covariates that influence the payoffs
of one particular agent, but not other agents. In our analysis, the
covariates will include IBANK and RELATION. This assump-
tion would imply, for instance, that the amount of investment
banking done by Merrill Lynch should not directly influence
the recommendations submitted by analysts working for Gold-
man Sachs. We believe that this is a reasonable assumption.

In addition, we have attempted to control for unobserved het-
erogeneity in several ways. First, in many specifications, we
include a full set of stock and quarter fixed effects to control
for factors that remain fixed in a quarter that influence recom-
mendations. Second, we have controlled for unobserved hetero-
geneity using both a fixed effects and random effects specifica-
tion.

5.3 Results

The first question that we ask is the extent to which rec-
ommendations were determined by publicly observable infor-
mation about the stocks. In our data, these fundamentals cor-
respond to time fixed effects, stock fixed effects, and the dif-
ference between an individual analyst’s beliefs about earnings
and beliefs in the market as whole. In Table 2, we run an or-
dered logit to explore these questions. The variable %DEV is
the percentage deviation of an analyst’s earnings forecast from
the average earnings forecast in the current quarter. DEV is the
algebraic difference. In both cases, a more optimistic earnings
forecast has the anticipated sign; a better earnings outlook is as-
sociated with a lower (i.e., better) recommendation. However,

the estimated coefficients are not significant at conventional lev-
els in any of the specifications that we have tried. On the other
hand, quarterly and stock fixed effects are almost all statistically
significant (not reported in this table). If quarter and stock fixed
effects proxy for publicly available information about the stock,
then this information is considerably more important than mea-
sures of an individual analyst’s optimism. In an earlier version
of the paper we reported results on the correlation between our
estimated quarterly effects and both the NASDAQ index and the
QQQ. These results show that the quarterly effects can reason-
ably be interpreted as reflecting publicly observed information
about the firms that is embedded in the share prices, as opposed
to some other latent effects. These results are available from the
authors on request.

In Table 3 we run an ordered logit model of recommenda-
tions as a function of our conflict of interest measures. The co-
efficient on RELATION indicates that potential conflicts of in-
terest are statistically significant at conventional levels, except
for the third column where quarterly and stock fixed effects are
included, and the fourth column where the full set of fixed ef-
fects are included along with the more inclusive IBANK vari-
able. The coefficient sign on RELATION is also consistent with
our a priori beliefs that conflicts of interest could lead to the
issuance of more favorable recommendations. However, these
results must be interpreted with some caution. Since brokerage
firms are expected to cover companies with whom they have
significant investment banking business, the firms have an in-
centive to select brokerages that already view them favorably.
It would be hard to imagine that a rational manager would want
to hire an investment banking firm that views her company in
an unfavorable manner.

Our results suggest that even though investment banking re-
lationships may generate potential conflicts of interest for eq-
uity analysts, the magnitude of the effects on recommendations

Table 3. Ordered logit estimates of the effect of conflicts of interest

Variable Coefficient Coefficient Coefficient Coefficient

RELATION −0.2787 −0.2215 −0.1695 −0.2083
(−8.37) (−6.51) (−4.66) (−5.68)

IBANK 0.1849
(8.71)

Fixed effects none quarterly quarterly, stock quarterly, stock
Log likelihood −65,716.7 −62,683.5 −61,465.4 −61,427.5
Pseudo-R2 0.001 0.047 0.065 0.066
Observations 51,194 51,194 51,194 51,194
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Table 4. Ordered logit estimates of peer effects (parametric first stage)

Variable Coefficient Coefficient Coefficient Coefficient

IVBELIEF 1.5937 1.5807 0.1437 0.1507
(71.33) (66.6) 2.98 3.2

RELATION −0.2036
(−4.84)

IBANK 0.1845
(8.16)

Fixed effects none stock quarterly, stock quarterly, stock
Log likelihood −62,371.0 −62,078.4 −61,315.8 −61,267.9
Pseudo-R2 0.049 0.053 0.065 0.066
Observations 51,194 51,194 51,194 51,194

may be small in practice. Notice that measures of the goodness
of fit are very low when only investment banking relationship
is included. This overall finding is not consistent with the pros-
ecutor’s belief that “unbiased” research, separate from invest-
ment banking, will generate recommendations less tainted by
potential conflicts of interest.

The final question we consider is whether peer effects come
into play when analysts submit their recommendations. We ex-
plore this question in Tables 4–6 by using the two-stage pro-
cedure described in the previous sections. First, we regress the
recommendations on a broker fixed effect, a full set of stock and
quarterly dummies, and IBANK. In Table 4, these first-stage re-
gressions are done using linear regression, while in the later ta-
bles we include stock-time interactions as a more flexible first
stage. We experimented with other functional forms, such as a
3rd-order spline, and the results were little changed. We will
let IVBELIEF for an analyst-broker i denote the expected aver-
age recommendation from the first-stage model, where the av-
erage excludes the predicted recommendation of that broker i.
If the coefficient on IVBELIEF is positive, this means that bro-
ker i has an incentive to conform to the recommendations of the
other brokers. If it is negative, it means there is a return from
submitting a dissenting recommendation.

In all of the specifications that we examine in Table 4, peer
effects seem to be important. An individual analyst will raise
his recommendation proportionally to the recommendation that
he expects from other analysts. This is intuitive. A recommen-
dation does not make sense in isolation, but only in comparison
to the recommendations of other analysts. If no one else in the

market is issuing recommendations of “market underperform”
or “sell,” an individual analysts may give the wrong signal by
issuing such a recommendation even if he believes the recom-
mendation is literally true. It is worth noting that the results for
our measure of peer effects are not only statistically significant,
but peer effects also explain the results quite well compared
to the other covariates. The Pseudo-R2 suggests that quarterly
dummies, stock dummies, and IVBELIEF explain most of the
variation in the data. Adding the additional conflict of interest
variables does not do much to improving the model fit.

We note that the presence of the peer effect is robust to allow-
ing for a more flexible first stage (see Tables 5 and 6). Also, the
peer effect remains significant, allowing for unobserved hetero-
geneity in the form of a stock/quarter-specific random effect in
Table 6. For these specifications, the investment banking rela-
tionship coefficient is no longer significant. In the random effect
specification, the individual effect component is assumed to be
drawn from a normal distribution with mean zero and a constant
variance. The validity of the random effect model requires the
strong assumption that the random effects are orthogonal to the
regressors and the errors.

Note that it is possible to extend this analysis by using the
parameter estimates obtained above and simulating the model
in order to find all the equilibria in the recommendation game.
Bajari et al. (2009) develop an algorithm to compute all so-
lutions to this recommendation game (as well as to other ap-
plications). Perhaps not surprisingly, we find evidence of two
equilibria in the pre-Spitzer era, one of which was character-
ized by an across-the-board tendency for analysts to grant more

Table 5. Ordered logit estimates of peer effects (semiparametric first stage)

Variable Coefficient Coefficient Coefficient Coefficient

IVBELIEF 1.5982 1.5872 0.1867 0.1938
(81.82) (62.73) (4.58) (3.95)

RELATION −0.2033
(−5.22)

IBANK 0.1851
(7.16)

Fixed effects none stock quarterly, stock quarterly, stock
Log likelihood −62,344.2 −62,050.6 −61,311.8 −61,263.7
Pseudo-R2 0.049 0.054 0.065 0.066
Observations 51,194 51,194 51,194 51,194
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Table 6. Random effect estimates of peer effects (semiparametric first stage)

Variable Coefficient Coefficient Coefficient Coefficient

IVBELIEF 1.1717 1.1732 1.1961
(39.43) (40.35) (43.96)

RELATION −0.007 0.0681 −0.0281
(−0.07) (1.74) (−0.57)

IBANK 0.3229 0.3832
(8.67) (18.67)

Log likelihood −62,344.2 −62,050.6 −61,311.8 −61,263.7
Observations 51,194 51,194 51,194 51,194

optimistic ratings than in the single equilibrium that prevailed
in the aftermath of the dot-com crash.

6. CONCLUSION

In this paper we propose a method for estimating static games
of incomplete information. The method we propose is semi-
parametric and does not require the covariates to lie in a discrete
set. Perhaps most importantly, the method is both flexible and
easy to implement using standard statistical packages. We ap-
ply these methods to the problem of determining the factors that
govern the assignment of stock recommendations by equity an-
alysts for a set of high-tech stocks between 1998 and 2003. Two
factors seem to be most important for explaining the produc-
tion of stock recommendations. First, publicly observable infor-
mation about the stocks under recommendation, as reflected in
our time and quarter dummies, plays a large role in explaining
the distribution of recommendations. Simply put, recommen-
dations improved in 1999–2000 as the stock market rose, and
then deteriorated as the market fell in the ensuing years. The
second and most important factor for explaining recommenda-
tions is the peer group effect. Individual analysts appear to raise
their recommendations proportionally to the recommendations
they expect from their peers. Investment banking relationships
are shown to be statistically significant in the recommendations
regressions, but the economic effect of the investment banking
relationship is estimated to be small. Additionally, when the in-
vestment banking relationship variables are included alongside
our measure of peer effects, the banking relationships tend to
be insignificant.

APPENDIX: SEMIPARAMETRIC VARIANCE

To derive �, we need to follow Newey (1990) and derive the
asymptotic linear influence function of the left-hand side of the
above relation. For this purpose, note that

1√
T

T∑
t=1

A(st)(yt − σ(st, �̂, θ0))

= 1√
T

T∑
t=1

A(st)(yt − σ(st,�0, θ0))

− 1√
T

T∑
t=1

A(st)(σ (st, �̂, θ0) − σ(st,�0, θ0)).

Since �̂ depends only on the nonparametric estimates of
choice probabilities σ̂j(k|s), j = 1, . . . ,n, k = 1, . . . ,K, in (16)
through (14), the second part can also be written as

1√
T

T∑
t=1

A(st)
(

(st, θ0; σ̂ (s)) − 
(st, θ0;σ0(s))

)
,

where σ̂ (s) is the collection of all σ̂j(k|s) for j = 1, . . . ,n and
k = 1, . . . ,K, and the function 
(·) is defined in (15). Then
using the semiparametric influence function representation of
Newey (1994), as long as 
(st, θ, σ (s)) is sufficiently smooth
in σ(s) and as long as the nonparametric first-stage estimates
satisfy certain regularity conditions regarding the choice of the
smoothing parameters, we can write this second part as

1√
T

T∑
t=1

A(st)
(

(st, θ0; σ̂ (s)) − 
(st, θ0;σ0(s))

)

= 1√
T

T∑
t=1

A(st)
∂

∂σ

(st, θ0;σ0(s))(yt − σ(st, θ0))

+ op(1).

In other words, if we write 
σ (s) = ∂
∂σ


(st, θ0;σ0(s)), we can
write

1√
T

T∑
t=1

A(st)(yt − σ(st, �̂, θ0))

= 1√
T

T∑
t=1

A(st)(I − 
σ (st))(yt − σ(st, θ0)) + op(1).

Therefore, two-step semiparametric θ̂ has the following repre-
sentation:

√
T(θ̂ − θ0) = −(EA(st)
θ (st))

−1

× 1√
T

T∑
t=1

A(st)(I − 
σ (st))(yt − σ(st, θ0))

+ op(1).

Hence
√

T(θ̂ − θ0)
d−→ N(0,�), where � is equal to

E(A(st)
θ (st))
−1[EA(st)(I − 
σ (st))�(st)

× (I − 
σ (st))
′A(st)

′]E(
θ (st)
′A(st)

′)−1.
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Using the previous definitions of 
θ(st) = ∂
∂θ1


(st, θ1, σ (st;
θ2))|θ1=θ2=θ0 , and �(st) = Var(yt − σ(st, θ0)|st), the efficient
choice of the instrument matrix (which can be feasibly esti-
mated in preliminary steps without affecting the asymptotic
variance) is given by

A(st) = 
θ(st)
′(I − 
σ (st))

−1�(st)
−1(I − 
σ (st))

−1′.
With this efficient choice of the instrument matrix, the asymp-
totic variance of θ̂ becomes(
E
θ(st)

′(I − 
σ (st))
−1�(st)

−1

× (I − 
σ (st))
−1′
θ(st)

)−1
. (A.1)

A.1 Efficiency Considerations

We present two efficiency results in this section. First of all,
we show that with the above efficient choice of the instrument
matrix A(st), the semiparametric two-step estimation procedure
above is as efficient as the full maximum likelihood estimator
where the fixed point mapping in (15) is solved for every para-
meter value θ which is then nested inside maximum likelihood
optimization to obtain choice probabilities as a function of θ .
Secondly, we show that estimating σ̂ (st) may even improve ef-
ficiency over the hypothetical case where σ(st) is known and
an infeasible pseudo MLE which uses �0 instead of �̂ is used
to estimate θ .

A.1.1 Efficiency Comparison With Full Maximum Likelihood.
Consider a full maximum likelihood approach where a fixed
point calculation (assuming the solution is unique) of (15) is
nested inside the likelihood optimization. For each θ , (15) is
solved to obtain σ(st, θ) as a function of θ , which is then used to
form the likelihood function. Define the total derivative of (15)
as

d

dθ
σ (st, θ0) = d

dθ

(st, θ, σ (st; θ))

∣∣∣∣
θ=θ0

= 
θ(st) + 
σ (st)
d

dθ
σ (st, θ0)

which can be used to solve for
d

dθ
σ (st, θ0) = (I − 
σ (st))

−1
θ(st). (A.2)

Following the same logic as the discussions of pseudo MLE,
it is easy to show that the asymptotic distribution of the
full maximum likelihood estimator, which is the same as an
IV estimator with the instruments chosen optimally, satisfies√

T(θ̂FMLE − θ0)
d−→ N(0,�FMLE), where

�FMLE =
(

E
d

dθ
σ (st, θ0)

′�(s)−1 d

dθ
σ (st, θ0)

′
)−1

.

Using (A.2), we can also write

�FMLE =
[

E
θ(st)
′(I − 
σ (st))

−1�(st)
−1

× (I − 
σ (st))
−1
θ(st)

]−1

.

This is identical to (A.1) for the asymptotic variance of the two-
step semiparametric IV estimator when the instrument matrix is
chosen optimally.

A.1.2 Efficiency Comparison With Infeasible Pseudo MLE.
Consider an infeasible pseudo MLE, with �̂ replaced by the
true but unknown �0:

T∑
t=1

n∑
i=1

[
K∑

k=1

yikt logσi(k|st,�0, θ) +
(

1 −
K∑

k=1

yikt

)

× log

(
1 −

K∑
k=1

σi(k|st,�0, θ)

)]
. (A.3)

The asymptotic variance of this estimator is similar to that of
�FMLE except with d

dθ
σ (st, θ0)

′ replaced by 
θ(st). In other
words,

�IPMLE = [E
θ(st)
′�(st)

−1
θ(st)]−1

where IPMLE stands for infeasible pseudo MLE.
The relation between �FMLE and �IPMLE is obviously am-

biguous and depends on the response matrix 
σ (st). It is clearly
possible that �FMLE < �IPMLE, in which case estimating �̂

may improve efficiency over the case where �0 is known.
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