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CHAPTER 1

Introduction

1. Some general ideas on Empirical Industrial Organization

Industrial Organization (IO) studies the behavior of firms in markets. We are interested

in understanding how firms interact strategically in markets, and how their actions affect

the market allocation. IO economists are particularly interested in three aspects related to

a market allocation: market structure, firms’market power, and firms’strategies. These are

key concepts in IO. Market structure is a description of the number of firms in the market

and of their respective market shares. A monopoly is an extreme case of market structure

where a single firm concentrates the total output in the market. At the other extreme we

have an atomist market structure where industry output is equally shared by a very large

number of very small firms. Between these two extremes, we have a whole spectrum of

possible oligopoly market structures. Market power (or monopoly power) is the ability of

a firm, or group of firms, to gain extraordinary profits above those needed to remunerate

all the inputs at market prices. A firm’s strategy is a description of the firms’actions (for

instance, pricing, production and market entry decisions) contingent on the state of demand

and cost conditions. We say that a firm behaves strategically if it takes into account that

its actions affect other firms’profits and that a change in its own strategy can generate as a

response a change in the strategies of competing firms.

A significant part of the research in IO deals with understanding the determinants of

market power, market structure, and firms’strategies in actual markets and industries. IO

economists propose models where these variables are determined endogenously and depend

on multiple exogenous factors such as consumer demand, input supply, technology, regula-

tion, as well as firms’beliefs about the behavior of competitors and the nature of competition.

The typical model in IO treats demand, technology, and institutional features as given, and

postulates some assumptions about how firms compete in a market. Based on these assump-

tions, we study firms’strategies. In particular, we are interested in finding a firm’s profit

maximizing strategy, given its beliefs about the behavior of other firms, and in determining

equilibrium strategies: the set of all firms’strategies which are consistent with profit max-

imization and rational beliefs about each others’behavior. We use Game Theory tools to

1



2 1. INTRODUCTION

find these equilibrium strategies, and to study how changes in exogenous factors affect firms’

strategies, market structure, firms’profits, and consumer welfare.

The models of Perfect Competition and of Perfect Monopoly are two examples of IO

models. However, they are extreme cases and they do not provide a realistic description

of many markets and industries in our today’s economy. Many interesting markets are

characterized by a relatively small number of firms who behave strategically and take into

account how their decisions affect market prices and other firms’profits. We refer to these

markets as oligopoly markets, and they are the focus of IO.

Most of the issues that we study in IO have an important empirical component. To

answer questions related to competition between firms in an industry, we typically need

information on consumer demand, firms’costs, and firms’strategies or actions in that in-

dustry. Empirical Industrial Organization (EIO) deals with the combination of
data, models, and econometric methods to answer empirical questions related
to the behavior of firms in markets. The tools of EIO are used in practice by firms,

government agencies, consulting companies, and academic researchers. Firms use these tools

to improve their strategies, decision making, and profits. For instance, EIO methods are

useful tools to determine a firm’s optimal prices, to evaluate the value added of a merger,

to predict the implications of introducing a new product in the market, or to measure the

benefits of price discrimination. Government agencies use the tools of industrial organization

to evaluate the effects of a new policy in an industry (for instance, an increase in the sales

tax, or an environmental policy), or to identify anti-competitive practices such as collusion,

price fixing, or predatory conducts. Academic researchers use the tools of EIO to improve

our understanding of industry competition. The following are some examples of these types

of questions.

Example 1: Estimating the demand for a new product. A company considers

launching a new product, for instance, a new smartphone. To estimate the profits that the

new product will generate to the company, and to decide the initial price that maximizes these

profits, the company needs to predict the demand for this new product, and the response

(that is, price changes) of the other firms competing in the market of smartphones. Data on

sales, prices, and product attributes from firms and products that are already active in the

market can be used together models and methods in EIO to estimate the demand and the

profit maximizing price of the new product, and to predict the response of competing firms.

Example 2: Evaluating effects of a policy change. A government has introduced a
new environmental policy that imposes new restrictions on the emissions of pollutants from

factories in an industry. The new policy encourages firms in this industry to adopt a new

technology that is environmentally cleaner. This alternative technology reduces variable
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costs but increases fixed costs. These changes in the cost structure affect competition. In

particular, we expect a decline in the number of firms and an increase output-per-firm in

the industry. The government wants to know how this new policy has affected competition

and welfare in the industry. Using data on prices, quantities, and number of firms in the

industry, together with a model of oligopoly competition, we can evaluate the effects of this

policy change.

Example 3: Explain the persistence of market power. For many years, the industry of
micro-processors for personal computers has been characterized by the duopoly of Intel and

AMD, with a clear leadership by Intel that enjoys more than two-thirds of the world market

and a substantial degree of market power. There are multiple factors that may contribute

to explain this market power and its persistence over time. For instance, large entry costs,

economies of scale, learning-by-doing, consumer brand loyalty, or predatory conduct and

entry deterrence, are potential, not mutually exclusive, explanations. What is the relative

contribution of each of these factors to explain the observed market structure and market

power? Data on prices, quantities, product characteristics, and firms’investment in capacity

can help us to understand and to measure the contribution of these factors.

2. Data in Empirical IO

Early research in empirical IO between the 1950s and 1970s was based on aggregate

industry level data from multiple industries (Bain, 1951 and 1954, Demsetz, 1973). Studies

in this literature looked at the empirical relationship between a measure of market power

and a measure of market structure or market concentration. In these studies, the typical

measure of market power was the Lerner Index (LI) which is defined as price minus marginal

cost divided by price, LI ≡ (P −MC)/P . And a common measure of market concentration

is the Herfindahl-Hirschman Index (HHI), defined as the sum of the squares of the market

shares of the firms in the market: HHI =
∑N

i=1(qi/Q)2, where qi is firm i’s output, and

Q represents total industry output. Given a sample of N industries (indexed by n) with

information on the Lerner and the Herfindahl-Hirschman indexes for each indistry, these

studies related the two indexes using a linear regression model as follows,

LIn = β0 + β1 HHIn + εn (2.1)

This linear regression model was estimated using industry-level cross-sectional data from very

diverse industries, and they typically found a positive and statistically significant relationship

between concentration and market power, that is, the OLS estimate of β1 was statistically

greater than zero. One of the main purposes of these empirical studies was to identify a

relationship between market concentration and market structure that could be applied to



4 1. INTRODUCTION

most industries. Furthermore, the estimated regression function was as causal relationship.

That is, the parameter β1 is interpreted as the the increase in the Lerner Index of a unit

increase market concentration as measured by the HHI. This interpretation does not take

into account that both market power (LI ) and concentration (HHI ) are endogenous variables

which are jointly determined in equilibrium and affected by the same exogenous variables,

and some of these variables (ε) are unobservable to the researcher.

In the 1980s, the seminal work of Bresnahan (1981, 1982, 1987), Porter (1983), Schmalensee

(1989), and Sutton (1991), among others, configured the basis for the so calledNew Empirical

IO. These authors pointed out at the serious limitations in the previous empirical literature

based on aggregate industry-level data. One of the criticisms to the previous literature was

that industries, even those apparently similar, can be very different in their exogenous or

primitive characteristics such as demand, technology, and regulation. This heterogeneity

implies that the relationship between market concentration and price-cost margins can also

vary greatly across industries. In reality, the parameters of these linear regression models

are heterogenous across industries (that is, we have β1n instead of β1) but were estimated

as constants in previous literature. A second important criticism to the old EIO literature

was that industry concentration, or market structure, cannot be considered as an exogenous

explanatory variable. Market power and market structure are both endogenous variables

that are jointly determined in an industry. The regression equation of market power on

market structure should be interpreted as an equilibrium condition where there are multiple

exogenous factors, both observable and unobservable to the researcher, that simultaneously

affect these two endogenous variables. Not taking into account the correlation between the

explanatory variable (market structure) and the error term (unobserved heterogeneity in in-

dustry fundamentals) in this regression model implies an spurious estimation of causal effect

or ceteris paribus effect of market structure on market power.

Given these limitations of the old EIO, the proponents of the New Empirical IO em-

phasized the need to study competition by looking at each industry separately using richer

data at a more disaggregate level and combining these data with game theoretical models of

oligopoly competition. Since then, the typical empirical application in IO has used data of

a single industry, with information at the level of individual firms, products, and markets,

on prices, quantities, number of firms, and exogenous characteristics affecting demand and

costs.

In the old EIO, sample variability in the data came from looking at multiple industries.

This source of sample variation is absent in the typical empirical study in the New EIO.

Furthermore, given that most studies look at oligopoly industries with a few firms, sample

variation across firms is also very limited and it is not enough to obtain consistent and precise
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estimates of parameters of interest. This leads to the question: what are the main sources of

sample variability in empirical studies in modern EIO? Most of the sample variation in these

studies come from observing multiple products and local markets within the same industry.

For instance, in some industries the existence of transportation costs implies that firms

compete for consumers at the level of local geographic markets. The particular description

of a geographic local market (for instance, a city, a county, a census tract, or a census block)

depends on the specific industry under study. Prices and market shares are determined at the

local market level. Therefore, having data from many local markets can help to identify the

parameters of our models. Sample variation at the product level is also extremely helpful.

Most industries in today’s economies are characterized by product differentiation. Firms

produce and sell many varieties of a product. Having data at the level of very specific

individual products and markets is key to identifying and estimating most IO models that

we study in this book.

The typical dataset in EIO consists of cross-sectional or panel data of many products

and/or local markets from the same industry, with information on selling prices, produced

quantities, product attributes, and local market characteristics. Ideally, we would like to

have data on firms’costs. However, this information is very rare. Firms are very secretive

about their costs and strategies. Therefore, we typically have to infer firms’costs from our

information on prices and quantities. There are several approaches we can take. When we

have information on firms’inputs, inference on firms’costs can take the form of estimating

production functions. When information on firms’inputs is not available, or not rich enough,

we exploit our models of competition and profit maximization to infer firms’costs. Similarly,

we will have to estimate price-cost margins (market power) and firms’ profits using this

information.

3. Specification of a structural model in Empirical IO

To study competition in an industry, EIO researchers propose and estimate structural

models of demand and supply where firms behave strategically. These models typically

have the following components or submodels: a model of consumer behavior or demand;

a specification of firms’costs; a static equilibrium model of firms’competition in prices or

quantities; a dynamic equilibrium model of firms’competition in some form of investment

such as capacity, advertising, quality, or product characteristics; and a model of firm entry

(and exit) in a market. The parameters of the model are structural in the sense that they

describe consumer preferences, production technology, and institutional constraints. This

class of econometric models provides us with useful tools for understanding competition,

business strategies, and the evolution of an industry, to identify collusive and anti-competitive
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behavior, or to evaluate the effects of public policies in oligopoly industries, to mention some

of their possible applications.

To understand the typical structure of an EIO model, and to illustrate and discuss some

important economic and econometric issues in this class of models, this section presents a

simple empirical model of oligopoly competition. Though simple, this model incorporates

already some important features related to modelling and econometric issues such as specifi-

cation, endogeneity, identification, estimation, and policy experiments. We will study these

issues in detail throughout this book. This example is inspired in Ryan (2012), and the

model below can be seen as a simplified version of the model in that paper.

3.1. Evaluating the effects of a policy change on the cement industry
. We start with an empirical question. Suppose that we want to study competition in

the cement industry of a country or region. It is well-known that this industry is energy

intensive and generates a large amount of air pollutants. For these reasons, the government

or regulator in this example is evaluating whether to pass a new law that restricts the

amount of emissions a cement plant can make. This law would imply the adoption of a

type of technology that it is already available but that few plants currently use. The "new"

technology implies lower marginal costs but larger fixed costs than the "old" technology.

The government would like to evaluate the implications of the new environmental regulation

on firms’profits, competition, consumer welfare, and air pollution. As we discuss below, this

evaluation can be ex-ante (that is, before the new policy is actually implemented) or ex-post

(that is, after the implementation of the policy change).

3.2. Model
. The next step is to specify a model that incorporates the key features of the indus-
try that are important to answer our empirical question. The researcher needs to have
some knowledge about competition in this industry, and about the most important fea-

tures of demand and technology that characterize the industry. The model that I propose

here incorporates four basic but important features of the cement industry. First, it is an

homogeneous product industry. There is very little differentiation in the cement product.

Nevertheless, the existence of large transportation costs per dollar value of cement makes

spatial differentiation a potentially important dimension for firm competition. In this sim-

ple example, we abstract from product differentiation when modelling competition between

firms, though, as explained below, we take it into account to a certain extent when we define

local markets. Second, there are substantial fixed costs of operating a cement plant. The

cost of buying (or renting) cement kilns, and the maintenance of this equipment, does not

depend on the amount of output the plant produces and it represents a substantial fraction
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of the total cost of a cement plant. Third, variable production costs increase more than pro-

portionally when output approaches the maximum installed capacity of the plant. Fourth,

transportation costs of cement (per dollar value of the product) are very high. This explains

why the industry is very local. Cement plants are located nearby the point of demand (that

is, construction places in cities or small towns) and they do not compete with cement plants

located in other towns. For the moment, the simple model that we present here, ignores

an important feature of the industry that will become relevant for our empirical question.

Installed capacity is a dynamic decision that depends on the plant’s capacity investments

and on depreciation.

3.3. Data
. The specification of the model depends importantly on the data that is available for the
researcher. The level of aggregation of the data (for instance, consumer and firm level vs.

market level data), its frequency, or the availability or not of panel data are important

factors that the researcher should take into account when she specifies the model. Model

features that are important to explain firm-level data might be quite irrelevant, or they may

be under-identified, when using market level data. In this example, we consider a panel

(longitudinal) dataset with aggregate information at the level of local markets. Later in

this chapter we discuss the advantages of using richer firm-level data. The dataset consists

of M local markets (for instance, towns) observed over T consecutive quarters.1 We index

markets by m and quarters by t. For every market-quarter observation, the dataset contains

information on the number of plants operating in the market (Nmt), aggregate amount of

output produced by all the plants (Qmt), market price (Pmt), and some exogenous market

characteristics (Xmt) such as population, average income, etc.

Data = { Pmt , Qmt , Nmt, Xmt : m = 1, 2, ...,M ; t = 1, 2, ..., T } (3.1)

Note that the researcher does not observe output at the plant level. Though the absence of

data at the firm level is not ideal it is not uncommon either, especially when using publicly

available data from census of manufacturers or businesses. Without information on output

at the firm-level, our model has to impose strong restrictions on the form of the heterogeneity

in firms’demand and costs. Later in this chapter, we discuss potential biases generated by

these restrictions and how we can avoid them when we have firm-level data.

3.4. Structural components of the model
. Our model of oligopoly competition has four main components: (a) demand equation; (b)

1The definition of what is a local market represents an important modelling decision for this type of
data and empirical application. We will examine this issue in detail in chapter 5.
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cost function; (c) model of Cournot competition; and (d) model of market entry. An impor-

tant aspect in the construction of an econometric model is the specification of unobservables.

Including unobservable variables in our models is a way to acknowledge the rich amount of

heterogeneity in the real world (between firms, markets, or products, and over time), as well

as the limited information of the researcher relative to the information available to actual

economic agents in our models. Unobservables also account for measurement errors in the

data. In general, the richer the specification of unobservables in a model, the more robust

the empirical findings. Of course, there is a limit to the degree of unobserved heterogeneity

that we can incorporate in our models, and this limit is given by the identification of the

model.

3.5. Endogeneity and identification of the model parameters
. A key econometric issue in the estimation of parameters in our econometric models is the
endogeneity of the explanatory variables. For instance, prices and quantities that appear in

a demand equation are jointly determined in the equilibrium of the model and they both

depend on the exogenous variables affecting demand and costs. Some of these exogenous

variables are unobservable to the researcher and are part of the error terms in our econometric

models. Therefore, these error terms are correlated with some of the explanatory variables

in the econometric model. For instance, the error term in the demand equation is correlated

with the explanatory variable price. Ignoring this correlation can imply serious biases in the

estimation of the parameters of the model and in the conclusions of the research. Dealing

with this endogeneity problems is a fundamental element in EIO and in econometrics in

general.

3.6. Demand equation
. In this simple model we assume cement is an homogeneous product. We also abstract from
spatial differentiation of cement plants.2 We postulate a demand equation that is linear in

prices and in parameters.

Qmt = Smt
(
XD
mt βX − βP Pmt + εDmt

)
(3.2)

βX and βP ≥ 0 are parameters. Smt represents demand size or population size. XD
mt is a

subvector of Xmt that contains observable variables that affect the demand of cement in a

market, such as average income, population growth, or age composition of the population.

εDmt is an unobservable shock in demand per capita. This shock implies vertical parallel shifts

in the demand curve.3 A possible interpretation of this demand equation is thatXD
mt βX−βP

2See Miller and Osborne (2013) for an empirical study of spatial differentiation and competition of
cement plants.

3A more general specification of the linear demand equation includes an unobservable shock that affects
the slope of the demand curve.
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Pmt + εDmt is the downward sloping demand curve of a representative consumer in market m

at period t. According to this interpretation, XD
mt βX + εDmt is the willingness to pay of this

representative consumer for the first unit that she buys of the product, and βP captures the

decreasing marginal utility from additional units. An alternative interpretation is based on

the assumption that there is a continuum of consumers in the market with measure Smt.4

For some of the derivations below, it is convenient to represent the demand using the

inverse demand curve:

Pmt = Amt −Bmt Qmt (3.3)

where the intercept Amt has the same definition as above, and the slope Bmt is 1/(βP Smt).

Using the standard representation of the demand curve in the plane, with Q in the horizontal

axis and P in the vertical axis, we have that this curve moves upward when Amt increases

(vertical parallel shift) or when Bmt declines (counter-clockwise rotation).5

3.7. Cost function
. The cost function of a firm has two components, variable cost and fixed cost: C(q) =

V C(q) + FC, where q is the amount of output produced by a single firm, C(q) is the total

cost of a firm active in the market, and V C(q) and FC represent variable cost and fixed

cost, respectively.

If we had firm-level data on output, inputs, and input prices, we could estimate a pro-

duction function and then use the dual approach to construct the variable cost and fixed

cost function. For instance, suppose that the production function has the Cobb-Douglas

form q = LαL KαK exp{ε} where L and K are the amounts of labor and capital inputs,

respectively, αL and αK are parameters, and ε represents total factor productivity which is

unobservable to the researcher. We can take a logarithm transformation of this production

function to have the linear in parameters regression model, ln q = αL lnL + αK lnK + ε.

In chapter 3, we present methods for the estimation of the parameters in this production

function. Suppose that labor is a variable input and capital is a fixed input. The variable

cost function V C(q) is the minimum variable cost (in this case, labor cost) to product an

4Each consumer can buy at most one unit of the product. A consumer with willingness to pay v has
a demand equal to one unit if (v − Pmt) ≥ 0 and his demand is equal to zero if (v − Pmt) < 0. Then,
the aggregate market demand is Qmt = Smt (1−Gmt(Pmt)) where Gmt(v) is the distribution function of
consumers’willingness to pay in market m at period t, such that Pr (v ≥ Pmt) = 1−Gmt(Pmt). Suppose that
the distribution function Gmt is uniform with support [(Amt − 1)/βP , Amt/βP ] and Amt ≡ XD

mt βX + εDmt.
Then, the aggregate market demand has the form in equation (3.2).

5In principle, market size S∗mt could enter the vector X
D
mt to take into account that the distribution of

consumers willingness to pay may change with the size of the population in the market. In that case, an
increase in market size implies both a vertical shift and a rotation in the demand curve.
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amount of output q. For this production function, we have that:6

V C(q) = pL

[
q

exp{ε}KαK

]1/αL

(3.4)

and

FC = pK K (3.5)

where pL and pK represent the price of labor and capital, respectively.

Here we consider a common situation where the researcher does not have data on inputs

at the firm level. Costs cannot be identified/estimated from a production function. We will

estimate costs using revealed preference.

3.8. Princinple of Revealed Preference
. Under the assumption that agents make decisions to maximize a utility or payoff, observed
agents’choices reveal information to us about their payoff functions. In this case, a firm’s

choice of output reveals information about its marginal costs, and its decision to be active

in the market or not reveals information about its fixed costs.

We start by assuming that every firm, either an incumbent or a potential entrant, has

the same cost function. For convenience, we specify a quadratic variable cost function:

V Cmt(q) =
(
XMC
mt γ

MC
X + εMC

mt

)
q +

γMC
2

2
q2 (3.6)

γMC
X and γMC

2 are parameters. XMC
mt is a subvector of Xmt that contains observable variables

that affect the marginal cost of cement production, including the prices of variable inputs

such as limestone, energy, or labor. εMC
mt is a market shock in marginal cost that is unobserved

to the researcher but observable to firms. Given this variable cost function, the marginal cost

is MCmt(q) = MCmt + γMC
2 q, where MCmt ≡ XMC

mt γMC
X + εMC

mt represents the exogenous

part of the marginal cost, as well as the minimum possible value of the the marginal cost.

The increasing component of the marginal cost, γMC
2 q, captures the industry feature that

this cost increases when output approaches the maximum capacity of a plant.

The fixed cost is specified as FCmt = XFC
mt γ

FC
X +εFCmt , where γ

FC
X is a vector of parameters.

XFC
mt is a vector of observable variables that affect fixed costs such as the rental price of fixed

capital equipment. εFCmt is an unobservable market specific shock that captures the deviation

6Since capital is fixed, the production function implies a one-to-one relationship between output and

labor. That is, to produce q units of output (given fixed K), the firm needs L =

[
q

exp{ε}KαK

]1/αL
units

of labor. Therefore, if pL is the price of labor, we have that V C(q) = pL L = pL

[
q

exp{ε}KαK

]1/αL
.
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of marketm at quarter t from the conditional mean valueXFC
mt γ

FC
X . By including the market-

specific shocks εMC
mt and ε

FC
mt we allow for market heterogeneity in costs that is unobservable

to the researcher.

3.9. Cournot competition
. Suppose that there are Nmt plants active in local market m at quarter t. For the moment,

we treat the number of active firms as given, though this variable is endogenous in the model

and we explain later how it is determined in the equilibrium of the model. We assume that

firms active in a local market compete with each other ala Cournot. The assumption of

Cournot competition is far from being innocuous for the predictions of the model, and we

reexamine this assumption at the end of this chapter.

The profit function of firm i is:

Πmt(qi, Q̃i) = Pmt(qi + Q̃i) qi − V Cmt(qi)− FCmt (3.7)

where qi is firm i’s own output, and Q̃i represents the firm i’s beliefs about the total amount of

output of the other firms in the market. Under the assumption of Nash-Cournot competition,

each firm i takes as given the quantity produced by the rest of the firms, Q̃i, and chooses

her own output qi to maximize her profit. The profit function Πmt(qi, Q̃i) is globally concave

in qi for any positive value of Q̃i. Therefore, there is a unique value of qi that maximizes

the firm’s profit. That is, a firm best response is a function. This best response output

is characterized by the following condition of optimality which establishes that marginal

revenue equals marginal cost:

Pmt +
∂Pmt(qi + Q̃i)

∂qi
qi = MCmt(qi) (3.8)

Taking into account that in our linear demand model ∂Pmt/∂q = −Bmt, and that the

equilibrium is symmetric (qi = q for every firm i) such that Qmt = q + Q̃ = Nmt q, we can

get the following expression for output-per-firm in the Cournot equilibrium with N active

firms:

qmt(N) =
Amt −MCmt

Bmt (N + 1) + γMC
2

(3.9)

This equation shows that, keeping the number of active firms fixed, output per firm increases

with demand, declines with marginal cost, and it does not depend on fixed cost. This is a

general result that does not depend on the specific functional form that we have chosen for

demand and variable costs: by definition, fixed costs do not have any influence on marginal

revenue or marginal costs when the number of firms in the market is fixed. However, as we

show below, fixed costs do have an indirect effect on output per firm through its effect on

the number of active firms: the larger the fixed cost, the lower the number of firms, and the

larger the output per firm.
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Price over average variable cost is Pmt − AV Cmt = [Amt −Bmt Nmt qmt(N)]− [MCmt +

γMC
2 /2 qmt(N)] = [Amt −MCmt]− [Bmt Nmt + γMC

2 /2] qmt(N). Plugging expression (3.9)

into this equation, we get the following relationship between price-cost margin and output-

per-firm in the Cournot equilibrium:

Pmt − AV Cmt =

(
Bmt + γMC

2 /2
) (

Amt −MCmt

)
Bmt (Nmt + 1) + γMC

2

=
(
Bmt + γMC

2 /2
)
qmt(N) (3.10)

As the number of plants goes to infinity, the equilibrium price-cost margin converges to zero,

and price becomes equal to the minimum marginal cost, MCmt, that is achieved by having

infinite plants each with an atomist size. Plugging this expression into the profit function

we get that in a Cournot equilibrium with N firms, the profit of an active firm is:

Π∗mt(N) = (Pmt − AV Cmt) qmt(N)− FCmt

=
(
Bmt + γMC

2 /2
)( Amt −MCmt

Bmt (N + 1) + γMC
2

)2

− FCmt
(3.11)

This Cournot equilibrium profit function is continuous and strictly decreasing in the number

of active firms, N . These properties of the equilibrium profit function are important for the

determination of the equilibrium number of active firms that we present in the next section.

3.10. Model of market entry
. Now, we specify a model for how the number of active firms in a local market is determined
in equilibrium. Remember that the profit of a firm that is not active in the industry is zero.7

The equilibrium entry condition establishes that every active firm and every potential entrant

is maximizing profits. Therefore, active firms should be making non-negative profits, and

potential entrants are not leaving positive profits on the table. Active firms should be better

off in the market than in the outside alternative. That is, the profit of every active firms

should be non-negative: Π∗mt(Nmt) ≥ 0. Potential entrants should be better off in the outside

alternative than in the market. That is, if a potential entrant decides to enter in the market,

it gets negative profits. Additional entry implies negative profits: Π∗mt(Nmt + 1) < 0.

Figure 1.1 presents the Cournot equilibrium profit of a firm as a function of the number

of firms in the market, N , for an example where the demand function is P = $100 − 0.1Q,

the variable cost function is V C(q) = $20q + q2/2, and the fixed cost is $1, 400. As shown

in equation (3.11), the equilibrium profit function is continuous and strictly decreasing in

N . These properties imply that there is a unique value of N that satisfies the equilibrium

7In this model, the normalization to zero of the value of the outside option is innocuous. This normal-
ization means that the ’fixed cost’FCmt is actually the sum of the fixed cost in this market and the firm’s
profit in the best outside alternative.
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conditions Π∗mt(N) ≥ 0 and Π∗mt(N + 1) < 0.8 In the example of Figure 1.1, the equilibrium

number is 5 firms. In general, solving for the equilibrium number of firms is straightforward.

Let N∗mt be the real number that (uniquely) solves the condition Π∗mt(N) = 0. Given the

form of the equilibrium profit function Π∗mt(N), we have that:

N∗mt ≡ −
(

1 +
γMC

2

Bmt

)
+
(
Amt −MCmt

)√1 + γMC
2 /2Bmt

FCmt Bmt

(3.12)

The equilibrium number of firms is the largest integer that is smaller than N∗mt. We represent

this relationship as Nmt = int(N∗mt) where intis the integer function, that is, largest integer

that is smaller or equal than the argument. This expression shows that the number of active

firms increases with demand and declines with marginal and fixed costs.

Figure 1.1: Cournot equilibrium profit as function of number of firms

Given the formulas for the equilibrium output per firm (equation 3.9) and profit (equation

3.11), we can obtain the following expression for the Cournot equilibrium profit: Π∗mt(N) =

(Bmt + γMC
2 /2) qmt(N)2 − FCmt. Therefore, the entry equilibrium condition, represented as

Π∗mt(N
∗
mt) = 0, is equivalent to:(

Qmt

Nmt

)2

=

(
N∗mt

int(N∗mt)

)2
FCmt

Bmt + γMC
2 /2

(3.13)

For the sake of interpretation, we can treat N∗mt/int(N
∗
mt) as a constant approximately equal

to one.9 This expression shows how taking into account the endogenous determination of the

number of firms in a market has important implications on firm size (output per firm). Firm

8Suppose that there are two different integer values NA and NB that satisfy the entry equilibrium
conditions Π∗mt(N) ≥ 0 and Π∗mt(N + 1) < 0. Without loss of generality, suppose that NB > NA. Since
NB ≥ NA + 1, strict monotonicity of Π∗ implies that Π∗(NB) ≤ Π∗(NA + 1) < 0. But Π∗(NB) < 0
contradicts the equilibrium condition for NB .

9For N∗mt > 1, the ratio N∗mt/int(N
∗
mt) lies always within the interval (1, 2).
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size increases with fixed costs and declines with the slope of the demand curve, and with

the degree of increasing marginal costs. Industries with large fixed costs, inelastic demand

curves, and rapidly increasing marginal costs, have larger firms and a smaller number of

them. In the extreme case, we can have a natural monopoly. The opposite case, in terms of

market structure, is an industry with small fixed costs, very elastic demand, and constant

marginal costs. An industry with these exogenous demand and cost characteristics will

have an atomist market structure with a large number of very small firms. It is clear that

exogenous demand and cost are key in determining the industry market structure and market

power.

3.11. Structural equations, equilibrium, and reduced form equations
. For simplicity, in some of the discussions in this chapter, we treat the number of firms
Nmt as a continuous variable: Nmt ≡ int(N∗mt) = N∗mt. Then, we can replace the two

inequalities Π∗mt(Nmt) ≥ 0 and Π∗mt(Nmt + 1) < 0 by the equality condition Π∗mt(Nmt) = 0.

This approximation is not necessarily innocuous, and we do not use it later in the book. For

the moment, we keep it, because it provides simple expressions for the equilibrium values

which are linear in parameters, and this simplifies our analysis of model identification and

estimation. In this subsection, we omit the market and time subindexes.

The model can be described as a system of three equations: the demand equation; the

Cournot equilibrium condition; and the entry equilibrium condition. The system has three

endogenous variables: the number of firms in the market, N ; the market price, P ; and output

per-firm, q ≡ Q/N ,

Demand equation: P = A−B N q

Cournot Equilibrium Condition: q =
A−MC

B (N + 1) + γMC
2

Entry Equilibrium Condition: q2 =
FC

B + γMC
2 /2

(3.14)

This is a system of simultaneous equations. The system of equations in (3.14) is denoted

as the structural equations of the model. Given a value of the exogenous variables, X and

ε ≡ (εD, εMC , εFC), and of the structural parameters, θ ≡ {βX , βP , γMC
X , γMC

2 , γFC},
an equilibrium of the model is a vector of endogenous variables {N , P, q} that solves this
system of equations.

In this model, we can show that an equilibrium always exists and it is unique. To show

this, notice that the entry equilibrium condition determines output per firm as a function of
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the exogenous variables.

q =

√
FC

B + γMC
2 /2

(3.15)

This expression provides the equilibrium value for output per-firm. Plugging this expression

for q into the Cournot equilibrium condition and solving for N , we can obtain the equilibrium

value for the number of firms as:

N = −
(

1 +
γMC

2

B

)
+
(
A−MC

)√1 + γMC
2 /2B

FC B
(3.16)

Finally, plugging the equilibrium expressions for N and q into the demand equation, we can

obtain the equilibrium price as:

P = MC + (γMC
2 +B)

√
FC

B + γMC
2 /2

(3.17)

Equations (3.15), (3.16), and (3.17) present the equilibrium values of the endogenous vari-

ables as functions of exogenous variables and parameters only. These three equations are

called the reduced form equations of the model. In this model, because the equilibrium is

always unique, the reduced form equations are functions. More generally, in models with

multiple equilibria, reduced form equations are correspondences such that for a given value

of the exogenous variables there are multiple values of the vector of endogenous variables,

each value representing a different equlibria.

4. Identification and estimation

Suppose that the researcher has access to a panel dataset that follows M local markets

over T quarters. For every market-quarter the dataset includes information on market price,

aggregate output, number of firms, and some exogenous market characteristics such as popu-

lation, average household income, and input prices: {Pmt , Qmt , Nmt, Xmt}. The researcher
wants to use these data and the model described above to learn about different aspects of

competition in this industry and to evaluate the effects of the policy change described above.

Before we study the identification and estimation of the structural parameters of the model,

it is interesting to examine some empirical predictions of the model that can be derived from

the reduced form equations.

4.1. Empirical evidence from reduced form equations
. From an empirical point of view, the reduced form equations establish relationships be-

tween exogenous market characteristics, such as market size, and the observable endogenous

variables of the model: price, number of firms, and firm size. Can we learn about com-

petition in this industry, and about some of the structural parameters, by estimating the

reduced form equations? As we show below, there is very important evidence that can be
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obtained from the estimation of these equations. However, providing answers to some other

questions requires the estimation of the structural model. For instance, the estimation of

the structural model is helpful to answer our policy question.

4.1.1. Relationship between market size and firm size
. The reduced form equation for output-per-firm in (3.15), implies the following relationship

between firm size (or output per firm) q and market size S:

ln (q) =
1

2

[
ln (βPFC) + ln (S)− ln

(
1 + 0.5βPγ

MC
2 S

)]
(4.1)

We can distinguish three different cases for this relationship. When fixed cost is zero (FC =

0) there is no any relationship between firm size and market size. The model becomes one

of perfect competition and the equilibrium is characterized by a very large number of firms

(N = ∞) each with an atomistic size (q = 0). When the fixed cost is strictly positive

(FC > 0) there is a positive relationship between market size and firm size. Markets with

larger demand have larger firms. We can distinguish between two different cases when the

fixed cost is strictly positive. When the marginal cost is constant (γMC
2 = 0), the relationship

between firm size and market size is ln (q) = 1
2

[ln (βPFC) + ln (S)] such that firm size always

increases proportionally with market size. When the marginal cost is increasing (γMC
2 > 0),

the limit of firm size when market size goes to infinity is equal to
√

2FC/γMC
2 , and this

constant represents the maximum size of a firm in the industry. The value
√

2FC/γMC
2 is

the level of output-per-firm that minimizes the Average Total Cost, and it is denoted the

Minimum Effi cient Scale (MES). Figure 1.2 illustrates these two cases for the relationship

between firm size and market size. The values of the parameters that generate these curves

are FC = 1, 400, βP = 1, γMC
2 = 0 and γMC

2 = 1.

Figure 1.2: Relationship between firm size and market size
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Equation (4.1) and figure 1.2 show that the shape of the relationship between market

size and firm size reveals information on the relative magnitude of the fixed cost and the

convexity of the variable cost. Given a cross-section of local markets in an homogenous

product industry, the representation of the scatterplot of sample points of (Smt, qmt) in the

plane, and the estimation of a nonlinear (or nonparametric) regression of qmt on Smt provides

empirical evidence on this aspect of cost structure. Campbell and Hopenhayn (2005) look

at this empirical relationship in thirteen retail industries using a sample of 225 US cities.

Figure 1.3 presents the scatterplot and the estimated regression line for the logarithm of

firm size on the logarithm of market size in the Women’s Clothing retail industry. In this

example, the relationship in logarithms is linear and this is consistent with FC > 0 and

γMC
2 = 0 for this industry. In logarithms, for small γMC

2 , we have that ln(qmt) = α0 + α1

ln(Smt)+ α2 Smt + umt, where α1 ≡ 1/2, and α2 ≡ −β1γ
MC
2 /2. Therefore, testing the null

hypothesis α2 = 0 is equivalent to testing for non-convexity in the variable cost, that is,

γMC
2 = 0. Note that market size is measured with error and this creates an endogeneity

problem in the estimation of this relationship. Campbell and Hopenhayn take into account

this issue and try to correct for endogeneity bias using Instrumental Variables.

Figure 1.3: ’Market size matters’(Campbell and Hopenhayn, 2005)

This testable prediction on the relationship between market size and firm size is not

shared by other models of firm competition such as models of monopolistic competition or

models of perfect competition, where market structure, market power, and firm size do not

depend on market size. In all the industries studied by Campbell and Hopenhayn, this type

of evidence is at odds with models of monopolistic and perfect competition.

4.1.2. Relationship between market size and price
. Are prices higher in small or in larger markets? This is an interesting empirical question
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per se. The model shows that the relationship between price and market size can reveal

some interesting information about competition in an industry. We can distinguish three

cases depending on the values of FC and γMC
2 . If the industry is such that the fixed cost is

zero or negligible, then the model predicts that there should not be any relationship between

market size and price. In fact, price should be always equal to the minimum marginal cost,

MCmt. When the fixed cost is strictly positive and the variable cost is linear in output, the

reduced form equation for price becomes P = MC +
√
FC/β1S

∗. In this case, an increase

in market size always has a negative effect on price, though the marginal effect is decreasing.

When market size goes to infinity, price converges to the minimum marginal cost MC. This

is also the relationship that we have between market size and price when the variable cost

function is strictly convex, with the only difference that now as market size goes to infinity

the price converges to MC +
√

2γMC
2 FC, which is the marginal cost when output-per-firm

is at the Minimum Effi cient Scale (MES).

As in the case of firm size, we can use cross-sectional data on prices and market size

to test for the relationship between these variables. Finding a significant negative effect of

market size on price implies the rejection of monopolistic and perfect competition models in

favor of oligopoly competition.

4.1.3. Policy Question and Reduced Form Equations
. Recall our initial objective of evaluating the effects of a policy which generates an increase

in the fixed cost and a reduction in the marginal cost on firms in the cement industry. What

do the reduced form equations say about the effects of this policy? Could the estimation of

the reduced form equation provide enough information to answer our policy questions?

Equation (4.1) shows that an increase in the fixed cost FC and a reduction in the marginal

cost parameter γMC
2 imply a larger firm size. Therefore, the model predicts that the new

policy will transform the industry into one with larger firms. However, without further

information about the values of the parameters of the model, the reduced form equations do

not provide a prediction about the effects on the number of firms, aggregate output, price,

and consumer welfare. Not only the magnitude but even the sign of these effects depend

on the values of the structural parameters. A larger fixed cost reduces the number of firms

and aggregate output, increases price, and it has a negative effect on consumer welfare. A

reduction in the marginal cost has the exact opposite effects, in terms of sign, on all the

endogenous variables. The net effects are ambiguous and they depend on the values of the

demand and cost parameters and on the magnitude of the change in fixed cost and marginal

cost.

Interestingly, the sign of the effect of the policy on number of firms, output, prices,

and consumer welfare depends on market size. The effect of a reduction in marginal cost
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is quantitatively more important in large markets than in small ones. Therefore, in large

markets this positive effect dominates the negative effect of the increase in the fixed costs.

We may have that in large markets the policy increases the number of firms, reduces prices,

and increases consumer welfare, and the effects on small markets are just the opposite. The

welfare effects of this policy are not neutral with respect to market size.

It is relevant to distinguish between two cases or scenarios in terms of the information

for the researcher about the policy change. In the first case, which we denote as a factual

policy change, the sample includes observations both before and after the policy change. The

second case represents a counterfactual policy change, and the data contains only observations

without the new policy. The distinction is relevant because the identification assumptions are

different in each. In the case of a factual policy change, and under some conditions, we may

need only the identification of the parameters in the reduced form equations. Identification

of reduced form parameters requires weaker assumptions than identification of structural

parameters.

Many empirical questions in IO deal with predicting the effects of changes that have not

yet occurred. For instance, when an industry regulator makes a recommendation on whether

to approve a merger between two companies or not, she has to predict the effects of a merger

that has not yet taken place. Similarly, a company that decides whether or not to introduce

a new product in a market, or that designs the features of that new product, needs to predict

the demand for that hypothetical product before it has been introduced in the market. In

our example here, we first consider the case where the regulator has not yet implemented the

new environmental regulation and wants to predict the effects of this regulation. To evaluate

the effects of our policy change in a counterfactual setting we make use of our structural

model and a two step approach. First, we use our data to estimate the structural parameters

of the model. And second, we use the estimated model to predict the responses to changes

in some parameters or/and exogenous variables implied by the counterfactual policy change,

under the assumption that the rest of the parameters remain constant. We now turn to the

problem of identification of the structural parameters.10

4.2. Estimation of structural parameters
. The researcher wants to use the available data to estimate the vector of structural para-
meters θ = {β0, β1, βS, γ

MC
1 , γMC

2 , γFC}. Given an estimate of the true θ, we can use
our model to evaluate/predict the effects of a hypothetical change in the cost parameters

γMC
1 , γMC

2 , and γFC implied by the policy. For simplicity, we start by considering a version

10Sometimes, for some counterfactual policy questions we need to know only some of the structural
parameters. This idea goes back at least to the origins of the Cowles Foundation in the 1950s, and more
specifically to the work of Jacob Marschak (1953), and it has been exploited recently in different studies.
See also Chetty (2009) and Aguirregabiria (2010).
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of the model without measurement error in the observable measure of market size, that is,

exp{εSmt} = 1 for every market and period (m, t).

The econometric model can be represented using the following system of simultaneous

equations:
Qmt

Smt
= βX XD

mt − β1 Pmt + εDmt(
Pmt −

1

β1

qmt
Smt

)
= γMC

X XMC
mt + γMC

2 qmt + εMC
mt

q2
mt

Smt
+ β1γ

MC
2 qmt = γFCX XFC

mt + εFCmt

(4.2)

We complete the econometric model with an assumption about the distribution of the

unobservables. It is standard to assume that the unobservables εmt are mean independent

of the observable exogenous variables.

Assumption: The vector of unobservable variables in the structural model, εmt, is mean

independent of Smt: E(εmt|Smt) = 0.

We say the parameters of the model are identified if there is a feasible estimator of θ

that is consistent in a statistical or econometric sense.11 A standard approach to prove

that the vector of parameters is identified consists of using the moment restrictions implied

by the model to show that we can uniquely determine the value of θ as a function of
moments that include only observable variables. For instance, in a classical linear regression

model Y = β0 + β1 X + ε under the assumption of no correlation between the error term

and the regressor, we have that E(ε) = 0 and E(X ε) and these conditions imply that β1 =

cov(X, Y )/var(X) and β0 = E(Y )− [cov(X, Y )/var(X)] E(X). These expressions show that

the parameters β0 and β1 are identified using data of Y and X. In our model, Assumption

1, provides moment restrictions, but we show below that these restrictions are not suffi cient

to identify the parameters of the model.

4.2.1. Endogeneity

. The key identification problem in our model is that the regressors in the three equations

are endogenous variables that are correlated with the unobservables or error terms. In

the presence of endogeneous regressors, OLS estimation produces biased and inconsistent

11Given our sample with large M and small T , and an estimator θ̂M we say that θ̂M is a consistent
estimator of the true value θ if θ̂M converges in probability to θ as the sample size M goes to infinity:
p limM→∞ θ̂M = θ, or using the definition of the limit in probability operator: for any scalar δ > 0,

lim
M→∞

Pr
(∣∣∣θ̂M − θ∣∣∣ > δ

)
= 0

A suffi cient condition for the consistency of the estimator θ̂M is that the bias and variance of the estimator
(E(θ̂M − θ) and V ar(θ̂M )) converge to zero as M goes to infinity.
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parameter estimates. It is convenient to write the system of equations as:

Qmt

Smt
= β0 + βS Smt − β1 Pmt + εDmt[

Pmt −
1

β1

qmt
Smt

]
= γMC

1 + γMC
2 qmt + εMC

mt

[
1

β1

q2
mt

Smt
+ γMC

2 q2
mt

]
= γFC + εFCmt

(4.3)

In the second equation, the left-hand-side is the price minus the price-cost-margin and this

should be equal to the marginal cost on the right-hand-side. In the third equation, the

left-hand-side is total profit minus variable profit, and this should be equal to the fixed cost

on the right-hand-side.

Given this representation of the system of equations, it is clear that we can follow a

sequential approach to identify and estimate the model. First, we consider the identification

of demand parameters. Given identification of the demand slope parameter β1, the variable

on the right-hand-side of the Cournot equilibrium equation is known, and we consider the

identification of parameters in the variable cost. Finally, given β1 and γ
MC
2 the variable on

the right-hand-side of entry-equilibrium equation is known and therefore the identification of

the fixed cost parameter follows trivially from the moment condition E(εFCmt ) = 0. Following

this sequential approach, it should be clear that there are two endogeneity or identification

problems: (1) in the demand equation, price is an endogenous regressor, that is, E(Pmt

εDmt) 6= 0; and (2) in the Cournot equilibrium equation, output per firm is an endogenous

regressor, that is, E(qmt ε
MC
mt ) 6= 0.

How can we deal with this endogeneity problem? There is not such a thing as "the"

method or approach to deal with endogeneity problems. There are different approaches,

each with their relative advantages and limitations. These approaches are based on dif-

ferent assumptions that may be more or less plausible depending on the application. The

advantages and plausibility of an approach should be judged in the context of an specific

application.

We now use our simple model to illustrate some of the identification assumptions and

strategies that have been used in many applications in empirical IO and that we will see

throughout this book: (a) randomized experiments; (b) exclusion restrictions; (c) “natural

experiments”as exclusion restrictions; and (d) restrictions on the covariance structure of the

unobservables.

4.2.2. Randomized experiments

. The implementation of an adequate randomized experiment is an ideal situation for the

identification of an econometric model. The careful design of a useful randomized experiment
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is not a trivial problem. We illustrate some of the issues in the context of our model. We

also want to emphasize here that the structural model is a useful tool in the design of the

randomized experiment.

Suppose that we want to estimate first the demand equation. We need to design an ex-

periment that generates sample variation in price that is not perfectly correlated with market

size and it is independent of the unobserved demand shock εDmt. The experiment consists of

a firm subsidy per unit of output produced and sold in the market. In market-quarter (m, t)

this subsidy is of τmt dollars per unit of output, and τmt is randomly distributed over (m, t)

and independently distributed of any market characteristic, for instance, it is determined

as random draw from some distribution. We need also to assume that the implementation

of the experiment does not introduce any change in the behavior of consumers. Under this

condition, we have that the following conditions hold: the subsidy is not correlated with the

demand shock and with market size E(τmt Smt) = 0, but it is correlated with price. That is,

E(τmtε
D
mt) = 0, E(τmtSmt) = 0, but E(τmtPmt) 6= 0 (4.4)

These conditions imply that we can use the amount of subsidy, τmt, as an instrument for the

Pmt in the demand equation, to identify all the parameters in the demand. More precisely,

the moment conditions

E(εDmt) = 0, E(Smtε
D
mt) = 0, and E(τmtε

D
mt) = 0 (4.5)

identify the parameters β0, βS, and β1 in the demand equation. Given the estimated demand

parameters, we can use also the moment conditions

E(εMC
mt ) = 0, E(Smtε

MC
mt ) = 0, and E(τmtε

MC
mt ) = 0 (4.6)

to identify variable cost parameters in the Cournot equation, and the moment conditions

E(εFCmt ) = 0, E(Smtε
FC
mt ) = 0, and E(τmtε

FC
mt ) = 0 (4.7)

to identify the fixed cost parameter in the entry equation.

A well known concern in any experiment, either in the lab or in the field, is that agents’

behavior may change if they know that they are the subjects of an experiment. In the exper-

iment that we have here, that is a potential concern for the behavior of firms. Firms involved

in the experiment may change the way they compete during the time the experiment is im-

plemented. For instance, they may decide to agree not to change their levels of output such

that the subsidy will not pass through to the price and they will keep the subsidy as a pure

transfer. However, as long as the subsidy has some effect on price (that is, there is at least a

partial pass-through of the subsidy to price), this concern does not affect the identification

of the demand parameters. What is most important in this experiment is that consumers

are not aware of this experiment and therefore do not change their demand behavior. In
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contrast, if some consumers are aware of the temporary nature of this experiment, they may

decide to buy excess cement for inventory. If that is the case, the experiment will affect the

demand and the estimates of the demand parameters based on this randomized experiment

will be biased.

4.2.3. Exclusion restrictions (Instrumental Variables)

. The method of instrumental variables is the most common approach to deal with endo-

geneity in econometrics, and in empirical micro fields in particular. An instrumental variable

is an observable variable that satisfies three restrictions in the equation we want to estimate:

(i) it does not appear explicitly in the equation; (ii) it is correlated with the endogenous re-

gressor(s); and (iii) it is not correlated with the error term (unobservables) of the equation.

In the context of our model, for the estimation of demand parameters we need a variable

that is not included in the demand equation, is not correlated with the demand shock, and

is correlated with price.

According to our model, input prices are a variables that may satisfy these conditions. For

instance, limestone and coal are two important variable inputs in the production of cement.

The prices of limestone and coal are potential instruments because they affect marginal cost,

they should be correlated with price, but they do not enter in the demand equation. What

is not so obvious is whether these variables are uncorrelated with the unobserved demand

shock. If the demand for coal and limestone from the cement industry represents a small

fraction of the total demand of these inputs in the local market, it seems plausible to argue

that shocks in the demand of cement may not be correlated with the price of these inputs.

However, if the cement industry represents 90% of the demand of limestone in a local market,

this independence assumption seems completely implausible.

4.2.4. Natural experiments as exclusion restrictions
. Consider an unexpected natural shock that affected the production cost of some markets

in a particular period of time. Let Imt be the indicator of the event “affected by the natural

experiment”. This variable is zero for every market before period t∗ when the natural

event occurred; it is always zero for markets that do not experience the event, that is,

the control group; and it goes from zero to one for markets in the experimental group.

Since there are good reasons to believe that the natural event affected costs, it is clear that

price depends on the dummy variable Imt. For Imt to be a valid instrument for price, the

key identification assumption required is that demand was unaffected by the natural event.

Under this assumption, the moment condition E(Imt ε
D
mt) = 0, together with the conditions

E(εDmt) = 0 and E(Smt ε
D
mt) = 0, identify the demand parameters.

The condition that the natural event did not affect the demand is a strong assumption.

Though the natural event is completely exogenous and unexpected, there is no reason why
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it may have occurred in markets that have relatively high (or low) levels of demand, or

have taken place during a period of high (or low) demand. In contrast to the case of the

randomized experiment described above, where by the own design of the experiment the

subsidy was not correlated with the demand shock, there is nothing in the natural experiment

implying that E(Imt ε
D
mt) = 0. To try to deal with this issue, most applications exploiting

identification from ’natural experiments’assume a particular structure for the unobserved

error.

εDmt = ωDm + δDt + uDmt, (4.8)

We can control for ωDm using market dummies, and for δt using time dummies. The ’natural

experiment’ dummy Imt can be correlated with ωDm and/or with δDt . The identification

assumption is that Imt is not correlated with the shock uDmt.

4.2.5. Restrictions on Covariance-Structure of Unobservables

. Suppose that the unobservables in the demand and in the marginal cost have the covariance

structure:
εDmt = ωDm + δDt + uDmt,

εMC
mt = ωMC

m + δMC
t + uMC

mt

(4.9)

This components of variance specification of the unobservables, together with restrictions

on the serial or/and the spatial correlation of the demand shocks uDmt, have been exploited

to obtain exclusion restrictions and instrumental variables estimators. We distinguish two

cases depending on whether the restrictions are on the serial correlation of the shock (that

is, Arellano-Bond Instruments; Arellano and Bond, 1991), or on the spatial correlation (that

is, Hausman-Nevo Instruments; Hausman, 1997, and Nevo, 2000).

Arellano-Bond instruments. Suppose that the shock uDmt is not serially correlated
over time. That is, all the time persistence in unobserved demand comes from the time-

invariant effect ωDm, and from the common industry shocks δ
D
t , but the idiosyncratic demand

shock uDmt is not persistent over time. Under these conditions, in the demand equation in

first-differences, ∆Qmt/Smt = βS ∆Smt− β1 ∆Pmt+ ∆δDt + ∆uDmt, the lagged endogenous

variables {Pmt−2, Qmt−2, Nmt−2} are not correlated with the error ∆uDmt, and the can be

used as instruments to estimate demand parameters. The key identification assumption is

that the shocks uMC
mt in the marginal cost are more persistent than the demand shocks u

D
mt.

Hausman-Nevo instruments. Suppose that we can classify the M local markets in

R regions. Local markets in the same region may share a similar supply of inputs in the

production of cement and similar production costs. However, suppose that the demand shock

uDmt is not spatially correlated, such that local markets in the same region have independent

demand shocks. All the spatial correlation in demand comes from observables variables,

from correlation between the time-invariant components ωDm, or from the common shock
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δDt . Let P (−m)t be the average price of cement in markets that belong to the same region

as market m but where the average excludes market m. Under these conditions, and after

controlling for ωDm using market-dummies and for δ
D
t using time-dummies, the average price

P (−m)t is not correlated with the demand shock uDmt and it can be used as an instrument to

estimate demand parameters. The key identification assumption is that the shocks uMC
mt in

the marginal cost have spatial correlation that is not present in demand shocks uDmt.

Zero covariance between unobservables
. In simultaneous equations models, an assumption of zero covariance between the unobserv-

ables of two structural equations provides a moment condition that can be used to identify

structural parameters. In the context of our model, consider the restrictions E(εFCmt ε
D
mt) = 0

and E(εFCmt ε
MC
mt ) = 0. These conditions imply the moment conditions:

E
([

1

β1

q2
mt

Smt
+ γMC

2 q2
mt − γFC

] [
Qmt

Smt
− β0 − βSSmt + β1Pmt

])
= 0 (4.10)

and

E
([

1

β1

q2
mt

Smt
+ γMC

2 q2
mt − γFC

] [
Pmt −

1

β1

qmt
Smt
− γMC

1 − γMC
2 qmt

])
= 0 (4.11)

These moment restrictions, together with those from the restrictions E(εDmt) = 0, E(εMC
mt ) =

0, E(εFCmt ) = 0, E(Smt ε
D
mt) = 0, E(Smt ε

MC
mt ) = 0, and E(Smt ε

FC
mt ) = 0, identify the structural

parameters of the model.

We can consider a weaker version of this assumption: if εFCmt = ωFCm + δFCt + uFCmt and

εDmt = ωDm + δDt + uDmt, we can allow for correlation between the ω
′s and δ′s and assume that

only the market specific shocks uFCmt and u
D
mt are not correlated.

4.2.6. Multiple equilibria and Identification

. Multiplicity of equilibria is a common feature in many models in IO. In our example, for

any value of the parameters and exogenous variables, the equilibrium in the model is unique.

There are three assumptions in our simple model that play an important role in generating

this strong equilibrium uniqueness: (a) linearity assumptions, that is, linear demand; (b)

homogeneous firms, that is, homogeneous product and costs; and (c) no dynamics. Once we

relax any of these assumptions, multiple equilibria is the rule more than the exception: for

some values of the exogenous variables and parameters, the model has multiple equilibria.

Is multiplicity of equilibria an important issue for estimation? It may or may
not be, depending on the structure of the model and on the estimation method that we

choose. We will examine this issue in detail throughout this book, but let us provide here

some general ideas about this issue.

Suppose that the fixed cost of operating a plant in the market FCmt is a decreasing

function of the number of firms in the local market. For instance, there are positive synergies
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between firms in terms of attracting skill labor, etc. Then, FCmt = γFC − δ Nmt + εFCmt ,

where δ is a positive parameter. Then, the equilibrium condition for market entry becomes:(
Qmt

Nmt

)2

=
γFC − δ Nmt + εFCmt
Bmt + γMC

2 /2
(4.12)

This equilibrium equation can imply multiple equilibria for the number of firms in the market.

The existence of positive synergies in the entry cost introduces some "coordination" aspects

in the game of entry (Cooper, 1999). If δ is large enough, this coordination feature can

generate multiple equilibria. Of course, multiplicity in the number of firms also implies

multiplicity in the other endogenous variables, price, and output per firm. Therefore, the

reduced form equations are now correspondences, instead of functions, that relate exogenous

variables and parameters with endogenous variables.

Does this multiplicity of equilibria generate problems for the identification and estimation

of the structural parameters of the model? Not necessarily. Note that, in contrast to the case

of the reduced form equations, the three structural equations (demand, Cournot equilibrium,

and entry condition) still hold with the only difference that we now have the term −δ Nmt

in the structural equation for the entry equilibrium condition. That is,[
1

β1

q2
mt

Smt
+ γMC

2 q2
mt

]
= γFC − δ Nmt + εFCmt (4.13)

The identification of the parameters in demand and variable costs is not affected. Suppose

that those parameters are identified such that the left-hand-side in the previous equation is

a known variable to the researcher. In the right hand side, we now have the number of firms

as a regressor. This variable is endogenous and correlated with the error term εFCmt . However,

dealing with the endogeneity of the number of firms for the estimation of the parameters

γFC and δ is an issue that does not have anything to do with multiple equilibria. We have

that endogeneity problem whether or not the model has multiple equilibria, and the way of

solving that problem does not depend on the existence of multiple equilibria. For instance,

if we have valid instruments and estimate this equation using Instrumental Variables (IV),

the estimation will be the same regardless of the multiple equilibria in the model.

In fact, multiple equilibria may even help for identification in some cases. For instance, if

there is multiple equilibria in the data and equilibrium selection is random and independent

of εFCmt , then multiple equilibria helps for identification because it generates additional sample

variation in the number of firms that is independent of the error term.

In some models, multiplicity of equilibria can be a nuisance for estimation. Suppose

that we want to estimate the model using the maximum likelihood (ML) method. To use

the ML method we need to derive the probability distribution of the endogenous variables

conditional on the exogenous variables and the parameters of the model. However, in a model
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with multiple equilibria there is not such a thing as “the”distribution of the endogenous

variables. There are multiple distributions, one for each equilibrium type. Therefore, we do

not have a likelihood function but a likelihood correspondence. Is the MLE well define in

this case? How to compute it? Is it computationally feasible? Are there alternative methods

that are computationally simpler? We will address all these questions later in the course.

4.3. Extensions
. The rest of the book deals with empirical models of market structure that relax some
of these assumptions. (a) Product differentiation and more general forms of demand (see

chapter 2 on demand estimation). (b) Heterogeneity in firms’costs: exploiting information

on firms’ inputs to identify richer cost structures(see chapter 3, on production function

estimation). (c) Relaxing the assumption of Cournot competition, and identification of the

"nature of competition" from the data, for instance, collusion (see chapter 4 on models of

price and quantity competition). (d) Heterogeneity of entry costs in oligopoly games of

entry (see chapter 5 on static games of entry). (e) Spatial differentiation and plant spatial

location. (see chapter 5 on games of spatial competition). (f) Competition in quality and

other product characteristics (see chapter 5 on games of quality competition). (g) Investment

in capacity and physical capital (see chapters 6 and 7 on dynamic structural models of firm

investment decisions). (h) Consumers intertemporal substitution and dynamic demand of

storable and durable products (see chapter 8 on dynamic demand). (i) Dynamic strategic

interactions in firms’investment and innovation decisions (see chapter 9 dynamic games]. (j)

Mergers (see chapter 5 on conduct parameters and chapter 9 on dynamic games). (k) Firm

networks, chains, and competition between networks (see chapter 9 on dynamic games). (l)

Firms’competition in auctions (see chapter 10 on auctions).

5. Summary

In this chapter, we have described Empirical Industrial Organization as a discipline that

deals with the combination of data, models, and econometric methods to answer empirical

questions related to the behavior of firms in markets. We have provided of empirical ques-

tions which are the goals of EIO. The answers to these empirical questions come from the

estimation of structural models of competition. These models typically have four key com-

ponents: demand, costs, price or quantity competition, and market entry. The identification

and estimation of the structural parameters in these models are based on the principle of

revealed preference. Endogeneity is an important issue in the estimation of the model pa-

rameters. We have described different approaches to deal with endogeneity problems, from
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randomized control trials and natural experiments, to instrumental variables, and restric-

tions on the structure of the unobserved variables. Multiplicity of equilibria is also a common

feature in some empirical games.
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6. Exercises

6.1. Exercise 1
. Write a computer program in your favorite mathematical software (for instance, R, Gauss,
Matlab, Stata, Julia, Python, etc) that implements the following tasks.

(a) Fix as constants in your program the values of the exogenous cost variables MCmt,

and FCmt, and of demand parameters β0 and β1. Then, consider 100 types of markets

according to their firm size. For instance, a vector of market sizes {1, 2, ..., 100}.
(b) For each market type/size, obtain equilibrium values of the endogenous variables

including output per firm, firm’s profit, and consumer surplus. For each of these variables,

generate a two-way graph with the endogenous variable in vertical axis and market size in

the horizontal index.

(c) Now, consider a policy change that increases fixed cost and reduces marginal cost.

Obtain two-way graphs of each variable against market size representing the curves both

before and after the policy change.

6.2. Exercise 2
. Write a computer program in your favorite mathematical software that implements the

following tasks.

(a) Fix as constants in the program the number of markets,M , time periods in the sample,

T , and the values of structural parameters, including the parameters in the distribution

of the unobservables and the market size. For instance, you could assume that the four

unobservables ε have a join normal distribution with zero mean and a variance-covariance

matrix, and that market size is independent of these unobservables and it has a log normal

distribution with some mean and variance parameters.

(b) Generate NT random draws from the distribution of the exogenous variables. For

each draw of the exogenous variables, obtain the equilibrium values of the endogenous vari-

ables. Now, you have generated a panel dataset for {Pmt , Qmt , Nmt, Smt}
(c) Use these data to estimate the model by OLS, and also try some of the identification

approaches to identify the parameters of the model.

6.3. Exercise 3
. The purpose of this exercise is to use the estimated model (or the true model) from exercise
#2 to evaluate the contribution of different factors to explain the cross-sectional dispersion

of endogenous variables such as prices, firm size, or number of firms. Write a computer

program that implements the following tasks.

(a) For a particular year of your panel dataset, generate figures for the empirical distri-

bution of the endogenous variables, say price.
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(b) Consider the following comparative statics (counterfactual) exercises and obtain the

empirical distribution (histogram) for the distribution of prices under each of the following

changes: (i) eliminate heterogeneity in market size: set all market sizes equal to the one in

the median market; (ii) eliminate market heterogeneity in demand shocks: set all demand

shocks equal to zero; (iii) eliminate all the market heterogeneity in marginal costs; and

(iv) remove all the market heterogeneity in fixed costs. Generate figures of each of these

counterfactual distributions together with the factual distribution.



Bibliography

[1] Ackerberg, D., L. Benkard, S. Berry, and A. Pakes (2007): "Econometric Tools for Analyzing Market
Outcomes," Chapter 63 in Handbook of Econometrics, vol. 6A, James J. Heckman and Ed Leamer, eds.
North-Holland Press.

[2] Aguirregabiria, V., (2010): "Another look at the identification of dynamic discrete decision processes:
An application to retirement behavior," Journal of Business and Economic Statistics.

[3] Arellano, M. and S. Bond (1991): "Some Tests of Specification for Panel Data: Monte Carlo Evidence
and an Application to Employment Equations," Review of Economic Studies, 58, 277-297.

[4] Bain, J. (1951): "Relation of Profit Rate to Industry Concentration: American Manufacturing, 1936—
1940," The Quarterly Journal of Economics, 65 (3), 293-324.

[5] Bain, J. (1954): "Economies of Scale, Concentration, and the Condition of Entry in Twenty Manufac-
turing Industries," The American Economic Review , 44 (1), 15-39.

[6] Bresnahan, T. (1981): “Departures from Marginal-Cost Pricing in the American Automobile Industry:
Estimates for 1977-1978,”Journal of Econometrics, 17, 201-227.

[7] Bresnahan, T. (1982): “The Oligopoly Solution Concept is Identified,”Economics Letters, 10, 87-92.
[8] Bresnahan, T. (1987): “Competition and Collusion in the American Automobile Market: The 1955

Price War,”Journal of Industrial Economics, 35, 457-482.
[9] Campbell, J. and H. Hopenhayn: (2005): "Market size matters," Journal of Industrial Economics ...
[10] Chetty, R. (2009): "Suffi cient statistics for welfare analysis: A bridge between structural and reduced-

form methods," Annual Review of Economics., 1(1), 451-488.
[11] Cooper, R (1999): "Coordination Games: Complementarities and Macroeconomics," Cambridge Uni-

versity Press. Cambridge, UK.
[12] Demsetz, H. (1973): "Industry structure, market rivalry, and public policy," Journal of Law and Eco-

nomics, 16 (1).
[13] Hausman, J. (1996): "Valuation of new goods under perfect and imperfect competition." in "The

economics of new goods". University of Chicago Press, 207-248.
[14] Marschak, J. (1953): "Economic measurements for policy and prediction," in Studies in Econometric

Method, eds. W. Hood and T. Koopmans. New York. Wiley.
[15] Miller, N. and M. Osborne (2013): "Spatial Differentiation and Price Discrimination in the Cement

Industry: Evidence from a Structural Model," manuscript. Rotman School of Management. University
of Toronto.

[16] Nevo, A. (2001): "Measuring Market Power in the Ready-to-Eat Cereal Industry," Econometrica,69(2),
307-342.

[17] Porter, R. (1983): “A Study of Cartel Stability: The Joint Executive Committee, 1880-1886,” Bell
Journal of Economics, 15, 301-314.

[18] Ryan, S. (2012): "The costs of environmental regulation in a concentrated industry," Econometrica,
80(3), 1019-1061.

[19] Schmalensee, R. (1989): “Inter Industry Studies of Structure and Performance.” In Handbook of In-
dustrial Organization, vol. 2, ed. Richard Schmalensee and Robert D. Willig, 951—1010. Amsterdam:
North Holland.

[20] Sutton, J. (1991): "Sunk costs and market structure: Price competition, advertising, and the evolution
of concentration." MIT press. Cambridge, MA, USA.

31





CHAPTER 2

Demand Estimation

1. Introduction

The estimation of demand equations is a fundamental component in most empirical ap-

plications in IO. It is also important in many other fields in empirical economics. There are

important reasons why economists in general, and IO economists in particular, are inter-

ested in demand estimation. Knowledge of the demand function, and of the corresponding

marginal revenue function, is crucial for the determination of a firm’s optimal prices or

quantities. In many applications in empirical IO, demand estimation is also a necessary first

step to measure market power. In the absence of direct information about firms’costs, the

estimation of demand and marginal revenue is key for the identification of marginal costs

(using the marginal cost equals marginal revenue condition) and firms’market power. Sim-

ilarly, the estimation of the degree of substitution between the products of two competing

firms is a fundamental factor in evaluating the profitability of a merger between these firms.

Demand functions are a representation of consumers’valuation of products. Because we

cannot observe consumer utility or satisfaction directly, we estimate consumer preferences

by estimating demand equations. As such, they are fundamental in the evaluation of the

consumer welfare gains or losses associated with taxes, subsidies, the introduction of a new

product, or a merger. Demand estimation can be used to improve our measures of Cost-of-

Living indices (see Hausman, 2003, and Pakes, 2003).1 Ackerberg et al. (2007) and Nevo

(2011) are excellent recent survey papers on demand estimation.

Most products that we find in today’s markets are differentiated products: automo-

biles; smartphones; laptop computers; or supermarket products such as ketchup, soft drinks,

1For instance, the Boskin commission (Boskin et al., 1997 and 1998) concluded that the US Consumer
Price Index (CPI) overstated the change in the cost of living by about 1.1 percentage points per year.
CPIs are typically constructed using weights which are obtained from a consumer expenditure survey. For

instance, the Laspeyres index for a basket of n goods is CPIL =
∑n
i=1 w

0
i

(
P 1
i

P 0
i

)
, where P 0i and P

1
i are the

prices of good i at periods 0 and 1, respectively, and w0i is the weight of good i in the total expenditure of
a representative consumer at period 0. A source of bias in this index is that it ignores that the weights w0i
change over time as the result of changes in relative prices of substitute products, or the introduction of new
products between period 0 to period 1. The Boskin Commission identifies the introduction of new goods,
quality improvements in existing goods, and changes in relative prices as the main sources of bias in the CPI
as a cost of living index. Hausman (2003) and Pakes (2003) argue that the estimation of demand systems
provides a possible solution to these sources of bias in the CPI.
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breakfast cereals, or laundry detergent. A differentiated product consists of a collection of

varieties such that each variety is characterized by some attributes that distinguishes it from

the rest. A variety is typically produced by a single manufacturer, but a manufacturer may

produce several varieties.

We distinguish two approaches to model demand systems of differentiated products:

demand systems in product space; and demand systems in characteristics space. In empirical

applications, the model in product space was the standard approach until the 1990s. We

will see in this chapter that the model in characteristics space has several advantages that

have made it the predominant approach in empirical IO over the last two decades.

2. Demand systems in product space

2.1. Model
. In this model, consumer preferences are defined over products themselves. Consider J
different products that we index by j ∈ {1, 2, ..., J}. These J products may include all
the product categories that an individual consumer may consume (for instance, food, trans-

portation, clothing, entertainment) and all the varieties of products within each category

(for instance, every possible variety of computers, or of automobiles). This means that the

number of products J can be of the order of millions. We will see later how, under some

conditions, we can separate the demand of different product categories and reduce the dimen-

sionality of this large product space. For this purpose, it is convenient to introduce "product

zero" that we denote as the outside product which represents all the other products which

are not product 1 to J .

Let qj denote the quantity that a consumer buys and consumes of product j, and let

(q0, q1, ..., qJ) be the vector with the purchased quantities of all the products. Let q0 be

the amount of the outside good. The price of the outside good is normalized to one, such

that q0 represents the dollar expenditure in goods other than 1 to J . The consumer has a

utility function U(q0, q1, ..., qJ) defined over the vector of quantities. The consumer’s problem

consists of choosing the vector (q0, q1, ..., qJ) which maximizes her utility subject to her budget

constraint.
max

{q0,q1,...,qJ}
U(q0, q1, ..., qJ)

subject to : q0 + p1 q1 + ...+ pJ qJ ≤ y

(2.1)

where pj is the price of product j, and y is the consumer’s disposable income. We can define

the Lagrangian problem:

max
{q0,q1,...,qJ}

U(q0, q1, ..., qJ) + λ [y − q0 − p1 q1 − ...− pJ qJ ] (2.2)
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The first order conditions are:

Uj − λpj = 0 for j = 0, 1, ..., J ;

y − q0 − p1q1 − ...− pJqJ = 0
(2.3)

where Uj represents the marginal utility of product j. The demand system is the solution to

this optimization problem. We can represent this solution in terms of J functions, one for

each product, that give us the optimal quantity of each variety as a function of prices and

income. These are the Marshallian demand equations:

q0 = f0 (p1, p2, ..., pJ , y)
q1 = f1 (p1, p2, ..., pJ , y)
... ...
qJ = fJ (p1, p2, ..., pJ , y)

(2.4)

The form of the functions f0, f1, ..., fJ depends on the form of the utility function U .

Different utility functions imply different demand systems. Not every system of equations

that relates quantities and prices is a demand system. It should come from the solution of the

consumer problem for a given utility function. This has two clear implications on a demand

system. First, it should satisfy the adding up condition
∑J

j=0 pj fj (p1, p2, ..., pJ , y) = y. And

second, it should be homogeneous of degree zero in prices and income: for any scalar δ ≥ 0,

we have that fj (δp1, δp2, ..., δpJ , δy) = fj (p1, p2, ..., pJ , y) for any product j.

A substantial part of the empirical literature on demand is based on finding utility func-

tions which imply demand systems which are simple enough to be estimable using standard

econometric methods such as linear regression, and flexible enough such that they allow for

flexible patterns in the elasticities of substitution between products. The following are some

examples of models that have been considered in the literature.

2.1.1. The Linear Expenditure System

. Consider the Stone-Geary utility function:

U = (q0 − γ0)α0 (q1 − γ1)α1 ... (qJ − γJ)αJ (2.5)

where {αj, γj : j = 1, 2, ..., J} are parameters. The parameter γj can be interpreted as the
minimum amount of consumption of good j that a consumer needs to "survive". Parameter

αj represents the intensity of product j in generating utility. Without loss of generality,

because the ordinality of the utility function, we consider that
∑J

i=0 αi = 1. This utility

function was first proposed by Geary (1950), and Richard Stone (1954) was the first to

estimate the Linear Expenditure System. In the Appendix to this chapter, we derive the

expression for the demand equations of the Linear Expenditure System. They have the

following form:

qj = γj + αj

[
y − Pγ
pj

]
(2.6)
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where Pγ is the aggregate price index
∑J

i=0 pi γi.

This system is convenient because of its simplicity. Suppose that we have data on indi-

vidual purchases and prices over T periods of time (t = 1, 2, ..., T ): {q0t, q1t, ..., qJt} and
{p1t, p2t, ..., pJt}.2 The model implies a system of J linear regressions. For product j:

qjt = γj + αj
yt
pjt

+ βj0
p0t

pjt
+ ...+ βjJ

pJt
pjt

+ ξjt (2.7)

with βjk = −αj γk. Variable ξjt is an error term that can come, for instance, from mea-

surement error in purchased quantity qjt, or from time variation in the coeffi cient γj. The

intercept and slope parameters in these linear regression models can be estimated using

instrumental variable methods.

However, the model is also very restrictive. Note that for any j 6= k, we have that
∂qj
∂pk

= −αjγk/pj < 0, such that all the cross-price elasticities are negative. This implies that

all the products are complements in consumption. This is not realistic in most applications,

particularly when the goods under study are varieties of a differentiated product.

2.1.2. Constant Elasticity of Substitution demand system

. Consider the Constant Elasticity of Substitution (CES) utility function:

U =

(
J∑
j=0

qσj

)1/σ

(2.8)

where σ ∈ [0, 1] is a parameter that represents the degree of substitution between the J + 1

products. The marginal utilities are:

Uj = qσ−1
j

U∑J
i=0 q

σ
i

(2.9)

For any two pairs of products, j and k, we have that
∂2U

∂qj∂qk
< 0, such that all the products

are substitutes in consumption.

Given the CES utility function, we derive in the Appendix the following expression for

the demand equations:

qj =
y

Pσ

[
pj
Pσ

]−1/(1−σ)

(2.10)

where Pσ is the following aggregate price index:

Pσ =

(
J∑
j=0

p
−σ/(1−σ)
j

)−(1−σ)/σ

(2.11)

The CES model is also very convenient because of its simplicity. Suppose that we have

data of individual purchases and prices over T periods of time. The model implies the

2Given information on household income, yt, the consumption of product zero can be obtained using the
budget constraint, q0t = yt −

∑J
j=1 pj qj .
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following log-linear regression model:

ln

(
qjt
yt

)
= β0 + β1 ln(pjt) + β2 ln (Pσt) + ξjt (2.12)

where β1 = −1/(1 − σ), and β2 = σ/(1 − σ). The error term ξjt can be interpreted as

measurement error in quantities. The construction of the true price index Pσt requires

knowledge of the parameter σ. To deal with this issue several approaches have been used

in the literature: (a) approximating the true price index with a conjecture about σ; (b)

controlling for the term β2 ln (Pσt) by including time dummies; (c) estimate the model in

deviations with respect to the equation for the outside product, ln
(
qjt
yt

)
− ln

(
q0t
yt

)
= β1

ln(pjt) + ξjt − ξ0t; and (d) take into the structure of the price index as a function of prices

and σ and estimate the model using nonlinear least squares.

The demand elasticity β1 can be estimated from this model and data using a standard

method for linear regression models. For instance, if the number of products is large relative

to the number of time periods, one can control for the time-effects using time dummies, and

β can be estimated using OLS or IV methods.

This model also imposes strong restrictions. In particular, the elasticity of substitution

between any pair of products is exactly the same. For any three products, say j, k, and

i: Elasticityk,j = ∂ ln qk
∂ ln pj

= ∂ ln qi
∂ ln pj

= Elasticityi,j. This can be quite unrealistic in most

applications in IO. This model all the products have the same degree of substitution. It

cannot represent an industry where some products are very similar and close substitutes

where other are relatively unique (for good or for bad). In such an industry we expect that

an increase in the price of a product with many close substitutes generates a substantial

reduction in quantity, while this is not the case if the product does not have close substitutes.

2.1.3. Deaton and Muellbauer "Almost Ideal" demand system

. The "Almost Ideal" demand system (AIDS) proposed by Deaton and Muellbauer (1980a,

1980b). Because its flexibility, it is the most popular specification in empirical applications

where preferences are defined on the product space. The standard derivation of the AIDS

does not start from the utility function but from the Expenditure Function of the model.

The expenditure function of a demand system, E(u,p) is defined as the minimum consumer

expenditure to achieve a level utility u given the vector of prices p = (p1, p2, ..., pJ).

E(u,p) = min
q0,q1,...,qJ

∑J

j=0
pj qj subject to: U (q0, q1, ..., qJ) = u (2.13)

Given its definition, the expenditure function is non-decreasing in all its arguments, and it

is homogeneous of degree one in prices: for any δ ≥ 0, E(u, δ p) = δ E(u,p). Shephard’s

Lemma establishes that the derivative of expenditure function with respect to the price of
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price of product j is the Hicksian or compensated demand function, hj(u,p):

qj = hj(u,p) =
∂E(u,p)

∂pj
(2.14)

Similarly, Shephard’s Lemma and the condition that income is equal to total expenditure,

y = E(u,p), implies that the partial derivative of the log-expenditure function with respect

to the price of product j is equal to the expenditure share of the product, wj ≡ pjqj/y.

wj =
pj qj
y

=
∂ lnE(u,p)

∂pj
(2.15)

Therefore, given a expenditure function that is consistent with consumer theory (non-

decreasing and homogeneous of degree one), we can derive the demand system. Deaton and

Muellbauer propose the following log-expenditure function:

lnE(u,p) = a(p) + b(p) u (2.16)

with
a(p) =

∑J
j=1 αj ln pj +

1

2

∑J
j=1

∑J
k=1 γ

∗
jk ln pj ln pk

b(p) =
∏J

j=1 p
βj
j

(2.17)

Homogeneity of degree of the expenditure function requires the following restrictions on the

parameters: ∑J

j=1
αj = 1;

∑J

j=1
γ∗jk = 0;

∑J

k=1
γ∗jk = 0;

∑J

j=1
βj = 0. (2.18)

Applying Shephard’s Lemma to this log-expenditure function, we can derive the following

demand system represented in terms of expenditure shares:

wj = αj + βj [ln(y)− ln(Pα,γ)] +
J∑
k=1

γjk ln pk (2.19)

where γjk ≡ (γ∗jk + γ∗kj)/2 such that the model implies the symmetry condition γjk = γkj;

and Pα,γ is a price index with the following form:

lnPα,γ =
∑J

j=1
αj ln pj +

1

2

∑J

j=1

∑J

k=1
γjk ln pj ln pk (2.20)

The number of free parameters in this demand system is 2J+ J(J+1)
2
, which increases quadrat-

ically with the number of products.

Suppose that we have data on individual purchases, income, and prices over T periods

of time. For each product j, we can estimate the regression equation:

wjt = αj + βj ln(yt) + γj1 ln(p1t) + ...+ γjJ ln(pJt) + ξjt (2.21)

Since the number of parameters increases quadratically with the number of products, the

estimation of this model (without restrictions on the parameters) requires that the number

of observations T (either time periods or geographic markets) is substantially larger than
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the number of products J . For differentiated products with many varieties, say J > 100

(such as most differentiated products like automobiles, smartphones, cereals, beer, etc), the

number of parameters can be of the order of several thousands such that this condition does

not hold. Increasing the number of observations by using data from many consumers does

not help in the estimation of price elasticities because consumers in the same market face

the same prices, that is, prices do not have variation across consumers, only over time and

geographic markets.

2.2. Multi-stage budgeting using the Almost Ideal demand system
. To reduce the number of parameters when J is relatively large, Deaton and Muellbauer
propose using a multi-stage budgeting approach. Suppose that the the J + 1 products can

be classified in G groups or segments. For instance, in the ready-to-eat cereal industry most

empirical studies distinguish three segments: Kids, All family, and Health. The following

diagram presents the nested structure of the demand system.

Figure 2.1

Individual Products 1 2 3 4 5 6 7 8 9
Within Group stage ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

↖ ↑ ↗ ↖ ↑ ↗ ↖ ↑ ↗
Groups Kids Family Health

Between Group stage ↑ ↑ ↑
↖ ↑ ↗

↖ ↑ ↗
↖ ↑ ↗

Product categories 0 Cereals
First stage ↑ ↑

↖ ↗
↖ ↗

•

Suppose that the utility function is:

U = v0(q0) + v1 (q̃1) + ...+ vG (q̃G) (2.22)

where q̃g is the vector of quantities of product varieties in group g; and vg (q̃g) is the sub-

utility from group g. Then, the demand system at the lower stage, the within-group
stage, is:

wjt = α
(1)
j + β

(1)
j ln

(
egt
Pgt

)
+
∑
k∈Jg

γ
(1)
jk ln(pkt) (2.23)

where egt is the expenditure from all the products in group g, and Pgt is a price index for

group g. According to the model, this price index depends on the parameters of the model
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in group g. The number of parameters increases quadratically with Jg instead of with J .

The demand system at the group stage is:

egt
et

= α(2)
g + β(2)

g ln

(
et
Pt

)
+

G∑
g′=1

γ
(2)
g,g′ ln(Pgt) (2.24)

where et is the total expenditure in the large category (for instance, cereals), and Pt is the

price index for the category (for instance, cereals). Finally, at the top-stage, the demand
for the category is:

et
yt

= α(3) + β(3) [ln (yt)− ln(Pt)] (2.25)

This multi-stage budgeting model can reduce substantially the number of parameters. For

instance, the a differentiated product category, say cereals, has 50 products such that the

number of parameters in the unrestricted model is 2 ∗ 50 + 50(50+1)
2

= 1, 325. Now, suppose

that we can divide the 50 products into 10 groups with 5 products each. This implies that

at the within-group stage we have 250 parameters (25 for each group), in the group stage

we have 75 parameters, and in the category stage we have 3 parameters, for a total of 328

parameters. Using one year of monthly data over 500 geographic markets, we have 6, 000

observations. If these data have enough (exogenous) variation in prices, it seems possible to

estimate this restricted system. This is the approach in Hausman (1996) that we describe

below in more detail.

2.3. Estimation
. In empirical work, the most commonly used demand systems are the Rotterdam Model

(Theil, 1975), the Translog Model (Christensen, Jorgensen and Lau, 1975), and the Almost

Ideal Demand System (AIDS) (Deaton and Muellbauer, 1980a). Since Deaton and Muell-

bauer proposed their Almost Ideal Demand System in 1980, this model has been estimated

in hundreds of empirical applications. In most of the applications, a "good" is an aggregate

product category (for instance, beef meat, or chicken meat). However, there are also some

applications for varieties of a differentiated product, such as the one in Hausman (1996) that

we examine later in this chapter. In this section we describe the typical application of this

class of model.

The typical dataset consists of aggregate market level data for a single market, over

T time periods, with information on consumption and prices for a few product categories.

For instance, Verbeke and Ward (2001) use monthly data from January 1995 to December

1998 (T = 48 data points) from a consumer expenditure survey in Belgium. They esti-

mate a demand system for fresh meat products that distinguishes three product categories:

Beef/veal, Pork, and Poultry. We index time by t. For each period t we observe aggregate

income yt, and prices and quantities of the J product categories: {yt, qjt, pjt : t = 1, 2, ..., T ;
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j = 1, 2, ..., J}. We want to estimate the demand system:

wjt = Xt αj + βj ln(yt/Pt) +
∑J

k=1 γjk ln(pkt) + ξjt (2.26)

where Xt is a vector of exogenous characteristics that may affect demand, for instance,

demographic variables. We want to estimate the vector of structural parameters θ =

{αj, βj, γjk : ∀j, k}. Typically, this system is estimated by OLS or by Nonlinear Least

Squares (NLLS) to incorporate the restriction that ln(Pt) is equal to
∑J

j=1 [Xt αj] ln(pjt)+
1
2

∑J
j=1

∑J
k=1 γjk ln(pjt) ln(pkt), and the symmetry restrictions on the parameters γ. These

estimation methods assume that prices are not correlated with the error terms ε′s. We

discuss this and other assumptions in the section.

2.4. Some limitations of demand systems in product space
. (1) Every consumer purchases/consumes each of the J products. The system of

demand equations that we have derived above is based on the assumption that the marginal

conditions of optimality hold for every product. This means that the optimal bundle for

a consumer is an interior solution such that qj > 0 for every product j. This condition is

very unrealistic when we consider the demand of differentiated products within a product

category, for instance, the demand of automobiles. In this context, a consumer buys only one

unit of a single variety (for instance, one Toyota Corola) or of a few varieties (for instance,

one Toyota Corola, and one KIA Sorento minivan). To account for this type of consumer

decisions, we need to model the consumer problem as a discrete choice model.

(2) Representative consumer. The representative consumer assumption is a very strong
one and it does not hold in practice. The demand of certain goods depends not only on

aggregate income but also on the distribution of income and on the distribution of other

variables affecting consumers’preferences, for instance, age, education, etc. The propensity

to substitute between different products can be also very heterogeneous across consumers.

Therefore, ignoring consumer heterogeneity is a very important limitation of the actual

applications in this literature.

In principle, demand systems in product space could be applied to household level data.

Suppose that we have this type of data. Let us use the subindex h for households. The

demand system becomes:

wjht = Xht αj + [Xht βj] ln(yht/Pt) +
∑J

k=1[Xht γjk] ln(pkt) + ξjht (2.27)

where Xht represents a vector of exogenous household characteristics, other than income.

Now, αj, βj, and γjk are vectors of parameters with the same dimension as Xht. This model

incorporates household observed heterogeneity in a flexible way: in the level of demand, in

price elasticities, and in income elasticities.
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Note that (typically) prices do not vary across households. Therefore, price elasticities

are identified only from the time-series (or market) variation in prices, and not from the

cross-sectional variation across households. In this context, household level data is useful

to allow for consumer heterogeneity in price responses, but it does not provide additional

sample variation to improve the precision in the estimation of price elasticities.

Household level data makes it clear the problem of observed zero consumption of some

products, that we have mentioned in point (1) above. Some households do not consume all

the product categories, even when these categories are quite broad. For instance, vegetarian

househods do not consume any meat. This class of model predicts that the household

consumes a positive amount of every product category. This prediction is typically rejected

when using household level data.

(3) The problem of too many parameters. In the standard model, the number of

parameters is 2J + J(J+1)
2
, that is, J intercept parameters (α); J income elasticities (γ);

and J(J+1)
2

free price elasticities (β). The number of parameters increases quadratically with

the number of goods. Note also that, in most applications, the sample variation in prices

comes only from time series, and the sample size T is relatively small. This feature of the

model implies that the number of products, J , should be quite small. For instance, even if

J is as small as 5, the number of parameters to estimate is 25. Therefore, with this model

and data, it is not possible to estimate demand systems for differentiated products with

many varieties. For instance, suppose that we are interested in the estimation of a demand

system for different car models, and the number of car models is J = 100. Then, the number

of parameters in the AIDS model is 5, 250, and we need many thousands of observations

(markets or/and time periods) to estimate this model. This type of data is typically not

available.

(4) Finding instruments for prices. Most empirical applications of this class of models
have ignored the potential endogeneity of prices. 3 However, it is well known that simul-

taneity and endogeneity are potentially important issues in any demand estimation. Prices

are determined in the equilibrium of the market and depend on all the exogenous variables

affecting demand and supply. Therefore, we expect prices to be correlated with the error

terms ξ in the demand equations. Correlation between regressors and the error term imply

that the OLS method is an inconsistent estimator of the parameters in demand equation.

The typical solution to this problem is using instrumental variables. In the context of this

model, the researcher needs at least as many instruments as prices, that is J . The ideal case

3An exception is, for instance, Eales and Unnevehr (1993) who find strong evidence on the endogeneity
of prices in a system of meat demand in US. They use livestock production costs and technical change
indicators as instruments.
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is when we have information on production costs for each individual good. However, this

type of information is rarely available.

(5) Predicting the demand of new goods. In the literature of demand of differentiated
products, a class of problem that has received substantial attention is the evaluation or

prediction of the demand of a new product. Trajtenberg (1989), Hausman (1996), and

Petrin (2002) are some of the prominent applications that deal with this empirical question.

In a demand system in product space, estimating the demand of a new good, say J + 1,

requires estimates of the parameters associated with that good: αJ+1, βJ+1 and {γJ+1,j :

j = 1, 2, ..., J + 1}. Of course, this makes it impossible to make counterfactual predictions,
that is, predict the demand of a product that has not been introduced in any market yet.

But it also limits the applicability of this model in cases where the new product has been

introduced very recently or in very few markets, because we may not have enough data to

estimate these parameters.

2.5. Dealing with some of the limitations: Hausman on cereals
. Hausman (1996) studies the demand for ready-to eat (RTE) cereals in US. This industry
has been characterized by the dominant position of six multiproduct firms and by the pro-

liferation of many varieties. During the period 1980-92, the RTE cereal industry was among

the most prominent introducers of new brands within U.S. industries, with approximately

190 new brands added to the pool of existing 160 brands. Hausman shows that using panel

data from multiple geographic markets, together with assumptions on the spatial structure

of unobserved demand shocks and costs, it is possible to deal with some of the problems

mentioned above within the framework of demand systems in product space. He applies the

estimated system to evaluate the welfare gains from the introduction of Apple-Cinnamon

Cheerios by General Mills in 1989.

(1) Data. The dataset comes from supermarket scanner data collected by Nielsen company.
It covers 137 weeks (T = 137) and seven geographic markets (M = 7) or standard metropol-

itan statistical areas (SMSAs), including Boston, Chicago, Detroit, Los Angeles, New York

City, Philadelphia, and San Francisco. Though the data includes information from hundreds

of brands, the model and the estimation concentrates in 20 brands classified in three seg-

ments: adult (7 brands), child (4 brands), and family (9 brands). Apple-Cinnamon Cheerios

are included in the family segment. We index markets bym, time by t, and brands by j, such

that data can be described as {pjmt, qjmt : j = 1, 2, ..., 20; m = 1, 2, ..., 7; t = 1, 2, ..., 137}.
Quantities are measured is physical units. There are not observable cost shifters.

(2) Model. Hausman estimates an Almost-Ideal-Demand-System combined with a nested

three-level structure. The nested structure is similar to the one describe in the diagram
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of Figure 2.1. The top level is the overall demand for cereal using a price index for cereal

relative to other goods. The middle level of the demand system estimates demand among

the three market segments, adult, child, and family, using price indexes for each segment.

The bottom level is the choice of brand within a segment. For instance, within the family

segment the choice is between the brands Cheerios, Honey-Nut Cheerios, Apple-Cinnamon

Cheerios, Corn Flakes, Raisin Bran (Kellogg), Wheat Rice Krispies, Frosted Mini-Wheats,

Frosted Wheat Squares, and Raisin Bran (Post). Overall price elasticities are then derived

from the estimates in all three segments. The estimation is implemented in reverse order,

beginning at the lowest level (within segment), and then using those estimates to construct

price indexes at the next level, and implementing the estimation at the next level. At the

lowest level, within a segment, the demand system is:

sjmt = α1
jm + α2

t + βj ln(ygmt) +
∑J

k=1 γjk ln(pkmt) + ξjmt (2.28)

where ygmt is overall expenditure in segment/group g. The terms α1
jm and α2

t represent

product, market and time effects, respectively, which are captured using dummies.

(2) Instruments. Suppose that the supply (pricing equation) is:

ln(pjmt) = δj cjt + τ jm + κj1 ξ1mt + ...+ κjJ ξJmt (2.29)

All the components in the right-hand-side, δj, cjt, τ jm, κ’s, and ξ’s, are unobservable to

the researcher. Variable cjt represents a cost shifter at the product level that is common

to all the city markets. Variables τ jm is city-brand fixed effect that captures differences in

transportation costs. The terns κj1 ξ1mt+ ...+κjJ ξJmt capture how the price of product j in

marketm responds to local demand shocks, ξ1mt, ξ2mt, ..., ξJmt. The identification assumption

is that these demand shocks are not (spatially) correlated across markets:

E(ξjmt ξkm′t) = 0 for any j, k and m′ 6= m (2.30)

The assumption implies that after controlling for brand-city fixed effects, all the correlation

between prices at different locations comes from correlation in costs, and not from spatial

correlation in demand shocks. Under these assumptions we can use average prices in other

local markets, P j(−m)t, as instruments, where:

P j(−m)t =
1

M − 1

∑
m′ 6=m

pjm′t (2.31)

(3) Approach to evaluate the effects of new goods. Suppose that product J is a "new"
product, though it is a product in our sample and we have data on prices and quantities of

this product such that we can estimate all the parameters of the model including α0
J , {βJk}
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and γJ . The expenditure function e(p, u) for Deaton and Muellbauer demand system is:

e(p, u) =
∑J

j=1 αj ln(pj) +
1

2

∑J
j=1

∑J
k=1 γjk ln(pj) ln(pk) + u

∏J
j=1 p

βj
j (2.32)

And let V (p, y) be the indirect utility associated with the demand system, that we can easily

obtain by solving the demand equations into the utility function. The functions e(p, u) and

V (p, y) correspond to the situation where the new product J is already in the market.

Suppose that we have estimated the demand parameters after the introduction of the good

and let θ̂ be the vector of parameter estimates. We use ê(p, u) and V̂ (p, y) to represent

the functions e(p, u) and V (p, y) when we use the parameter estimates θ̂. Similarly, we use

D̂j(p, y) to represent the estimated Marshallian demand of product j.

The concept of virtual price plays a key role in Hausman’s approach to obtain the value

of a new good. Hausman defines the virtual price of the new good J (represented as p∗J) as

the price of this product that makes its demand just equal to zero. Of course, this virtual

price depends on the prices of the other goods and on the level of income. We can define a

virtual price of product J for each market and quarter in the data. That is, p∗Jmt is implicitly

defined as the price of product J that solves the equation:

D̂j(p1mt, p2mt, ..., p
∗
Jmt) = 0 (2.33)

Hausman compares the factual situation with the new product with the counterfactual situ-

ation where everything is equal except that the price of product J is p∗Jmt such that nobody

buys this product. Let umt be the utility of the representative consumer in market m at

period t with the new product: that is, umt = V̂ (pmt, ymt). By construction, it should be the

case that ê(pmt, umt) = ymt. To reach the same level of utility umt without the new product,

the representative consumer’s expenditure should be ê(p1mt, p2mt, ..., p
∗
Jmt, umt). Therefore,

we can measure the change in welfare associated to the introduction of the new product

using the following Equivalent Variation measure:

EVmt = ê(p1mt, p2mt, ..., p
∗
Jmt, umt)− ymt (2.34)

Hausman considers this measure of consumer welfare.

This approach uses a market with prices and income (p1mt, p2mt, ..., p
∗
Jmt, ymt) as the

counterfactual to measure the value of good J in a market with actual prices and income

(p1mt, p2mt, ..., pJmt, ymt). This choice of counterfactual does not account for the potential

effect on prices of the introduction of the new product. In some applications, the welfare

gains from these competition effects can be substantial and we are interested in measuring

them. To measure these effects we should calculate equilibrium prices before and after the

introduction of the new good. This requires the estimation not only of demand parameters

but also of firms’marginal costs, as well as an assumption about competition (competitive
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market, Cournot, Bertrand). Though the Equivalent Variation presented above does not

account for competition effects, it has some attractive features. First, it has a clear economic

interpretation as the welfare gain in the absence of competition effects. Second, since it only

depends on demand estimation, it is robust to misspecification of the supply side of the

model.

3. Demand systems in characteristics space

3.1. Model
. The model is based on three basic assumptions. First, a product, say a laptop computer,
can be described as a bundle of physical characteristics: for instance, CPU speed, memory,

screen size, etc. These characteristics determine a variety of the product. Second, consumers

have preferences on bundles of characteristics of products, and not on the products per se.

And third, a product has J different varieties and each consumer buys at most one variety

of the product per period, that is, all the varieties are substitutes in consumption.

We index varieties by j ∈ {1, 2, ..., J}. From an empirical point of view, we can distinguish
two sets of product characteristics. Some characteristics are observable and measurable to

the researcher. We represent with them using a vector of K attributes Xj ≡ (X1j, X2j, ...,

XKj), where Xkj represents that "amount" of attribute k in brand j. For instance, in the

case of laptops we could define the variables as follows: X1j represents CPU speed; X2j is

RAM memory; X3j is hard disk memory; X4j is weight; X5j is screen size; X6j is a dummy

(binary) variable that indicates whether the manufacturer of the CPU processor s Intel or

not; etc. Other characteristics are not observable, or at least measurable, to the researcher

but they are known and valuable to consumers. There may be many of these unobservable

attributes, and we describe these attributes using a vector ξj, that contains the "amounts"

that variety j has of the different unobservable attributes. The researcher does not even

know even the number of unobservable attributes, that is, she does not know the dimension

and the space of ξj.

We index households by h ∈ {1, 2, ...., H} where H represents the number of households

in the market. A household has preferences defined over bundles of attributes. Consider a

product with arbitrary attributes (X, ξ). The utility of consumer h if she consumes that

product is Vh(X, ξ). Importantly, note that the utility function Vh is defined over any

possible bundle of attributes (X, ξ) that may or may not exist in the market. For a product

j that exists in the market and has attributes (Xj, ξj), this utility is Vhj = Vh(Xj, ξj). The

total utility of a consumer has two additive components: the utility from this product, and

the utility from other goods: Uh = uh(C) + Vh(X, ξ), where C represents the amount of a

composite good, and uh(C) is the utility from the composite good.
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Consumers differ in their levels of income, yh, and in their preferences. Consumer het-

erogeneity in preferences can be represented in terms of a vector of consumer attributes υh
that may be completely unobservable to the researcher. Therefore, we can write the utility

of consumer h as:

Uh = u(C;υh) + V (X, ξ;υh) (3.1)

We also assume that there is continuum of consumers with measure H, such that υh has a

well-defined density function fυ in the market.

Each consumer buys at most one variety of the product (per period). Given her income,

yh, and the vector of product prices p = (p1, p2, ..., pJ), a consumer decides which variety to

buy, if any. Let dhj ∈ {0, 1} be the indicator of the event "consumer h buys product j". A
consumer decision problem is:

max
{dh1,dh2,...,dhJ}

u(C;υh) +

J∑
j=1

dhj V (Xj, ξj;υh)

subject to : C +
∑J

j=1
djh pj ≤ yh

dhj ∈ {0, 1} and
∑J

j=1
djh ∈ {0, 1}

(3.2)

A consumer chooses between J + 1 possible choice alternatives: each of the J products and

the alternative j = 0 which represents the choice to not buy any product. The solution to this

consumer decision problem provides the consumer-level demand equations d∗j(X,p, yh;υh) ∈
{0, 1} such that:
{d∗j(X,p, yh;υh) = 1} ⇔{
u(yh − pj;υh) + V (Xj, ξj;υh) > u(yh − pk;υh) + V (Xk, ξk;υh) for any k 6= j

} (3.3)

where k = 0 the alternative of not buying any variety (that is, outside alternative), that has

indirect utility u(yh;υh). Given the demand of individual consumers, d∗j(X,p, yh;υh), and

the joint density function f(υh, yh), we can obtain the aggregate demand functions:

qj(X,p, f) =

∫
d∗j(p, yh;υh) , β) f(υh, yh) dυh dyh (3.4)

and the market shares sj(X,p, f) ≡ qj(X,p, f)

H
.

Now, we provide specific examples of this general model. Each example is based on

specific assumptions about the form of the utility function and the probability distribution

of consumer heterogeneity. These examples are also important models which are workhorses

in the literature on estimation of demand of differentiated products.

3.2. Logit model of product differentiation
. Consider the following specification assumptions on the general model presented above.
First, the utility from the outside product is linear and has the same form and parameters for
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all consumers: u(C;υh) = α C. Second, the utility of purchasing product j is V (Xj, ξ̃j;υh) =

Xjβ + ξj + εhj, where ε‘s are Extreme Value Type 1 and independently and identically

distributed (i.i.d.) over consumers and products. Then, Uhj = −α pj + Xj β + ξj + εhj and

the the Extreme Value assumption on the ε variables implies that the market shares have

the following closed-form logit structure.

sj =
qj
H

=
exp {δj}

1 +
∑J

k=1 exp {δk}
(3.5)

where δj ≡ −α pj + Xj β + ξj represents the mean utility of buying product j.

The parameter α represents the marginal utility of income and it is measured in utils

per dollar. In the vector β, the parameter βk associated to characteristic Xjk (the k − th
element of vector Xj) represents the marginal utility of this characteristic and it is measured

in utils per unit of Xjk. Therefore, for any product attribute k, the ratio of parameters βk/α

is measured in dollars per unit of Xjk such that it is a monetary measure of the marginal

utility of the attribute.

3.3. Nested Logit model
. As explain below, the logit model imposes strong restrictions on the own and cross price
elasticities of products. The Nested Logit model relaxes these restriction.

Suppose that we partition J+1 products (including the outside product) in G+1 groups.

We index groups of products by g ∈ {0, 1, ..., G}. Let Jg represent the set of products in
group g. The utility function has the same structure as in the Logit model with the only

(important) difference that the variables εhj have the structure of a nested logit model:

εhj = λ ε
(1)
hg + ε

(2)
hj (3.6)

where ε(1)
hg and ε

(2)
hj are i.i.d. Extreme Value type 1 variables, and λ is a parameter. This

model implies the following closed-form expression for the market shares:

sj =
exp {λ Ig}∑G
g′=0 exp {λ Ig′}

exp {δj}∑
k∈Jg exp {δk}

(3.7)

where Ig is denoted the inclusive value of group g and it is defined as follows:

Ig ≡ ln

∑
j∈Jg

exp {δj}

 (3.8)

This inclusive value can be interpretated as the expected utility of a consumer who chooses

group g knowing the δ values of the products in that group but before knowing the realization

of the random variables ε(2)
hj . That is,

Ig ≡ Eε(2)
(

max
j∈Jg

[
δj + ε

(2)
hj

])



3. DEMAND SYSTEMS IN CHARACTERISTICS SPACE 49

where Eε(2)(.) represents the expectation over the distribution of the random variables ε(2)
hj .

Because this interpretation, inclusive values are also denoted as Emax values. When the

variables ε(2)
hj have a Extreme Value type 1 distribution, this Emax or inclusive value has the

simple form presented above as the logarithm of the sum of the exponential of δ’s.

The equation for the market shares in the nested Logit model has an intuitive interpreta-

tion as the product of between-groups and within-groups market shares. Let s∗g ≡
∑

j∈Jg sj

be the aggregate market share of all the products and group g. And let sj|g ≡ sj/
∑

k∈Jg sk

be the within-group market share of product j in its group g. By definition, we have that

sj = s∗g sj|g. The nested Logit model implies that within-group market shares have the logit

structure sj|g = exp {δj} / exp{Ig}, and the group market shares have the logit structure
exp {λ Ig} /

∑G
g′=0 exp {λ Ig′}.

Goldberg and Verboven (2001) estimate a nested logit model for the demand of automo-

biles in European car markets.

3.4. Random Coeffi cients Logit
. Suppose that the utilities V (Xj, ξ̃j;υh) and u(C;υh) are linear in parameters, but these

parameters are household specific. That is, Uhj = −αh pj + Xj βh + ξj + εhj where ε‘s are

still i.i.d. Extreme Value Type 1, and[
αh
βh

]
=

[
α
β

]
+ vh with vh ∼ i.i.d. N(0,Σ) (3.9)

Then, we can write utilities as:

Uhj = −α pj + Xj β + ξj + ṽhj + εhj (3.10)

where ṽhj = −vαh pj+v
β1
h X1j+ ...+v

βK
h XKj that has an heteroskedastic normal distribution.

Then, the expression for the market shares is:

sj =
qj
H

=

∫
exp {δj + ṽhj}

1 +
∑J

k=1 exp {δk + ṽhk}
f(ṽh | p,X,Σ) dṽh (3.11)

with δj ≡ −α pj + Xj β + ξj still represents the mean utility of buying product j.

In general, for any distribution of consumer heterogeneity υh, the model implies a map-

ping between the J × 1 vector of mean utilities δ = {δj : j = 1, 2, ..., J} and the J × 1 vector

of market shares s = {sj : j = 1, 2, ..., J}.

sj = σj(δ | p,X,Σ) for j = 1, 2, ..., J (3.12)

or in vector form s = σ(δ | p,X,Σ).

Berry, Levinsohn, and Pakes (1995) estimate a random coeffi cients logit model tostudy

the demand of automobiles in the US.
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The importance of allowing for random coeffi cients. In general, the more flexible
is the structure of the unobserved consumer heterogeneity, the more flexible and realistic can

be the elasticities of substitution between products that the model can generate. The logit

model imposes strong, and typically unrealistic, restrictions on demand elasticities. The

random coeffi cients model can generate more flexible elasticities.

In discrete choice models, the Independence of Irrelevant Alternative (IIA) is a property

of consumer choice that establishes that the ratio between the probabilities that a consumer

chooses two alternative, say j and k, should not be affected by the availability or the at-

tributes of other alternatives:

IIA :
Pr(dhj = 1)

Pr(dhk = 1)
depends only on attributes of j and k

While IIA may be a reasonable assumption when we study the demand of single individual,
it is quite restrictive when we look at the demand of multiple individuals because these

individuals are heterogeneous in their preferences. The logit model implies IIA. In the logit

model:
Pr(dhj = 1)

Pr(dhk = 1)
=
sj
sk

=
exp

{
−α pj + Xj β + ξj

}
exp {−α pk + Xk β + ξk}

⇒ IIA

This property implies a quite restrictive structure for the cross demand elasticities. In the

logit model, for j 6= k, we have that ∂ ln sj
∂ ln pk

= −α pk sk, which is the same for any product j.
A 1% increase in the price of product k implies the same % increase in the demand of any

product other than j. This is very unrealistic.

3.5. Berry’s Inversion Property
. Berry (1994) shows that, under some regularity conditions (more later), the demand system
s = σ(δ | p,X,Σ) is invertible in δ such that there is an inverse function σ−1and:

δ = σ−1(s | p,X,Σ) (3.13)

or for a product j, δj = σ−1
j (s | p,X,Σ). The form of the inverse mapping σ−1 depends on

the PDF fṽ.

This inversion properly has important implications for the structural estimation of the

demand system. Under this inversion, the unobserved product characteristics ξj enter addi-

tively in the equation δj = σ−1
j (s | p,X,Σ). Under this additivity, and the mean indepen-

dence of the unobservables ξj conditional on the exogenous product characteristics X, we

can construct moment conditions and obtain GMM estimators of the structural parameters

that deal with the endogeneity of prices.

Example: Logit model (Masnki, 1983; Berkovec and Rust, 1985). In the logit model,
the demand system is sj = exp {δj} /D, where D ≡ 1 +

∑J
k=1 exp {δk}, such that ln(sj) =

δj − ln(D). Let s0 be the market share of the outside good such that, s0 = 1−
∑J

k=1 sk. For
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the outside good, s0 = 1/D, such that ln(s0) = − ln(D). Combining the equations for ln(sj)

and ln(s0) we have that:

δj = ln (sj)− ln (s0) (3.14)

and this equation is the inverse mapping σ−1
j (s | p,X,Σ) for the logit model. �

Example: Nested Logit model. In the nested Logit model, the demand system is sj = s∗g

sj|g where s∗g = exp {λ Ig} /D and sj|g = exp {δj} / exp{Ig}, such that ln(sj) = ln(s∗g) −
ln(sj|g) with ln(s∗g) = λ Ig− ln(D) and ln(sj|g) = δj−Ig. For the outside alternative, we have
that ln(s0) = − ln(D). Combining these expressions we can obtain that ln (sj) = (λ − 1)

Ig + ln (s0) + δj. And taking into account that Ig = [ln(s∗g)− ln(s0)]/λ, we have that:

δj = [ln(sj)− ln(s0)] +

(
1− λ
λ

)
[ln(s∗g)− ln(s0)] (3.15)

and this equation is the inverse mapping σ−1
j (s | p,X,Σ) for the nested Logit model. �

We also have a closed-form expression for σ−1
j in the case of the Nested Logit model.

However, in general, for the Random Coeffi cients model we do not have a closed form ex-

pression for the inverse mapping σ−1
j . Berry (1994) and Berry, Levinsohn, and Pakes (1995)

propose a fixed point algorithm to compute the inverse mapping for the Random Coeffi -

cients logit model. They propose the following fixed point mapping: δ = F (δ | s,p,X,Σ) or

δj = Fj(δ | s,p,X,Σ) where:

Fj(δ | s,p,X,Σ) ≡ δj + ln(sj)− ln (σj(δ|p,X,Σ)) (3.16)

It is straightforward to see that δ is a fixed point of the mapping F (δ | s,p,X,Σ) if and

only if δ = σ−1(s | p,X,Σ). Therefore, finding a solution (fixed point) in δ to the system of

equation δ = F (δ | s,p,X,Σ) is equivalent to finding the inverse function σ−1(s | p,X,Σ)

at a particular value of (s,p,X,Σ).

Defnition: Contraction. Let X be a set in Rn, let ‖.‖ be the Euclidean distance, and let
f(x) be a function from X into X . We say that f(x) is a contraction (with respect to X and
‖.‖) if and only if there is a constant λ ∈ [0, 1) such that for any pair of values x and x′ in

X we have that ‖f(x)− f(x′)‖ ≤ λ ‖x− x′‖. �

Contraction mapping Theorem. If f : X → X is a contraction, then the following results (A)
and (B) hold. (A) there is only one solution in X to the fixed point problem x = f(x). (B)

Let x∗ be this unique solution such that x∗ = f(x∗). For any arbitrary value x0 ∈ X define

the sequence {xk : k ≥ 1} such that xk = f(xk−1). Then, limk→∞ xk = x∗. �

Berry (1994) shows that this mapping F (δ | s,p,X,Σ) is a contraction as long as the

values of δ are not too small. As established by the Contraction Mapping Theorem, this
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implies that the mapping has a unique fixed point and we can find it by using the fixed point

iteration algorithm. For this model, the algorithm proceeds as follows.

Fixed Point algorithm

- Start with an initial guess δ0.

- At iteration R ≥ 1, we calculate σj(δ
R−1| p,X,Σ) for every product j by evaluating

the multiple integration expression in equation (3.11) and then we update the vector δ using

the updating equation:

δR = Fj(δ
R−1 | s,p,X,Σ) = δR−1

j + ln(sj)− ln
(
σj(δ

R−1|p,X,Σ)
)

(3.17)

- Given δR, we check for convergence. If
∥∥δR − δR−1

∥∥ is smaller than a pre-specified
small constant (for instance, 10−6), we stop the algorithm and take δR as the solution or

fixed point of the algorithm. Otherwise, we proceed with iteration R + 1. �

3.6. Dealing with limitations of demand models in product space
. Discrete choice demand models can deal with some limitations of demand systems in
product space.

[1] Representative consumer assumption. The model is micro founded. It takes into
account that the shape of demand and price sensitivity is intimately related to consumer

heterogeneity in tastes. Therefore, we can estimate with precision demand systems where J

is large. In fact, for these models, large J implies more precise estimates.

[2] Too many parameters problem. The number of parameters does not increase with
the number of products J but with the number of observable product attributes K.

[3] Instruments for prices. As we describe below, in the regression equation σ−1(s |
p,X,Σ) = −α pj + Xj β + ξj we can use the observable exogenous characteristics of other

products, Xk : k 6= j, as instruments for price. In the equation for product j, the character-

istics of other products, {Xk : k 6= j}, are valid instruments for the price of product j. To see
this, note that the variables {Xk : k 6= j} are not correlated with the error term ξj but they

are correlated with the price pj. The later condition may not be obvious because it depends

on an assumption about price decisions. Suppose that product prices are the result of price

competition between the firms that produce these products. To provide a simple intuition,

suppose that there is one firm per product and consider the Logit model of demand. The

profit function of firm j is pj qj − Cj(qj)− Fj where Cj(qj) and Fj are the variable and the
fixed costs of producing j, respectively. For the Logit model, ∂qj/∂pj = −αqj(1 − sj) and
the marginal condition of optimality for the price of product j is:

pj = C ′j(qj) +
1

α(1− sj)
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Though this is just an implicit equation, it makes it clear that pj depends (through sj) on

the characteristics of all the products. If Xkβ (for k 6= j) increases, then sj will go down,

and according to the previous expression the price pj will also decrease. Therefore, we can

estimate the demand parameters by IV using as instruments of prices the characteristics of

the other products. We provide further details in the next section.

[4] Problems to predict the demand of new products. Predicting the demand of new
products does not require knowing additional parameters. Given the structural parameters

β, α, and Σ, we can predict the demand of a new hypothetical product which has never

been introduced in the market. Suppose that the new product has observed characteristics

{xJ+1, pJ+1} and ξJ+1 = 0. For the moment, assume also that: (1) incumbent firms do not

change their prices after the entry of the new product; and (2) incumbent firms do not exit

or introduce new products after the entry of the new product. Then, the demand of the new

product is:

qJ+1 = H

∫
exp

{
−α pJ+1 + XJ+1 β + ξJ+1 + ṽhJ+1

}
1 +

∑J+1
k=1 exp {−α pk + Xk β + ξk + ṽhk}

f(ṽh|p,X,Σ) (3.18)

Note that to obtain this prediction we need also to use the residuals {ξk} that can be obtained
from the estimation of the model. Given any hypothetical new product with characteristics

(XJ+1, pJ+1, ξJ+1), the model provides the market share of this new product, its demand

elasticity, and the effect of introducing this new product on the market share of any pre-

existing product.

3.7. Estimation
. Suppose that the researcher has a dataset from a single market at only one period but
for a product with many varieties: M = T = 1 but J is large (for instance, 100 varieties or

more). The researcher observes the dataset {qj, Xj, pj : j = 1, 2, ..., J}. Given these data,
the researcher is interested in the estimation of the parameters of the demand system: θ = (α,

β, Σ). For the moment, we assume that market size H is known to the researcher. But it

can be also estimated as a parameter. For the asymptotic properties of the estimators, we

consider that J →∞.
The econometric model is:

sj = σj (X, p, ξ; θ) (3.19)

Unobserved product characteristics ξ are correlated with prices p (endogeneity). Dealing

with endogeneity in nonlinear models where unobservables do not enter additively is compli-

cated. In principle, we would like to avoid using a Maximum Likelihood approach because

it requires the specification of how the vector of prices p depends on the exogenous variables

(X, ξ), and an assumption about the probability distribution of the vector of unobservables
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ξ. If these assumptions on the supply side of the model are incorrect, the maximum like-

lihood estimator provides inconsistent estimates of demand parameters. We would prefer

using a method that does not require these additional assumptions.

In this context, an important contribution of Berry (1994) and Berry, Levinsohn, and

Pakes (1995) was to show that there is a general class of models with the invertibility
property described above. This property implies that we can represent the model using a
equation where the unobservables ξ enter additively:

σ−1
j (s |p,X,Σ) = −α pj + Xj β + ξj (3.20)

Given this representation of the model, we can estimate the structural parameters θ =

{α, β, Σ} using GMM. The key identification assumption is the mean independence of the
unobserved product characteristics and the exogenous product characteristics.

Assumption: E
(
ξj | X1, ..., XJ

)
= 0.

Instrumental Variables (IV) and Generalized Method of Moments (GMM)
estimation. Under the previous assumption, we can use the characteristics of other products
(Xk : k 6= j) to construct moment conditions to estimate structural parameters in equation

(3.20). For instance, we can use the average characteristics of other products as the vector

of instruments, 1
J−1

∑
k 6=j Xk. It is clear that E

(
1

J−1

∑
k 6=j Xk ξj

)
= 0, and we can estimate

θ using GMM. Suppose that we have a vector of instruments Zj (for instance, Zj = [Xj,
1

J−1

∑
k 6=j Xk]) such that the following identification conditions hold:

(ID.1) E(Zj ξj) = 0;

(ID.2) dim(Zj) ≥ dim(θ);

(ID.3) E
[(

∂σ−1j (s|p,X,Σ)

∂Σ
, pj, Xj

)′(
∂σ−1j (s|p,X,Σ)

∂Σ
, pj, Xj

)
| Zj

]
is non-singular.

Under conditions (ID.1) to (ID.3), the moment restrictions E(Zj ξj) = 0 can identify the

vector of parameters θ.

To obtain the GMM estimator of θ, we replace the population moment restrictions E(Zj

ξj) = 0 with their sample counterpart. To do this, we replace the population expectation

E(.) with the sample mean 1
J

∑J
j=1(.), and the unobservable ξj with its expression in terms

of observables and parameters of the model. Then, the sample moment conditions becomes:

1

J

J∑
j=1

Zj

(
σ−1
j (s|p,X,Σ) + α pj −Xj β

)
= 0 (3.21)

If the number of these restrictions (that is, the number of instruments in the vector Zj) is

equal to the number of parameters in θ, then the model is just identified and the GMM

estimator is defined as the value of θ that solves exactly this system of sample moment

conditions. When the number of restrictions is greater than the number of parameters, the
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model is over-identified, and the GMM estimator is defined as the value of θ that minimizes

a quadratic form of the moment restrictions. Let m(θ) be function that represents in a

compact form the sample moments 1
J

∑J
j=1 Zj [σ−1

j (s|p,X,Σ)+ α pj −Xj β] as a function

of θ. The GMM estimator is defined as:

θ̂ = arg min
θ

[m(θ)′ W m(θ)] (3.22)

where W is a weighting matrix.

3.7.1. Choice of instruments

. When J is large, a possible concern with the instruments 1
J−1

∑
k 6=j Xk is that they may

have very little sample variability across j. To deal with this problem we can define instru-

ments that take into account some intuitive features on price competition between differ-

entiated products. Product j faces stronger competition if there are other products with

similar characteristics. Therefore, we expect that the price of product j declines with the

number of its close neighbors, where these close neighbors are defined as other products with

similar characteristics as product j. To implement this idea, define d∗ as the average dis-

tance between the observable characteristics of all the products in the market. That is, d∗ =
1

J(J−1)/2

∑J
j=1

∑
k>j ‖Xk −Xj‖. Let τ ∈ (0, 1) as small constant such that we can say that

when the distance between two products is smaller or equal that τd∗, then the two products

are very similar, for instance, τ = 0.25. We can define a set of close neighbors for product j

as:

Nj = {k 6= j : ‖Xk −Xj‖ ≤ τd∗} (3.23)

Let |Nj| represents the number of elements in the set Nj. We can construct the vector of
instruments,

Zj = [Xj, |Nj| ,
1

|Nj|
∑

k∈Nj Xk] (3.24)

This vector of instruments can have more sample variability than 1
J−1

∑
k 6=j Xk and it can

be also more correlated with pj.

The vector of instruments Zj should have at least as many variables as the number of

parameters θ = {α, β, Σ}. Without further restrictions we have that dim(Σ) = K(K+1)
2

where dim(Xj) = K, such that dim(θ) = (K + 1) + K(K+1)
2

. Note that the vector of

instruments suggested above, Zj = [Xj, |Nj| , 1
|Nj |
∑

k∈Nj Xk], has only 2K+1 elements such

that the order condition of identification (ID.2) does not hold, that is, dim(Zj) = 2K + 1 <

(K + 1) + K(K+1)
2

= dim(θ).

Several solutions have been applied to deal with this under-identification problem. A

common approach is to impose restrictions on the variance matrix of the random coeffi cients

Σ. The most standard restriction is that Σ is a diagonal matrix (that is, zero correlation

between the random coeffi cients of different product attributes) and there is (at least) one
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product attribute without random coeffi cients (i.e. one element in the diagonal of Σ is equal

to zero). Under these restrictions, we have that dim(θ) = 2K and the order condition of

identification holds.

Another approach which has been used in some papers is including additional moments

restrictions that come from "micro-moments" or more precisely, market shares for some

demographic groups of consumers. This is the approach in Petrin (2002). A third possible

approach is to extend the set of instruments beyond 1
|Nj |
∑

k∈Nj Xk. In this case, one could

use the two step method in Newey (1990) to otain the set of optimal instruments.

3.7.2. Weak instruments problem

. Armstrong (2016) points out a potential inconsistency in this GMM estimator when the

number of products is large but the number of markets and firms is small. BLP instruments

affect prices only through price-cost margins. If price-cost margins converge fast enough to

a constant as J →∞, then GMM-BLP estimator is inconsistent. This is an extreme case of
weak instruments. This is also a potential issue in small samples: the bias and variance of

the estimator can be very large in small samples. Armstrong (2016) studies this issue under

different data structures. Suppose that the dataset has variation over products (J products

indexed by j), firms (N firms indexed by n), and markets or time periods (T markets indexed

by t), such that we observe prices and quantities pjnt and qjnt. Armstrong shows that the

inconsistency depends on the form of the demand system (that is, standard Logit or random

coeffi cients model), and on whether the number of products per firm J/N goes to a constant,

to zero, or to infinity when J goes to infinity.

Consider first the case of the standard logit model with single product firms such that

J/N = 1. Under Bertrand competition, the price equation has the following form:

pj = MCj +
1

α

1

1− sj
(3.25)

BLP instruments affect price pj only through the term 1
1−sj . If

√
J

[
1

1− sj

]
→ constant as

J → ∞, then the GMM-BLP estimator is inconsistent, and in fact it is not asymptotically
different to using instrumental variables that are independent of prices and do not have any

identification power. This is an extreme case of a problem of weak instruments.

In contrast, the GMM-BLP estimator can be root-J consistent when the industry (data)

is such that firms are multiproduct. Note that a multiproduct firm maximizes the joint

profit from all its products and obtains price-cost margins which are above those when the

products are sold by single-product firms. With this industry.data, price-cost margins are

larger and converge more slowly to a constant as as J → ∞. More precisely, as J → ∞,
keeping constant the number of firms N , the rate of convergence of markups to a constant is
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slower than
√
J . That is, in this case there is a constant α < 1/2 such that Jα

[
1

1− sj

]
→

constant, and this implies that Logit or random coeffi cients Logit are consistent as J →∞.
Armstrong (2016) shows that the GMM-BLP estimator of the Random Coeffi cients Logit

model is inconsistent when the number of markets T is fixed and the number of products

per firm J/N is also fixed. The estimator is consistent when T and N are fixed and firms are

asymmetric in their characteristics. Consistency can be also achieved if T goes to infinity

and N and J are fixed.

3.7.3. Alternatives to BLP instruments

. An alternative to BLP instruments are Hausman-Nevo instruments and Arellano-Bond or

Dynamic Panel Data instruments.

Hausman-Nevo instruments. The dataset includes T geographic markets and J products.
The T markets belong to R regions where cost shocks are spatially correlated within region,

but demand shocks are not. Suppose that the unobservable ξjt has the following variance-

components structure:

ξjt = ξ
(1)
j + ξ

(2)
t + ξ

(3)
jt (3.26)

and ξ(3)
jt is not spatially correlated, that is, for any pair of markets t and t

′, E(ξ
(3)
jt ξ

(3)
jt′ ) = 0.

Under these conditions, we can control for ξ(1)
j and ξ

(2)
t using product and market fixed

effects and we can construct instrumental variables for that are correlated with prices and

uncorrelated with ξ
(3)
jt . More precisely, define Zjt = 1

TR−1

∑
t′∈TR,t′ 6=t pjt′ where TR is the

number of markets in region R (where market t belongs) and TR is the set of markets in
region R. Since ξ(3)

jt is not spatially correlated, we have that E(Zjt ξ
(3)
jt ) = 0. And Zjt is

correlated with pjt because cost shocks are spatially correlated within the region.

Arellano-Bond or Dynamic Panel Data instruments. Now, consider that the subindex
t represents time such that the dataset consists of J products over T periods of time, where

T is small and J is large. The demand error term ξjt has the structure in equation (3.26) and

ξ
(3)
jt is not serially correlated: for any two time periods t and t

′, E(ξ
(3)
jt ξ

(3)
jt′ ) = 0. Consider

the demand equation in first differences, that is, the equation at period t minus the equation

at t− 1:

σ−1
j (st |pt,Xt,Σ)− σ−1

j (st−1 |pt−1,Xt−1,Σ) = −α ∆pjt + ∆Xjt β + ∆ξjt (3.27)

where ∆pjt ≡ pjt − pjt−1, ∆Xjt ≡ Xjt −Xjt−1, and ∆ξjt ≡ ξjt − ξjt−1. Consider the instru-

ments Zjt = {sjt−2, pjt−2}. Under these assumptions Zjt are valid instrumental variables,

E(Zjt ∆ξ
(3)
jt ) = 0. If shocks in marginal costs are serially correlated, then Zjt is correlated

with the price difference ∆pjt after controlling for the exogenous regressors ∆Xjt.
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3.7.4. Computation of the GMM estimator

. Berry, Levinsohn, and Pakes (1995) proposes a Nested Fixed Point (NFXP) algorithm to

compute the GMM estimator of θ.4 As indicated by its name, this method can be described

in terms of two nested fixed point algorithms: an inner algorithm that consists of fixed point

iterations to calculate the values σ−1
j (s |p,X,Σ) for a given value of Σ; and an outer Newton

algorithm that minimizes the GMM criterion function with respect to θ.

Let Q(θ) = m(θ)′ W m(θ) be the GMM criterion function such that the GMM estimator

can be defined as the value θ̂ that satisfies the condition ∂Q(θ̂)/∂θ = 0. Newton’s method is

based on a first order Taylor’s approximation to the condition ∂Q(θ̂)/∂θ = 0 around some

value θ0 such that, by the Mean Value Theorem, there exists a scalar λ ∈ [0, 1) such that for

θ∗ = (1− λ)θ0 + λθ̂ we have that:

∂Q(θ̂)

∂θ
=
∂Q(θ∗)

∂θ
+
∂2Q(θ∗)

∂θ∂θ′
[θ̂ − θ0] (3.28)

Therefore, we have that ∂Q(θ∗)/∂θ + ∂2Q(θ∗)/∂θ∂θ′ [θ̂ − θ0] = 0, and solving for θ̂, we get:

θ̂ = θ0 −
[
∂2Q(θ∗)

∂θ∂θ′

]−1 [
∂Q(θ∗)

∂θ

]
(3.29)

If we knew the value θ∗, then we could obtain the estimator θ̂ using this expression. However,

note that θ∗ = (1− λ)θ0 + λθ̂ suhc that it depends on θ̂ itself. We have a "chicken and egg"

problem. To deal with this problem, Newton’s method proposes an iterative procedure.

Newton’s algorithm

- We start with an initial candidate for estimator, θ0.

- At every iteration R ≥ 1 we update the value of θ, from θR−1 to θR, using the following

formula:

θR = θR−1 −
[
∂2Q(θR−1)

∂θ∂θ′

]−1 [
∂Q(θR−1)

∂θ

]
(3.30)

- Given θR and θR−1, we check for convergence. If
∥∥θR − θR−1

∥∥ is smaller than a pre-
specified small constant (for instance, 10−6), we stop the algorithm and take θR as the

estimator θ̂. Otherwise, we proceed with iteration R + 1. �

The Nested Fixed Point algorithm makes it explicit that the evaluation of the criterion

function Q(θ) at any value of θ, and of its first and second derivatives, requires the solution

of other fixed point problem to evaluate the inverse mapping σ−1
j (s| p,X,Σ).

Nested Fixed Point algorithm

- We start with an initial guess θ0 = (α0, β0,Σ0).

4The term Nested Fixed Point (NFXP) algorithm was coined by Rust (1987) in the context of the
estimation dynamic discrete choice structural models.
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- At every iteration R ≥ 1 of the outer (Newton) algorithm, we take ΣR−1 and apply

the Fixed Point described above (equation (3.17)) to compute the inverse mapping σ−1
j (s|

p,X,ΣR−1). We also apply the same Fixed Point algorithm to calculate numerically the

gradient vector ∂σ−1
j (s| p,X,ΣR−1)/∂Σ and the Hessian matrix ∂2σ−1

j (s| p,X,ΣR−1)/∂Σ∂Σ′.

Given these objects, we can obtain the gradient vector ∂Q(θR−1)
∂θ

and the Hessian matrix
∂2Q(θR−1)
∂θ∂θ′ . Then, we apply one Newton iteration as described in equation (3.30).

- Given θR and θR−1, we check for convergence. If
∥∥θR − θR−1

∥∥ is smaller than a pre-
specified small constant (for instance, 10−6), we stop the algorithm and take θR as the

estimator θ̂. Otherwise, we proceed with iteration R + 1. �

The Nested Fixed Point algorithm may be computationally intensive because it requires

the repeated solution of the fixed point problem that calculates the inverse mapping σ−1
j (s|

p,X,Σ), which itself requires Monte Carlo simulation methods to approximate the multiple

dimension integrals that define the market shares. Some alternative algorithms have been

proposed to reduce the number of times that the inner algorithm is called to computed the

inverse mapping. Dubé, Fox, and Su (2012) propose the MPEC algorithm. Lee and Seo

(2015) propose a Nested Pseudo Likelihood method in the same spirit as Aguirregabiria and

Mira (2002).

3.8. Nonparametric identification
. Empirical applications of discrete choice models of demand make different parametric as-
sumptions such as the normal distribution of the random coeffi cients, and the additive sepa-

rability of observable and unobservable product characteristics in the utility function. Berry

and Haile (2014) show that these parametric functional forms and distributional assumptions

are not essential for the identification of this type of demand system. The identification re-

lies primarily on the standard requirement that instruments be available for the endogenous

variables.

Let vhj be the utility of consumer h for purchasing product j. Define vh = (vh1, ..., vhJ)

that has CDF Fv(vh|X,p, ξ), where (X,p, ξ) are the vectors of characteristics of all the

products. In this general model, the interest is in the nonparametric identification of the

distribution function Fv(vh|X,p, ξ). The following assumption plays a key role in the iden-

tification results by Berry and Haile (2014).

Assumption BH-1. Unobserved product characteristics, ξj, enter in the distribution
of consumers’preferences vh through the term X1j + ξj, where X1j is one of the observable

product attributes.

Fv(vh | X,p, ξ) = Fv(vh | X(−1),p, X1 + ξ) (3.31)



60 2. DEMAND ESTIMATION

where X(−1) represents the observable product characteristics other than X1, and X1 + ξ

represents the vector (X11 + ξ1, ..., X1J + ξJ).

Assumption BH-1 implies that the marginal rate of substitution between the observable

characteristic X1j and the unobservable ξj is constant. The restriction that it is equal to one

is without lost of generality. Under this assumption, it is clear that:

sj = Pr
(
j = arg max

k
vik | X(−1),p, X1 + ξ

)
= σj

(
X(−1),p, X1 + ξ

)
(3.32)

For notational convenience, we use ξ∗j to represent Xj1 + ξj and the vector ξ
∗ to represent

X1 + ξ such that we can write the market share function as σj
(
X(−1),p, ξ

∗).
Assumption BH-2. The mapping s = σj

(
X(−1),p, ξ

∗) is invertible in ξ∗ such that
we have, ξ∗j = Xj1 + ξj = σ−1

j

(
s | X(−1),p

)
.

What are the economic conditions that imply this inversion property? Connected sub-
stitutes. The assumption of Connected substitutes can be described in terms of two
conditions.

(i) All goods are weak gross substitutes, that is, for any k 6= j, σj
(
X(−1),p, ξ

∗) is weakly
decreasing in ξ∗k. A suffi cient condition is that, as in the parametric model, higher values of

ξ∗j raise the utility of good j without affecting the utilities of other goods.

(ii) "Connected strict substitution". Starting from any inside good, there is a chain of

substitution [that is, σj is strictly decreasing in ξ
∗
k] leading to the outside good.

Connected strict substitution requires only that there is not a subset of products that

substitute only among themselves, that is, all the goods must belong in one demand system.

Suppose that we have data from T markets, indexed by t. We can write the inverse

demand system as:

X
(1)
jt = σ−1

j

(
st | X(−1)t,pt

)
− ξjt

Let Zt be a vector of instruments [we explain below how to obtain these instruments]

and suppose that: (a) E[ξjt | Zt] = 0 ; (b) [completeness] if E[B(st,X(−1)t,pt) | Zt] = 0, then

B(st,X(−1)t,pt) = 0 almost surely. Important: Completeness requires that dim(Zt) ≥
dim(st,X(−1)t,pt), that is, instruments for all 2J endogenous variables (st,pt)

Under these conditions, all the inverse functions σ−1
j are nonparametrically identified.

Then, ξjt is identified and we can again invert σ
−1
j to identify the demand system σ.

Sources of instruments. Note that we need not only J instruments for prices but
also J instruments for for market shares st. Instruments for st must affect quantities not

only through prices. For instance, supply/marginal cost shifters or Hausman-Nevo are IVs

for prices but they are not useful for st because they affect quantities only through prices.
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The vector X1t is a natural candidate as IV for st. By the implicit function theorem,
∂σ−1 (st,pt)

∂s′t
=

[
∂σ (δt,pt)

∂δ′t

]
. Identifying the effects of st on σ−1 is equivalent to identifying

the effects of ξ∗ on market shares σ. The vector X1t directly shifts the indices ξ
∗ , so these

are natural instruments for market shares in the inverse demand function.

Identification of Utility [Welfare analysis]. Without further restrictions, identification of

the system of demand equations σ does not imply identification of the distribution of random

utilities Fv. In general, to identify changes in consumer welfare we need Fv.

Assumption BH-3 [Quasi-linear preferences]. vhj = µhj − pj where the variables
µhj are independent of pj conditional on (ξ∗,X(−1)).

Under Assumption 3, the distribution Fv is identified from the demand system σ.

4. Consumer valuation of product innovations

Product innovation is ubiquitous in most industries, and a key strategy for differentiation.

During the last decades we have witnessed a large increase in the number of varieties of

different products. Evaluating consumer value of new products, and of quality improvements

in existing products, has received substantial attention in the context of:

- Improving Cost of Living Indexes (COLI).

- Costs and benefits of firms’product differentiation.

- Social value of innovations.

The standard approach is based on: Estimation of a demand system of differentiated

products; Constructing consumer indirect utility function (or surplus function) with and

without the new product. Typically, one of the two scenarios (with or without) is a coun-

terfactual.

In the definition of the counterfactual scenario the researcher needs to account for the

value of unobservables in the counterfactual scenario. for instance, industry time-trends,

unobserved product characteristics, distribution of consumer idiosyncratic product-specific

shocks. Trajtenberg (JPE, 1989). Petrin (JPE, 2002). Valuing new goods with product

complementarity: Gentzkow (AER, 2007)

4.1. An Application: Hausman (1996) on cereals
. Hausman (1996) presents an application of demand in product space to an industry with
many varieties: ready-to eat (RTE) cereals in US. This industry has been characterized by

the proliferation of many varieties. We have described the Hausman’s data, model, and

estimation method in section 2.5 above. Here we describe Hausman’s evaluation of the

welfare effects of the introduction of a new brand, Cinnamon Cheerios.
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Hausman uses the estimated demand system to evaluate the value of a new variety that

was introduced during this period: apple-cinamon cheerios (ACC). He first obtains the value

of the price ACC that makes the demand of this product equal to zero. He obtains a virtual

price of $7.14 (double the actual observed price $3.5). Given this price, he calculates the

consumer surplus (alternatively the CV or the EV).

He obtains estimated welfare gains of $32,268 per city and weekly average with a standard

error of $3,384. Aggregated at the level of US and annually, the consumer-welfare gain is

$78.1 million (or $0.31 per person per year) which is a sizable amount of consumer’s surplus.

Valuation of new products. Consider an individual with preference parameters (αh, βh, εh)

facing a set of products J with vector of prices p. The indirect utility function is defined as

(income effects are assumed away because linearity):

v(p, αh, βh, εh) = max
j∈J

[
−αhpj + xjβh + ξj + εhj

]
(4.1)

To measure aggregate consumer welfare, Hausman uses the money-metric welfare function

in McFadden (1981) and Small and Rosen (1981). As indicated by its name, an attractive

feature of this welfare measure is that its units are monetary units. To obtain this money

metric, we divide utility by the marginal utility of income. The money-metric welfare for

consumer h is defined as 1
αh
v(p, αh, βh, εh). The money metric at the aggregate market level

is W (p) =

∫
1
αh

v(p, αh, βh, εh) dF (αh, βh, εh). For the random coeffi cients logit model:

W (p) =

∫
1

αh
ln

[
J∑
j=0

exp
{
−αhpj + xjβh + ξj

}]
dF (αh, βh) (4.2)

We can include x and J as explicit arguments of the welfare function: W (p,x,J ). We can

useW to measure the welfare effects of a change in: Prices, W (p1,x,J )−W (p0,x,J ); Prod-

ucts characteristics: W (p,x1,J )−W (p,x0,J ); Set of products: W (p,x,J 1)−W (p,x,J 0).

Some limitations.

[1] Problems to evaluate radical innovations with new types of characteristics.
[2] Logit errors. There is very limited "crowding" of products, that is, limJ→∞W (J ) =

∞. See the section below on the Logit model and the value of new products.
[3] Outside alternative. Unobserved "qualities" ξjt are relative to the outside alterna-

tive. For instance, if there exist quality improvements in the outside alternative, then this

approach underestimates the welfare improvements in this industry.

4.2. Trajtenberg (JPE, 1989)
. Trajtenberg (1989) on computed tomography scanners. The computed tomography (CT)
scanner is considered a key innovation in imaging diagnosis in medicine during the 1970s.

The first was installed in the US in 1973, and soon after 20 firms entered in this market



4. CONSUMER VALUATION OF PRODUCT INNOVATIONS 63

with different varieties, General Electric being the leader. Clients are hospitals. Three

characteristics are key to scanner quality: scan time, image quality, and reconstruction time.

Data. Period: 1973-1981. 55 products. Product characteristics (price, scan speed,

resolution, reconstruction speed) and sales in US. Identity and attributes of the buying

hospital. Hospital-year level data: the dependent variable is the product choice of hospital

h at year t.

Model. The model is a nested logit where scanners are divided in two groups depending

the part of body for which the scanner is designed to scan. Then, the groups are "head

scanners" and "body scanners". The utility function is quadratic in the three product

attributes (other than price).

Estimation results. The estimation method does not account for the endogeneity of

prices. The estimated elasticity of substitution between the two groups is very close to

zero. That is, it seems that head scanners and body scanners are very different products are

there is almost zero substitution between these two groups. The estimated parameters α for

prices are significant but this parameter has the wrong sign for body scanners. This result

is probably comming from the correlation of prices an unobserved quality.

Welfare effects. The counterfactual experiment consists of eliminating all CT scanner

products, keeping only the outside product. The estimated welfare effect of CT scanners

during this period is $16 million of 1982. Using data of firms’R&D investment, Trajtenberg

obtains a social rate of return of 270%. That is, every dollar of investment in the R&D of

CT scanners generate 2.7 dollars in return. This is a very substantial rate of return.

4.3. Petrin (JPE, 2002) on minivans
. The aim of this study was to evaluate the consumer welfare gains from the introduction

of a new type of car, the minivan. Estimation of a BLP demand system of automobiles.

Combine market level and micro moments. Observing average family size conditional on

the purchase of a minivan and asking the model to match this average helps to identify

parameters that capture consumer taste for the characteristics of minivans.

In 1984, Chrysler introduced the Dodge caravan (its minivan). It was an immediate

success. GM and Ford responded by quickly introducing their own minivans in 1985. By

1998, there were 6 firms selling a total of 13 different minivans, Chrysler being the leader

(44%).

Data. Period: 1981-1993. J = 2407. Product-year panel. Variables: Quantity sold;

price, acceleration, dimensions, drive type, fuel effi ciency, a measure of luxury. Consumer

expenditure survey (CEX).links demographics of purchasers of new vehicles to the vehicles

they purchase. In the CEX, we observe 2,660 new vehicle purchases over the period and

sample. Used to estimate the probabilities of new vehicle purchases for different income
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groups. Observed purchases of minivans (120), station wagons (63), SUVs (131), and full-

size vans (23). Used to estimate average family size and age of purchasers of each of these

vehicle types.

Table 2.1: Petrin (2002) Market shares by type of automobile

Tables 2.2 to 2.4 present estimates of demand parameters separated in three groups:

price coeffi cients, marginal utilities of product characteristics, and random coeffi cients.

Table 2.2: Petrin (2002) Parameter estimates. Price coeffi cients
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Table 2.3: Petrin (2002) Parameter estimates. Product characteristics

Table 2.4: Petrin (2002) Parameter estimates. Random coeffi cients
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Table 2.5 presents estimates of the parameters in the marginal cost function.

Table 2.5: Petrin (2002) Parameter estimates. Marginal costs

Price effects of the introduction of minivans. Petrin used the estimated model to
implement the counterfactual experiment of eliminating minivan cars from consumers’choice

set. This experiment takes into account that in the counterfactual scenario without minivans

the equilibrium prices of all the products will change. Table 2.6 presents equilibrium prices

with and without minivans. The introduction of minivans (particularly, Dodge caravan) had

an important negative effect on the prices of many substitutes that were top-selling vehicles

in the large-sedan and wagon segments of the market. There were also some price increases

due to cannibalization of own products.

Table 2.6: Petrin (2002) Prices with and without minivans
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Consumer welfare effects of introducing minivans. The preferred estimates are
those of the model with random coeffi cients, using BLP instruments, and using micro mo-

ments. Based on these estimates, the mean per capita Compensated Variation of introducing

minivans is $1247. This is a very substantial welfare gain. Petrin compares this estimated

welfare gain with the ones using other models and estimates of the model: OLS logit; IV

logit; and IV BLP without micro moments. These other models and methods imply esti-

mated welfare gains which are substantially smaller than the preferred model. This is mainly

because these methods under-estimate the marginal utility of income parameters.

Petrin also provides a decomposition of the welfare gains in the contribution of product

characteristics xj and ξj, and of the logit errors εhj. For the preferred model, the mean

per capita welfare gain of $1247 is decomposed in a contribution of $851 from product

characteristics, and a contribution of $396 from the logit errors. The other models and

methods imply very implausible contributions from the logit errors.

Table 2.7: Petrin (2002) Consumer welfare effects of minivans

4.4. Logit model and the value of new products
. The Logit errors can have unrealistic implications on the evaluation of welfare gains. Be-
cause of these errors, welfare increases unboundedly (though concavely) with J . To illustrate

this, consider the simpler case where all the products are identical excelt for the logit errors.

In this case, the aggregate welfare function is W = ln(
∑J

j=0 exp{δ}) = δ ln(J + 1), which

is an increasing and concave function of the number of products J . Though the BLP or

Random Coeffi cients-Logit model limits the influence of the logit errors, this model is still

subject to this problem.
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Ackerberg and Rysman (2005) propose a simple modification of the logit model that can

contribute to correct for this problem. Consider a variation of the BLP model where the

dispersion of the logit errors depends on the number of products in the market. For j > 0,

Uhj = −αhpj + xjβh + ξj + σ(J) εhj. The parameter σ(J) is strictly decreasing in J and it

goes to 0 as J goes to ∞. As J increases, the differentiation from the ε′s becomes less and

less important. Function σ(J) can be parameterized and its parameters can be estimated

together with the rest of the model. Though Ackerberg and Rysman consider this approach,

they favor a similar approach that is simpler to implement. They consider the model:

Uhj = −αhpj + xjβh + ξj + f(J, γ) + εhj (4.3)

where f(J, γ) is a decreasing function of J parameterized by γ. For instance, f(J, γ) = γ

ln(J). It can be also extended to a nested logit version. For group g: fg(J, γ) = γg ln(Jg).

The reasons for the specification f(J, γ) instead of σ(J, γ) is simplicity in estimation.

4.5. Valuing new goods with product complementarity
. The class of discrete choice demand models we have considered so far rule out comple-
mentarity between products. This is an important limitation in some relevant contexts. For

instance, in the evaluation of the merger between two firms producing complements, such

as Pepsico and Frito-Lay, or in the evaluation of the welfare effects of new products that

may complement with existing products. Sometimes there are both substitution and com-

plementarity effects. For instance, in the case of radio stations which play recorded music;

between a movie based on a book novel and the book itself; or, arguably, between Uber and

taxis. Gentzkow (2007) extends McFadenn / BLP framework to allow for complementarity,

and studies the demand and welfare effect of online newspapers.

4.5.1. Model

. Now consumers can choose bundles of products. We start with a simple example. There

are two products A and B. The set of possible choice for a consumer is {0, A, B, AB}. The
utilities of these choice alternatives are 0, uA, uB, and uAB = uA + uB + Γ. The parameter

Γ measures the degree of demand complementarity between products A and B. For choice

alternative j, let Pj = Pr(uj = max{0, uA, uB, uAB}) be the probability or proportion of
consumers that choose alternative j. Importantly, in contrast to the discrete choice demand

models considered above, this model PA and PB are not the market shares of products A

and B, respectively. Now, to obtain the market shares of these products we should take

into account the share of consumer we choose to buy the bundle AB. Let sA and sB be the

market shares of products A and B, respectively. We have that:

sA = PA + PAB

sB = PB + PAB

(4.4)
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ProductsA andB are substitutes if ∂sA/∂pB > 0, and they are complements if ∂sA/∂pB <

0. Complements / substitutes is closely related to the sign of Γ. Figure 2.2 illustrates this

relationship. We represent uA in horizontal axis and uB in the vertical axis. We consider

three cases: case 1 with Γ = 0; case 2 with Γ > 0; and case 3 with Γ < 0. For each case, we

partition the space in four regions where each region represents the values (uA, uB) for which

an alternative is the optimal choice. Consider the effect of a small increase in the price of

product B. Because it is a marginal increase, it affects only those consumers who are in the

frontier of the choice sets. More precisely, the increase in pB implies that all the frontiers

shift vertically and upward. That is, to keep the same choice as with previous prices the

utility uB should be larger.

Figure 2.2: Gentzkow (2007) Choice regions and effect of Γ

In case 1 with Γ = 0, this implies that PAB declines and PA increases but they do it

by the same absolute magnitude such that sA = PA + PAB does not change. Therefore,

with Γ = 0, we have that ∂sA/∂pB = 0 and products A and B are neither substitutes nor

complements.

In case 2 with Γ > 0, we can distinguish two different types of marginal consumers: those

located in a point like m and those in a point like o in Figure 2.2 panel 2. For consumers

in point m, an increase in pB makes them switch from choosing the bundle AB to choosing

A. As in case 1, this change does not affect the demand of product A. However, we have

now also the consumers in point o. These consumers switch from buying the bundle AB

to buying nothing. This implies a reduction in PAB without an increase in PA such that it

has a negative effect on the demand of product A. Therefore, with Γ > 0, we have that

∂sA/∂pB < 0 and products A and B are complements in demand.
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In case 3 with Γ < 0, we can also distinguish two different types of marginal consumers:

those located in a point like m and those in a point like o in Figure 2.2 panel 3. Similarly

as in the previous two cases, for consumers in point m, an increase in pB does not have any

effect on the demand of product A. For consumers in point o, and increase in pB makes

them switch from buying product B to buying product A. This implies an increase in the

demand of product A. Therefore, with Γ < 0, we have that ∂sA/∂pB > 0 and products A

and B are substitutes in demand.

Suppose that: uhA = βA − α pA + vhA; and uhB = βB − α pB + vhB. Allowing for

correlation between unobservables vhA and vhB is very important. Observing that frequent

online readers are also frequent print readers might be evidence that the products in question

are complementary, or it might reflect the correlation between unobservable tastes for goods.

Suppose that (vhA, vhB) are standard normals with correlation ρ. The parameters of the

model are: βA, βB, α, ρ, Γ. The researcher (with consumer level data) observes prices and

bundles market shares: PA, PB, PAB.

4.5.2. Identification
. Even with micro-level data with information on shares PA, PB, PAB, the parameters (βA,

βB, α, ρ, Γ) are not identified. Even if α is known, we have 3 data points and 4 para-

meters. Without further restrictions, a high value of PAB can be explained by either high

Γ or high ρ. We want to distinguish between these two interpretations because they have

different economic and policy implications. Gentzkow considers two sources of identifica-

tion: (1) Exclusion restrictions; and (2) Panel data and restrictions on the structure of the

unobservables.

(a) Exclusion restrictions. Suppose that there is an exogenous consumer characteristic
(or vector) z that enters in consumer valuation of product A but not of product B: βA(z),

but βB does not depend on z. For instance, if B is a print newspaper and A is its online

version, z could be Internet access at work (at home could be more endogenous). Suppose z

is binary for simplicity. Now, the data [PA(z), PB(z), PAB(z): z ∈ {0, 1}] can identify βA(0),

βA(1), βB, Γ, and ρ. Intuition: if Γ > 0 (complementarity), then z = 1 should increase

PA(z) and PAB(z). Otherwise, if Γ = 0, then z = 1 should increase PA(z) but not PAB(z).

(2) Panel Data. Suppose that we observe consumer choices at different periods of time.
And suppose that: vjht = ηjh + εjht. The time-invariant effects ηAh and ηBh are correlated

with each other; but εAht and εAht are independent and i.i.d. over h, t. Preference parameters

are assumed to be time invariant. Suppose that T = 2. We have 8 possible choice histories, 7

probabilities, and 4 parameters: βA, βB, Γ, and ρ. Identification intuition: if Γ > 0, changes

over time in demand should be correlated between the two goods. If Γ = 0, changes over

time should be uncorrelated between goods.
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4.5.3. Data

. Survey: 16,179 individuals in Washington DC, March-2000 and Feb. 2003. Information on

individual and household characteristics, and readership of: print local newspapers read over

last week; major local online newspapers over last week. Two main local print newspapers:

Times and Post. One main online newspaper: post.com. Three products: Times, Post, and

post.com. Outside alternative being all the other local papers.

Figure 2.2: Gentzkow (2007) Time series of readers

4.5.4. Empirical results

. Estimation results from reduced-form OLS regressions and from a structural model without

heterogeneity suggest that the print and online editions of the Post are strong complements.

According to those estimates, the addition of the post.com to the market increases profits

from the Post print edition by $10.5 million per year. However, properly accounting
for consumer heterogeneity changes the conclusions substantially. Estimates of
the model with both observed and unobserved heterogeneity show that the print and online

editions are significant substitutes. Table 2.8 presents estimates of the Γ parameters.
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Table 2.8: Gentzkow (2007) Estimates of Γ parameters

Table 2.9 presents estimates of the effect of the online edition on the print one. Raising

the price of the Post by $0.10 would increase post.com readership by about 2%. Removing the

post.com from the market entirely would increase readership of the Post by 27,000 readers per

day, or 1.5%. The estimated $33.2 million of revenue generated by the post.com comes at a

cost of about $5.5 million in lost Post readership. For consumers, the online edition generated

a per-reader surplus of $0.30 per day, implying a total welfare gain of $45 million per year.

Reduced-form OLS regressions and a structural model without heterogeneity suggest that

the print and online editions of the Post are strong complements.

Table 2.9: Gentzkow (2007) Effect of Online on Print
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5. Appendix

5.1. Derivation of demand systems
.
5.1.1. The Linear Expenditure System

. The utility function has the Stone-Geary form:

U = (q0 − γ0)α0 (q1 − γ1)α1 ... (qJ − γJ)αJ (5.1)

The marginal utility of product j is Uj = αj
U

qj − γj
. Therefore, the marginal condition of

optimality Uj − λpj = 0 implies that αj
U

qj − γj
= λpj, or equivalently,

pj qj = αj
U

λ
+ pj γj (5.2)

Adding up this expression over the J + 1 products and using the budget constraint and the

restriction
∑J

j=0 αj = 1, we have that y = U
λ

+
∑J

j=0 pj γj such that:

U

λ
= y −

J∑
j=0

pjγj (5.3)

Plugging this expression into equation pj qj = αj
U
λ

+ pj γj, we obtain the equations of the

Linear Expenditure System:

qj = γj + αj

[
y − Pγ
pj

]
(5.4)

where Pγ is the aggregate price index
∑J

i=0 pi γi.

5.1.2. Constant Elasticity of Substitution demand system

. The utility function is:

U =

(
J∑
j=0

qσj

)1/σ

(5.5)

The marginal utility is Uj =
qσ−1
j U∑J
i=0 q

σ
i

such that the marginal condition of optimality for

product j is
qσ−1
j U∑J

i=0 [αi qi]
σ
− λ pj = 0. We can re-write this condition as:

qσ−1
j∑J

i=0 [αi qi]
σ

U

λ
= pj qj (5.6)

Adding the expression over the J + 1 products, we have that:

y =

J∑
j=0

pj qj =
U

λ
(5.7)
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That is,
U

λ
= y. Plugging this result into the marginal condition for product j above, and

taking into account that
∑J

i=0 q
σ
i = Uσ, we have that:

qσj
Uσ

y = pj qj (5.8)

This equation can be re-written as:

qj =

[
y

pj

]1/(1−σ) [
1

Uσ

]1/(1−σ)

(5.9)

Plugging this expression in the definition of the utility function, we can get:

U =

(
J∑
j=0

[
y

pj

]σ/(1−σ)
)1/σ [

1

Uσ

]1/(1−σ)

(5.10)

Solving for U , we have:

U =

(
J∑
j=0

[
y

pj

]σ/(1−σ)
)(1−σ)/σ

=
y

Pσ
(5.11)

where Pσ is the price index:

Pσ =

(
J∑
j=0

[pj]
−σ/(1−σ)

)−(1−σ)/σ

(5.12)

Finally, plugging these results into the expression qj =
[
y
pj

]1/(1−σ) [
1
Uσ

]1/(1−σ)
, we get the

CES demand equations:

qj =
y

Pσ

[
pj
Pσ

]−1/(1−σ)

(5.13)
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6. Exercises

6.1. Exercise 1
. To answer the questions in this exercise you need to use the dataset verboven_cars.dta
Use this dataset to implement the estimations describe below. Please, provide the STATA

code that you use to obtain the results. For all the models that you estimate below, impose

the following conditions:

- For market size (number of consumers), use Population/4, that is, pop/4

- Use prices measured in euros (eurpr).

- For the product characteristics in the demand system, include the characteristics: hp,

li, wi, cy, le, and he.

- Include also as explanatory variables the market characteristics: ln(pop) and log(gdp).

- In all the OLS estimations include fixed effects for market (ma), year (ye), and brand

(brd).

- Include the price in logarithms, that is, ln(eurpr).

- Allow the coeffi cient for log-price to be different for different markets (countries). That

is, include as explanatory variables the log price, but also the log price interacting (multi-

plying) each of the market (country) dummies except one country dummy (say the dummy

for Germany) that you use as a benchmark.

Question 1.1 Obtain the OLS-Fixed effects estimator of the Standard logit model. Interpret
the results.

Question 1.2 Test the null hypothesis that all countries have the same price coeffi cient.
Question 1.3 Based on the estimated model, obtain the average price elasticity of demand
for each country evaluated at the mean values of prices and market shares for that country.

6.2. Exercise 2
. The STATA datafile eco2901_problemset_01_2012_airlines_data.dta contains a panel
dataset of the US airline industry in 2004. A market is a route or directional city-pair, for

instance, round-trip Boston to Chicago. A product is the combination of route (m), airline

(f), and the indicator of stop flight or nonstop flight. For instance, a round-trip Boston

to Chicago, non-stop, with American Airlines is an example of product. Products compete

with each other at the market (route) level. Therefore, the set of products in market m

consists of all the airlines with service in that route either with nonstop or with stop flights.

The dataset contains 2, 950 routes, 4 quarters, and 11 airlines (where the airline "Others" is

a combination of multiple small airlines). The following table includes the list of variables

in the dataset and a brief description.
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Variable name Description

route_city : Route: Origin city to Destination City
route_id : Route: Identification number
airline : Airline: Name (Code)
direct : Dummy of Non-stop flights
quarter : Quarter of year 2004
pop04_origin : Population Origin city, 2004 (in thousands)
pop04_dest : Population Destination city, 2004 (in thousands)
price : Average price: route, airline, stop/nonstop, quarter (in dollars)
passengers : Number of passengers: route, airline, stop/nonstop, quarter
avg_miles : Average miles flown for route, airline, stop/nonstop, quarter
HUB_origin : Hub size of airline at origin (in million passengers)
HUB_dest : Hub size of airline at destination (in million passengers)

In all the models of demand that we estimate below, we include time-dummies and the

following vector of product characteristics:

{ price, direct dummy, avg_miles, HUB_origin, HUB_dest, airline dummies }

In some estimations we also include market (route) fixed effects. For the construction of mar-

ket shares, we use as measure of market size (total number of consumers) the average popu-

lation in the origin and destination cities, in number of people, that is, 1000*(pop04_origin

+ pop04_dest)/2.

Question 2.1. Estimate a Standard Logit model of demand: (a) by OLS without route
fixed effects; (b) by OLS with route fixed effects. Interpret the results. What is the average

consumer willingness to pay (in dollars) for a nonstop flight (relative to a stop flight), ceteris

paribus? What is the average consumer willingness to pay for one million more people of

hub size in the origin airport, ceteris paribus? What is the average consumer willingness to

pay for Continental relative to American Airlines, ceteris paribus? Based on the estimated

model, obtain the average elasticity of demand for Southwest products. Compare it with the

average elasticity of demand for American Airline products.

Question 2.2. Consider a Nested Logit model where the first nest consists of the choice
between groups "Stop", "Nonstop", and "Outside alternative", and the second nest consists

in the choice of airline. Estimate this Nested Logit model of demand: (a) by OLS without

route fixed effects; (b) by OLS with route fixed effects. Interpret the results. Answer the

same questions as in Question 2.1.

Question 2.3. Consider the Nested Logit model in Question 2.2. Propose and implement
an IV estimator that deals with the potential endogeneity of prices. Justify your choice

of instruments, for instance, BLP, or Hausman-Nevo, or Arellano-Bond, ... Interpret the

results. Compare them with the ones from Question 2.2.
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Question 2.4. Given your favorite estimation of the demand system, calculate price-cost
margins for every observation in the sample. Use these price cost margins to estimate a

marginal cost function in terms of all the product characteristics, except price. Assume

constant marginal costs. Include also route fixed effects. Interpret the results.

Question 2.5. Consider the route Boston to San Francisco ("BOS to SFO") in the fourth
quarter of 2004. There are 13 active products in this route-quarter, and 5 of them are

non-stop products. The number of active airlines is 8: with both stop and non-stop flights,

America West (HP), American Airlines (AA), Continental (CO), US Airways (US), and

United (UA); and with only stop flights, Delta (DL), Northwest (NW), and "Others". Con-

sider the "hypothetical" merger (in 2004) between Delta and Northwest. The new airline,

say DL-NW, has airline fixed effects, in demand and costs, equal to the average of the fixed

effects of the merging companies DL and NW. As for the characteristics of the new airline in

this route: avg_miles is equal to the minimum of avg_miles of the two merging compa-

nies; HUB_origin = 45; HUB_dest = 36; and the new airline still only provides stop flights

in this route.

(a) Using the estimated model, obtain airlines profits in this route-quarter

before the hypothetical merger.

(b) Calculate equilibrium prices, number of passengers, and profits , in this

route-quarter after the merger. Comment the results.

(c) Suppose that, as the result of the merger, the new airline decides also to

operate non-stop flights in this route. Calculate equilibrium prices, number of

passengers, and profits , in this route-quarter after the merger. Comment the

results.
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CHAPTER 3

Estimation of Production Functions

1. Introduction

Production functions (PF) are important primitive components of many economic mod-

els. The estimation of PFs plays a key role in the empirical analysis of issues such as

productivity dispersion and misallocation, the contribution of different factors to economic

growth, skill-biased technological change, estimation of economies of scale and economies of

scope, evaluation of the effects of new technologies, learning-by-doing, or the quantification

of production externalities, among many others.

In empirical IO, the estimation of production functions can be used to obtain firms’

costs. Cost functions play an important role in any empirical study of industry competition.

As explained in chapter 1, data on production costs at the firm-market-product level is

rare. For this reason cost functions are often estimated in an indirect way, using first order

conditions of optimality for profit maximization (see chapter 4). However, cross-sectional or

panel datasets with firm-level information on output and inputs of the production process

are more commonly available. Given this information, it is possible to estimate the industry

production function and use it to obtain firms’cost functions.

There are multiple issues that should be taken into account in the estimation of produc-

tions functions.

(a) Measurement issues. There are important measurement problems such as measure-

ment error in output —observing revenue instead of output in physical units —and inputs —

such as differences in the quality of labor, or the measurement error that results from the

construction of the value of capital using a perpetual invetory method.

(b) Specification assumptions. The choice of functional form for the production function

is an important modelling decision, especially when the model includes different types of

labor and capital inputs that may be complements or substitutes.

(c) Simultaneity / endogeneity. This is a key econometric issue in the estimation of

production functions. Observed inputs (for instance, labor and capital) can be correlated

with unobserved inputs or productivity shocks (for instance, managerial ability, quality of

land, materials, capacity utilization). This correlation introduces biases in some estimators

of PF parameters.
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(d) Multicollinearity between observed inputs is also a relevant issue in some empirical

applications. The high correlation between observed labor and capital can seriously reduce

the precision in the estimation of PF parameters.

(e) Endogenous exit. In panel datasets, firm exit from the sample is not exogenous

and it is correlated with firm size. Smaller firms are more likely to exit than larger firms.

Endogenous exit can introduce selection-bias in some estimators of PF parameters.

In this chapter, we concentrate on the problems of simultaneity, multicollinearity, and

endogenous exit, and on different solutions that have been proposed to deal with these

issues. For the sake of simplicity, we discuss these issues in the context of a Cobb-Douglas

PF. However, the arguments and results can be extended to more general specifications

of PFs. In principle, some of the estimation approaches can be generalized to estimate

nonparametric specifications of PF. Griliches and Mairesse (1998), Bond and Van Reenen

(2007), and Ackerberg et al. (2007) include surveys of this literature.

2. Model and Data

2.1. Model.
2.1.1. Basic framework. A Production Function (PF) is a description of a production

technology that relates the physical output of a production process to the physical inputs or

factors of production. A general representation is:

Y = F (X1, X2, ..., XJ , A) (2.1)

where Y is a measure of firm output, X1, X2, .., and XJ are measures of J firm inputs,

and A represents the firm’s technological effi ciency. The marginal productivity of input j is

MPj = ∂F/∂Xj.

A very common specification is the Cobb-Douglas PF (Cobb and Douglas, 1928):

Y = LαL KαK A (2.2)

where L and K represent labor and capital inputs, respectively, and αL and αK are techno-

logical parameters that are assumed the same for all the firms in the market and industry

under study. This Cobb-Douglas PF can be generalized to include more inputs, for instance,

Y = LαL KαK RαR EαE A, where R represents R&D and E is energy inputs. We can

also distinguish different types of labor —blue collar and white collar labor —and capital —

equipment and information technology. For the Cobb-Douglas PF, the productivity term A

is denoted the Total Factor Productivity (TFP). For this PF the marginal productivity of

input j is MPj = αj
Y
Xj
. All the inputs are complements in production, that is, the marginal
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productivity of any input j increases with the amount of any other input k:

∂MPj
∂Xk

=
αj
Xj

αk
Xk

Y > 0 (2.3)

This is not necessarily the case for other production functions such as the Constant Elasticity

of Substitution (CES) or the Translog.

Given the production function Y = F (X1, X2, ..., XJ , A) and input prices (W1, W2,

...,WJ), the cost function C(Y ) is defined as the minimum cost of producing the amount of

output Y :
C(Y ) = min

{X1,X2,...,XJ}
W1X1 +W2X2 + ...+WJXJ

subject to: Y ≥ F (X1, X2, ..., XJ , A)

(2.4)

The marginal conditions of optimality imply that for every input j, Wj − λ Fj(X, A) = 0,

where λ is the Lagrange multiplier of the restriction.

2.1.2. Cost function for the Cobb-Douglas. Given the Cobb-Douglas PF Y = Xα1
1 ... XαJ

1

A and input prices Wj, obtain the corresponding cost function. The marginal condition of

optimality for input j implies Wj − λαj (Y/Xj) = 0, or equivalently:

Wj Xj = λαj Y (2.5)

Therefore, the cost is equal to
∑J

j=1Wj Xj = λα Y , where the parameter α is defined

as α ≡
∑J

j=1 αj. Note that α represents the returns to scale in the production function:

constant if α = 1, decreasing if α < 1, and increasing if α > 1. To obtain the expression of

the cost function, we still need to obtain the (endogenous) value of the Lagrange multiplier

λ. For this, we substitute the marginal conditions Xj = λαj Y/Wj into the production

function:

Y = A

(
λα1Y

W1

)α1 (λα2Y

W2

)α2
...

(
λαJY

WJ

)αJ
(2.6)

Using this expression to solve for the Lagrange multiplier, we get

λ =

(
W1

α1

)α1
α
(
W2

α2

)α2
α

...

(
WJ

αJ

)αJ
α

Y
1−α
α A

−1
α . (2.7)

And plugging this multiplier into the expression λα Y for the cost, we obtain the cost

function:

C(Y ) = α

(
Y

A

) 1
α
(
W1

α1

)α1
α
(
W2

α2

)α2
α

...

(
WJ

αJ

)αJ
α

(2.8)

Looking at the Cobb-Douglas cost function in equation (2.8) we can identify some inter-

esting properties. First, the returns to scale parameter α determines the shape of the cost

as a function of output. More specifically, the sign of the second derivative C ′′(Y ) is equal

to the sign of 1
α
− 1. If α = 1 (constant returns to scale, CRS) we have C ′′(Y ) = 0 such that

the cost function is linear in output. If α < 1 (decreasing returns to scale, DRS) we have
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C ′′(Y ) > 0 and the cost function is strictly convex in output. Finally, if α > 1 (increasing

returns to scale, IRS) we have C ′′(Y ) < 0 such that the cost function is concave in output.

2.1.3. Production functions and the linear regression model. An attractive feature of the

Cobb-Douglas PF from the point of view of estimation is that it is linear in logarithms:

y = αL `+ αK k + ω (2.9)

where y is the logarithm of output, ` is the logarithm of labor, k is the logarithm of physical

capital, and ω is the logarithm of the residual term U . The simplicity of the Cobb-Douglas

PF comes also with a price. One of its drawbacks is that it implies that the elasticity of

substitution between labor and capital (or between any two inputs) is always one. This

implies that all technological changes are neutral for the demand of inputs. For this rea-

son, the Cobb-Douglas PF cannot be used to study topics such as skill-biased technological

change. For empirical studies where it is important to have a flexible form for the elasticity

of substitution between inputs, the translog PF has been a popular specification:

Y = L[αL0+αLL`+αLKk] K [αK0+αKL`+αKKk] U (2.10)

that in logarithms becomes,

y = αL0 `+ αK0 k + αLL `
2 + αKK k2 + (αLK + αKL) ` k + ω (2.11)

2.2. Data. The most common type of data that has been used for the estimation of
PFs consists of panel data of firms or plants with annual frequency and information on: (i)

a measure of output, for instance, units produced, revenue, or value added; (ii) a measure of

labor input, such as number of workers; (iii) a measure of capital input; (iv) some datasets

include also measures of other inputs such as materials, energy, or R&D; and (v) some

datasets may also include information on input prices, typically at the industry level but

sometimes at the firm level. For the US, the most commonly used datasets in the estimation

of PFs has been Compustat, and the Longitudinal Research Database from US Census

Bureau. In Europe, some country Central Banks (for instance, Bank of Italy, Bank of Spain)

collect firm level panel data with rich information on output, inputs, and prices.

For the rest of this chapter we consider that the researcher observes a panel dataset of N

firms, indexed by i, over several periods of time, indexed by t, with the following information:

Data = {yit, `it, kit, wit, rit : i = 1, 2, ...N ; t = 1, 2, ..., Ti} (2.12)

where y, `, and k have been defined above, and w and r represent the logarithms of the price

of labor and the price of capital for the firm, respectively. Ti is the number of periods that

the researcher observes firm i.

Throughout this chapter, we consider that all the observed variables are in mean devia-

tions. Therefore, we omit constant terms in all the equations.
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3. Econometric Issues

We are interested in the estimation of the parameters αL and αK in the Cobb-Douglas

PF (in logs):

yit = αL `it + αK kit + ωit + eit (3.1)

ωit represents inputs which are known to the firm when it decides capital and labor but un-

observed for the econometrician. These include managerial ability, quality of land, materials,

etc. We refer to ωit as the logarithm of total factor productivity (log-TFP), or unobserved

productivity, or productivity shock. eit represents measurement error in output, or any shock

affecting output that is unknown to the firm when it decides capital and labor. We assume

that the error term eit is independent of inputs and of the productivity shock. We use yeit to

represent the "true" expected value of output for the firm, yeit ≡ yit − eit.

3.1. Simultaneity Problem. The simultaneity problem in the estimation of a PF es-

tablishes that if the unobserved productivity ωit is known to the firm when it decides the

amount of inputs to use in production, (kit, `it), then these observed inputs should be cor-

related with the unobservable ωit and the OLS estimator of αL and αK will be biased and

inconsistent. This problem was already pointed out in the seminal paper by Marschak and

Andrews (1944).

Example 3.1. Suppose that firms in our sample operate in the same markets for output and
inputs. These markets are competitive. Output and inputs are homogeneous products across

firms. For simplicity, consider a PF with only one input, say labor: Y = LαL exp{ω + e}.
The first order condition of optimality for the demand of labor implies that the expected

marginal productivity should be equal to the price of labor WL: that is, αL Y e/L = WL,

where Y e = Y/ exp{e} because the firm’s profit maximization problem does not depend on

the measurement error or/and non-anticipated shocks in eit. Note that the price of laborWL

is the same for all the firms because, by assumption, they operate in the same competitive

output and input markets. Then, the model can be described in terms of two equations: the

production function and the marginal condition of optimality in the demand for labor. In

logarithms, and in deviations with respect to mean values (no constant terms), these two

equations are:1

yit = αL `it + ωit + eit

yit − `it = eit

(3.2)

1The firm’s profit maximization problem depends on output exp{yei } without the measurement error ei.
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The reduced form equations of this structural model are:

yit =
ωit

1− αL
+ eit

`it =
ωit

1− αL

(3.3)

Given these expressions for the reduced form equations, it is straightforward to obtain the

bias in the OLS estimation of the PF. The OLS estimator of αL in this simple regression

model is a consistent estimator of Cov(yit, `it)/V ar(`it). But the reduced form equations,

together with the condition Cov(ωit, eit) = 0, imply that the covariance between log-output

and log-labor should be equal to the variance of log-labor: Cov(yit, `it) = V ar(`it). Therefore,

under the conditions of this model the OLS estimator of αL converges in probability to 1

regardless the true value of αL. Even in the hypothetical case that labor has very low

productivity and αL is close to zero, the OLS estimator converges in probability to 1. It is

clear that —at least in this case —ignoring the endogeneity of inputs can generate a serious

bias in the estimation of the PF parameters. �

Example 3.2: Consider the similar conditions as in Example 1, but now firms in our sample
produce differentiated products and use differentiated labor inputs. In particular, the price

of labor Rit is an exogenous variable that has variation across firms and over time. Suppose

that a firm is a price taker in the market for the type labor input that it demands to produce

its product and that the market price Rit is independent of the firm’s productivity shock ωit.

In this version of the model the system of structural equations is very similar to the one in
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(3.2) with the only difference that the labor demand equation now includes the logarithm

of the price of labor —denoted by rit – such that we have yit − `it = rit + eit. The reduced

form equations for this model are:

yit =
ωit − rit
1− αL

+ rit + eit

`it =
ωit − rit
1− αL

(3.4)

Again, we can use these reduced form equations to obtain the asymptotic bias in the esti-

mation of αL if we ignore the endogeneity of labor in the estimation of the PF. The OLS

estimator of αL converges in probability to Cov(yit, `it)/V ar(`it) and in this case this implies

the following expression for the bias:

Bias
(
α̂OLSL

)
=

1− αL

1 +
σ2
r

σ2
ω

(3.5)

where σ2
ω and σ

2
r represent the variance of the productivity shock and the logarithm of the

price of labor, respectively. This bias —of the OLS estimator of αL —is always upward because

the firm’s labor demand is always positively correlated with the firm’s productivity shock.

The ratio between the variance of the price of labor and the variance of productivity, σ2
r/σ

2
ω,

plays a key role in the determination of the magnitude of this bias. Sample variability in

input prices, if it is not correlated with the productivity shock, induces exogenous variability

in the labor input. This exogenous sample variability in labor reduces the bias of the OLS

estimator. The bias of the OLS estimator declines monotonically with the variance ratio

σ2
r/σ

2
ω. Nevertheless, the bias can be very significant if the exogenous variability in input

prices is not much larger than the variability in unobserved productivity. �

3.2. Endogenous Exit.
3.2.1. Market exit and selection problem. Panel datasets of firms or establishements can

contain a significant number of firms/plants that exit from the market. Exiting firms are

not randomly chosen from the population of operating firms. For instance, existing firms are

typically smaller than surviving firms.

Let dit be the indicator of the event "firm i stays in the market at the end of period t".

Let V 1(`it−1, kit, ωit) be the value of staying in the market, and let V 0(`it−1, kit, ωit) be the

value of exiting —that is, the exit or scrapping value of the firm. Then, the optimal exit/stay

decision is:

dit = I
{
V 1(`it−1, kit, ωit)− V 0(`it−1, kit, ωit) ≥ 0

}
(3.6)

Under standard conditions, the function V 1(`it−1, kit, ωit) − V 0(`it−1, kit, ωit) is strictly in-

creasing in all its arguments, that is, all the inputs are more productive in the current
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firm/industry than in the best alternative use. Therefore, the function is invertible with

respect to the productivity shock ωit and we can write the optimal exit/stay decision as a

single-threshold condition:

dit = I { ωit ≥ v (`it−1, kit) } (3.7)

where the threshold function v (., .) is strictly decreasing in all its arguments.

Consider the PF yit = αL `it + αK kit + ωit + eit. In the estimation of this PF, we use

the sample of firms that survived at period t: that is, dit = 1. Therefore, the error term in

the estimation of the PF is ωd=1
it + eit, where:

ωd=1
it ≡ {ωit | dit = 1} = {ωit | ωit ≥ v (`i,t−1, kit)} (3.8)

Even if the productivity shock ωit is independent of the state variables (`i,t−1, kit), the self-

selected productivity shock ωd=1
it will not be mean-independent of (`i,t−1, kit). That is,

E
(
ωd=1
it | `i,t−1, kit

)
= E (ωit | `i,t−1, kit, dit = 1)

= E (ωit | `i,t−1, kit, ωit ≥ v (`i,t−1, kit))

= λ (`i,t−1, kit)

(3.9)

λ (`i,t−1, kit) is the selection term. Therefore, the PF can be written as:

yit = αL `it + αK kit + λ (`i,t−1, kit) + ω̃it + eit (3.10)

where ω̃it ≡ {ωd=1
it − λ (`i,t−1, kit)} that, by construction, is mean-independent of (`i,t−1, kit).

Ignoring the selection term λ (`i,t−1, kit) introduces bias in our estimates of the PF pa-

rameters. The selection term is an increasing function of the threshold v (`i,t−1, kit), and

therefore it is decreasing in `i,t−1 and kit. Both `it and kit are negatively correlated with the

selection term, but the correlation with the capital stock tend to be larger because the value

of a firm depends strongly on its capital stock than on its "stock" of labor. Therefore, this

selection problem tends to bias downward the estimate of the capital coeffi cient.

To provide an intuitive interpretation of this bias, first consider the case of very large

firms. Firms with a large capital stock are very likely to survive, even if the firm receives a

bad productivity shock. Therefore, for large firms, endogenous exit induces little censoring

in the distribution of productivity shocks. Consider now the case of very small firms. Firms

with a small capital stock have a large probability of exiting, even if their productivity shocks

are not too negative. For small firms, exit induces a very significant left-censoring in the

distribution of productivity, that is, we only observe small firms with good productivity

shocks and therefore with high levels of output. If we ignore this selection, we will conclude

that firms with large capital stocks are not much more productive than firms with small

capital stocks. But that conclusion is partly spurious because we do not observe many firms

with low capital stocks that would have produced low levels of output if they had stayed.
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3.2.2. The relationship between firm size and firm growth. This type of selection problem

has been also analyzed by researchers interested in the relationship between firm growth and

firm size. This relationship has relevant policy implications. Mansfield (1962), Evans (1987),

and Hall (1987) are seminal papers in this literature. Consider the regression equation:

∆sit = α + β si,t−1 + εit (3.11)

where sit represents the logarithm of a measure of firm size, for instance, the logarithm of

capital stock, or the logarithm of the number of workers.

The so called Gibrat’s law —sometimes described as the rule of proportionate growth —is

an hypothesis establishing that the rate of growth of a firm is independent of its size. This

"law" was postulated by Gibrat (1931) —see the survey by Sutton (1997). Using equation

(3.11), we can enunciate Gibrat’s law/hypothesis as the model with β = 0.

Suppose that the exit decision at period t depends on firm size, si,t−1, and on a shock εit.

More specifically,

dit = I { εit ≥ v (si,t−1) } (3.12)

where v (.) is a decreasing function, that is, smaller firms are more likely to exit. In a

regression of ∆sit on si,t−1, we can use only observations from surviving firms. Therefore,

the regression of∆sit on si,t−1 can be represented using the equation∆sit = α+β si,t−1+εd=1
it ,

where εd=1
it ≡ {εit|dit = 1} = {εit|εit ≥ v (si,t−1)}. Thus,

∆sit = α + βsi,t−1 + λ (si,t−1) + ε̃it (3.13)

where λ (si,t−1) ≡ E(εit|εit ≥ v (si,t−1)), and ε̃it ≡ {εd=1
it −λ (`i,t−1, kit)} that, by construction,

is mean-independent of firm size at t−1. The selection term λ (si,t−1) is an increasing function

of the threshold v (si,t−1), and therefore it is decreasing in firm size. If the selection term is

ignored in the regression of ∆sit on si,t−1, then the OLS estimator of β will be downward

biased. That is, it seems that smaller firms grow faster just because small firms that would

like to grow slowly have exited the industry and they are not observed in the sample.

Mansfield (1962) already pointed out to the possibility of a selection bias due to en-

dogenous exit. He used panel data from three US industries, steel, petroleum, and tires,

over several periods. He tests the null hypothesis of β = 0, that is, Gibrat’s law. Using

only the subsample of surviving firms, he can reject Gibrat’s Law in 7 of the 10 samples.

Including also exiting firms and using the imputed values ∆sit = −1 for these firms, he

rejects Gibrat’s Law for only for 4 of the 10 samples. An important limitation of Mans-

field’s approach is that including exiting firms using the imputed values ∆sit = −1 does

not correct completely for the selection bias. But Mansfield’s paper was written more than

a decade before James Heckman’s seminal contributions on sample selection in economet-

rics —Heckman (1974, 1976, 1979). Hall (1987) and Evans (1987) dealt with the selection
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problem using Heckman’s two-step estimator. Both authors find that ignoring endogenous

exit induces significant downward bias in β. These two studies find that after controlling for

endogenous selection a la Heckman, the estimate of β is significantly smaller than zero such

that they reject Gibrat’s law. A limitation of their approach is that their models do not

have any exclusion restriction and identification is based on functional form assumptions:

the assumptions of normal distribution of the error term, and linear (causal) relationship

between firm size and firm growth.

4. Estimation Methods

4.1. Using Input Prices as Instruments. If input prices, ri, are observable and not
correlated with the productivity shock ωi, then we can use these variables as instruments in

the estimation of the PF. However, this approach has several important limitations. First,

input prices are not always observable in some datasets, or they are only observable at the

aggregate level but not at the firm level. Second, if firms in our sample use homogeneous

inputs, and operate in the same output and input markets, we should not expect to find any

significant cross-sectional variation in input prices. This is a problem because there may not

be enough time-series variation for identification, or it can be confounded with any aggregate

effect in the error term. Instead, suppose that firms in our sample operate in different input

markets, and the researcher observes significant cross-sectional variation in input prices. In

this context, a third problem is that this cross-sectional variation in input prices is suspicious

of being endogenous. The different markets where firms operate can be also different in the

average unobserved productivity of firms, and therefore cov (ωi, ri) 6= 0: that is, input prices

are not valid instruments. In general, when there is cross-sectional variability in input prices,

can one say that input prices are valid instruments for inputs in a PF? Is cov (ωi, ri) = 0?

When inputs are firm-specific, it is commonly the case that input prices depend on the firm’s

productivity.

4.2. Panel Data: Fixed-Effects Estimators. Suppose that we have firm level panel

data with information on output, capital and labor for N firms during T time periods. The

Cobb-Douglas PF is:

yit = αL `it + αK kit + ωit + eit (4.1)

Mundlak (1961) and Mundlak and Hoch (1965) are pioneer studies in using panel data for the

estimation of production functions. They consider the estimation of a production function

of an agricultural product. They postulate the following assumptions:

Assumption PD-1: ωit has the following variance-components structure: ωit = ηi + δt + uit.

The term ηi is a time-invariant, firm-specific effect that may be interpreted as the quality of
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a fixed input such as managerial ability, or land quality. δt is an aggregate shock affecting

all firms. And uit is an firm idiosyncratic shock.

Assumption PD-2: The amount of inputs depend on some other exogenous time varying

variables, such that var
(
`it − `i

)
> 0 and var

(
kit − k̄i

)
> 0, where `i ≡ T−1

∑T
t=1 `it, and

k̄i ≡ T−1
∑T

t=1 kit.

Assumption PD-3: uit is not serially correlated.

Assumption PD-4: The idiosyncratic shock uit is realized after the firm decides the amount

of inputs to employ at period t. In the context of an agricultural PF, this shock may be

interpreted as weather, or another random and unpredictable shock.

The Within-Groups estimator (WGE) or fixed-effects estimator of the PF is simply the

OLS estimator applied to the Within-Groups transformation of the model. The equation

that describes the within-groups —or within-firms —transformation can be obtained by taking

the difference between equation yit = αL `it +αK kit +ωit + eit and this equation average at

the firm level, that is ȳi = αL`i+ αK k̄i+ ω̄i + ēi. The within-groups equation is:

(yit − ȳi) = αL
(
`it − `i

)
+ αK

(
kit − k̄i

)
+ (ωit − ω̄i) + (eit − ēi) (4.2)

Under assumptions (PD-1) to (PD-4), the WGE is consistent. Under these assumptions, the

only endogenous component of the error term is the fixed effect ηi. The transitory shocks uit
and eit do not induce any endogeneity problem. The WG transformation removes the fixed

effect ηi.

It is important to point out that, for short panels (that is, T fixed), the consistency of

the WGE requires the regressors xit ≡ (`it, kit) to be strictly exogenous. That is, for any

(t, s):

cov (xit, uis) = cov (xit, eis) = 0 (4.3)

Otherwise, the WG-transformed regressors
(
`it − `i

)
and

(
kit − k̄i

)
would be correlated with

the error (ωit − ω̄i). This is why Assumptions (PD-3) and (PD-4) are necessary for the
consistency of the OLS estimator.

However, it is very common to find that the WGE estimator provides very small estimates

of αL and αK (see Griliches and Mairesse, 1998). There are at least two possible reasons that

can explain this empirical regularity. First, though assumptions (PD-2) and (PD-3) may be

plausible for estimating PFs of agricultural firms, they are unrealistic for other industries,

such as manufacturing. And second, the bias induced by measurement-error in the regressors

can be exacerbated by the WG transformation. That is, the noise-to-signal ratio can be much

larger for the WG transformed inputs than for the variables in levels. To see this, consider

the model with only one input, say capital, and suppose that it is measured with error.
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We observe k∗it where k
∗
it = kit + ekit, and e

k
it represents measurement error in capital and it

satisfies the classical assumptions on measurement error. In the estimation of the PF in

levels we have that:

Bias(α̂OLSL ) =
Cov(k, η)

V ar(k) + V ar(ek)
− αL V ar(e

k)

V ar(k) + V ar(ek)
(4.4)

If V ar(ek) is small relative to V ar(k), then the (downward) bias introduced by the mea-

surement error is negligible in the estimation in levels. In the estimation in first differences

(similar to WGE, in fact equivalent when T = 2), we have that:

Bias(α̂WGE
L ) = − αL V ar(∆e

k)

V ar(∆k) + V ar(∆ek)
(4.5)

Suppose that kit is very persistent (that is, V ar(k) is much larger than V ar(∆k)) and that

ekit is not serially correlated (that is, V ar(∆e
k) = 2 ∗ V ar(ek)). Under these conditions, the

ratio V ar(∆ek)/V ar(∆k) can be large even when the ratio V ar(ek)/V ar(k) is quite small.

Therefore, the WGE may be significantly downward biased.

4.3. Dynamic Panel Data: GMM Estimation. In the WGE described in the previ-
ous section, the assumption of strictly exogenous regressors is very unrealistic. However, we

can relax that assumption and estimate the PF using GMM method proposed by Arellano

and Bond (1991). Consider the PF in first differences:

∆yit = αL ∆`it + αK ∆kit + ∆δt + ∆uit + ∆eit (4.6)

We maintain assumptions (PD-1), (PD-2), and (PD-3), but we remove assumption (PD-3).

Instead, we consider the following assumption.

Assumption PD-5: A firm’s demands for labor and capital are dynamic. More formally, the

demand equations for labor and capital are `it = fL(`i,t−1, ki,t−1, ωit) and kit = fK(`i,t−1, ki,t−1, ωit),

respectively, where either `i,t−1 or ki,t−1, or both, have non-zero partial derivatives in fL and

fK .

There are multiple reasons why the demand for capital or and labor are dynamic —that

is, depend on the amount of labor and capital at previous period. Hiring and firing cost for

labor, irrversibility of some capital investments, installation costs, time-to-build, and other

forms of adjustment cots are the most common arguments for the existence of dynamics in

the demand of these inputs.

Under these conditions {`i,t−j, ki,t−j, yi,t−j : j ≥ 2} are valid instruments in the PD in

first differences. Identification comes from the combination of two assumptions: (1) serial

correlation of inputs; and (2) no serial correlation in productivity shocks {uit}. The presence
of adjustment costs implies that the implicit or shadow price of changing the amount of labor

or capital depends on the firm’s amount of the input at previous period. This implies that this
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shadow price varies across firms even if firms face the same input prices. This variability in

shadow prices can be used to identify PF parameters. The assumption of no serial correlation

in {uit} is key, but it can be tested (see Arellano and Bond, 1991).
This GMM in first-differences approach has also its own limitations. In some applications,

it is common to find unrealistically small estimates of αL and αK and large standard errors.

(see Blundell and Bond, 2000). Overidentifying restrictions are typically rejected. Further-

more, the i.i.d. assumption on uit is typically rejected, and this implies that {xi,t−2, yi,t−2}
are not valid instruments. It is well-known that the Arellano-Bond GMM estimator may

suffer from a weak-instruments problem when the serial correlation of the regressors in first

differences is weak (see Arellano and Bover, 1995, and Blundell and Bond, 1998). First dif-

ference transformation also eliminates the cross-sectional variation in inputs and it is subject

to the problem of measurement error in inputs.

The weak-instruments problem deserves further explanation. For simplicity, consider the

model with only one input, xit. We are interested in the estimation of the PF:

yit = α xit + ηi + uit + eit (4.7)

where uit and eit are not serially correlated. Consider the following dynamic reduced form

equation for the input xit:

xit = δ xi,t−1 + λ1 ηi + λ2 uit (4.8)

where δ, λ1, and λ2 are reduced form parameters, and δ ∈ [0, 1] captures the existence of

adjustment costs. The PF in first differences is:

∆yit = α ∆xit + ∆uit + ∆eit (4.9)

For simplicity, consider that the number of periods in the panel is T = 3. In this context,

Arellano-Bond GMM estimator is equivalent to a simple instrumental variables estimator

where the instrumented is xi,t−2. This IV estimator is:

α̂N =

∑N
i=1 xi,t−2 ∆yit∑N
i=1 xi,t−2 ∆xit

(4.10)

Therefore, under the previous assumptions, α̂N identifies α if the R-square in the auxiliary

regression of ∆xit on xi,t−2 is not zero.

By definition, the R-square coeffi cient in the auxiliary regression of ∆xit on xi,t−2 is such

that:

p limR2 =
Cov (∆xit, xi,t−2)2

V ar (∆xit) V ar (xi,t−2)
=

(γ2 − γ1)2

2 (γ0 − γ1) γ0

(4.11)

where γj ≡ Cov (xit, xi,t−j) is the autocovariance of order j of {xit}. Taking into account
that xit = λ1 ηi

1−δ + λ2(uit + δ ui,t−1 + δ2 ui,t−2 + ...), we can derive the following expressions
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for the autocovariances:

γ0 =
λ2

1 σ
2
η

(1− δ)2 +
λ2

2 σ
2
u

1− δ2

γ1 =
λ2

1 σ
2
η

(1− δ)2 + δ
λ2

2 σ
2
u

1− δ2

γ2 =
λ2

1 σ
2
η

(1− δ)2 + δ2 λ2
2 σ

2
u

1− δ2

(4.12)

Therefore, γ0 − γ1 = (λ2
2σ

2
u)/(1 + δ) and γ1 − γ2 = δ(λ2

2σ
2
u)/(1 + δ). The R-square is:

R2 =

(
δ
λ2

2σ
2
u

1 + δ

)2

2

(
λ2

2σ
2
u

1 + δ

)(
λ2

1 σ
2
η

(1− δ)2 +
λ2

2 σ
2
u

1− δ2

)

=
δ2 (1− δ)2

2 (1− δ + (1 + δ) ρ)

(4.13)

with ρ ≡ λ2
1σ

2
η/λ

2
2σ

2
u ≥ 0. We have a problem of weak instruments and poor identification if

this R-square coeffi cient is very small.

It is simple to verify that this R-square is small both when adjustment costs are small

(that is, δ is close to zero) and when adjustment costs are large (that is, δ is close to

one). When using this IV estimator, large adjustments costs are bad news for identification

because, with delta close to one, the first difference ∆xit is almost iid and it is not correlated

with lagged input (or output) values. What is the maximum possible value of this R-square?

It is clear that this R-square is a decreasing function of ρ. Therefore, the maximum R-square

occurs for λ2
1σ

2
η = ρ = 0 —that is, no fixed effects in the input demand. Under this condition,

we have that R2 = δ2 (1− δ) /2 and the maximum value of this R-square is R2 = 0.074 that

occurs when δ = 2/3. This upper bound for R-square is over-optimisitc because it is based

on the assumption of no fixed effects. For instance, suppose that λ2
1σ

2
η = λ2

2σ
2
u such that

ρ = 1. In this case, we have that R2 = δ2 (1− δ)2 /4 and the maximum value of this R-square

is R2 = 0.016 that occurs when δ = 1/2.

Arellano and Bover (1995) and Blundell and Bond (1998) have proposed GMM estimators

that deal with this weak-instrument problem. Suppose that at some period t∗i ≤ 0 (that is,

before the first period in the sample, t = 1) the shocks u∗it and eit were zero, and input and

output were equal to their firm-specific, steady-state mean values:

xit∗i =
λ1ηi
1− δ

yit∗i = α
λ1ηi
1− δ + ηi

(4.14)
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Then, it is straightforward to show that for any period t in the sample:

xit = xit∗i + λ2

(
uit + δuit−1 + δ2uit−2 + ...

)
yit = yit∗i + uit + αλ2

(
uit + δuit−1 + δ2uit−2 + ...

) (4.15)

These expressions imply that input and output in first differences depend on the history of

the i.i.d. shock {uit} between periods t∗i and t, but they do not depend on the fixed effect ηi.
Therefore, cov(∆xit, ηi) = cov(∆yit, ηi) = 0 and lagged first differences are valid instruments

in the equation in levels. That is, for j > 0:

E (∆xit−j [ηi + uit + eit]) = 0 ⇒ E (∆xit−j [yit − αxit]) = 0

E (∆yit−j [ηi + uit + eit]) = 0 ⇒ E (∆yit−j [yit − αxit]) = 0
(4.16)

These moment conditions can be combined with the "standard" Arellano-Bond moment

conditions to obtain a more effi cient GMM estimator. The Arellano-Bond moment conditions

are, for j > 1:

E (xit−j [∆uit + ∆eit]) = 0 ⇒ E (xit−j [∆yit − α∆xit]) = 0

E (yit−j [∆uit + ∆eit]) = 0 ⇒ E (yit−j [∆yit − α∆xit]) = 0
(4.17)

Based on Monte Carlo experiments and on actual data of UK firms, Blundell and Bond

(2000) have obtained very promising results using this GMM estimator. Alonso-Borrego

and Sanchez-Mangas (2001) have obtained similar results using Spanish data. The reason

why this estimator works better than Arellano-Bond GMM is that the second set of moment

conditions exploit cross-sectional variability in output and input. This has two implications.

First, instruments are informative even when adjustment costs are larger and δ is close to

one. And second, the problem of large measurement error in the regressors in first-differences

is reduced.

Bond and Soderbom (2005) present a very interesting Monte Carlo experiment to study

the actual identification power of adjustment costs in inputs. The authors consider a model

with a Cobb-Douglas PF and quadratic adjustment cost with both deterministic and stochas-

tic components. They solve numerically the firm’s dynamic programming problem, simulate

data of inputs and output using the optimal decision rules, and use simulated data and

Blundell-Bond GMM method to estimate PF parameters. The main results of their exper-

iments are the following. When adjustment costs have only deterministic components, the

identification is weak if adjustment costs are too low, or too high, or too similar between the

two inputs. With stochastic adjustment costs, identification results improve considerably.

Given these results, one might be tempted to "claim victory": if the true model is such that

there are stochastic shocks (independent of productivity) in the costs of adjusting inputs,

then the panel data GMM approach can identify with precision PF parameters. However,
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as Bond and Soderbom explain, there is also a negative interpretation of this result. De-

terministic adjustment costs have little identification power in the estimation of PFs. The

existence of shocks in adjustment costs which are independent of productivity seems a strong

identification condition. If these shocks are not present in the "true model", the apparent

identification using the GMM approach could be spurious because the identification would

be due to the misspecification of the model. As we will see in the next section, we obtain a

similar conclusion when using a control function approach.

Table 3.1: Blundell and Bond (2000); Estimation Results
509 manufacturing firms; 1982-89

Parameter OLS-Levels WG AB-GMM SYS-GMM

βL 0.538 0.488 0.515 0.479
(0.025) (0.030) (0.099) (0.098)

βK 0.266 0.199 0.225 0.492
(0.032) (0.033) (0.126) (0.074)

ρ 0.964 0.512 0.448 0.565
(0.006) (0.022) (0.073) (0.078)

Sargan (p-value) - - 0.073 0.032
m2 - - -0.69 -0.35

Constant RS (p-v) 0.000 0.000 0.006 0.641

4.4. Control Function Approaches. Consider a system of simultaneous equations

where some unobservables can enter in more than one structural equation. Under some

conditions, we can use one of the equations to solve for an unobservable and represent it

as a function of observable variables and parameters. Then, we can plug this function into

other equation where this unobservable enters, such that we "control for" this unobservable

by including observables. This is a particular example of control function approach and it

can be used to deal with endogeneity problems.

More generally, a control function method is an econometric procedure to correct for

endogeneity problems by exploiting the structure that model assumes on its error terms. In

general, this approach implies different restrictions than the instrumental variables approach.

Heckman and Robb (1985) introduced this term, though the concept had been used before

in some empirical applications. An attractive feature of the control function approach is that

it can provide consistent estimates of structural parameters in models where unobservables

are not additively separable. In those models, instrumental variable estimators are typically

inconsistent or at least do not consistently estimate the average causal effect over the whole

population.
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4.4.1. Olley and Pakes method. In a seminal paper, Olley and Pakes (1996) propose a

control function approach to estimate PFs. Levinsohn and Petrin (2003) have extended

Olley-Pakes method.

Consider the Cobb-Douglas PF in the context of the following model of simultaneous

equations:
(PF ) yit = αL `it + αK kit + ωit + eit

(LD) `it = fL (`i,t−1, kit, ωit, rit)

(ID) iit = fK (`i,t−1, kit, ωit, rit)

(4.18)

where equations (LD) and (ID) represent the firms’optimal decision rules for labor and capi-

tal investment, respectively, in a dynamic decision model with state variables (`i,t−1, kit, ωit, rit).

The vector rit represents input prices. Under certain conditions on this system of equations,

we can estimate consistently αL and αK using a control function method.

Olley and Pakes consider the following assumptions:

Assumption OP-1: fK (`i,t−1, kit, ωit, rit) is invertible in ωit.

Assumption OP-2: There is not cross-sectional variation in input prices. For every firm i,

rit = rt.

Assumption OP-3: ωit follows a first order Markov process. That is, at any period t ≥ 0,

the transition probability Pr(ωit | ωit−1, ..., ωi0) is equal to Pr(ωit|ωit−1).

Assumption OP-4: Time-to-build physical capital. Investment iit is chosen at period t but

it is not productive until period t+ 1. And kit+1 = (1− δ)kit + iit.

In Olley and Pakes model (1996), the labor input is assumed to be an static input such

that lagged labor, `i,t−1, is not an explanatory variable in the labor demand function fL. This

is a strong assumption as there may be substantial adjustments costs in hiring and firing

workers. Most importantly, this assumption is not necessary for the Olley-Pakes method to

provide a consistent estimator of the production function parameters. Therefore, we present

here a version of the Olley-Pakes method where both labor and capital are dynamic inputs.

Assumption OP-2 implies that the only unobservable variable in the investment equation

that has cross-sectional variation across firms is the productivity shock ωit. This restriction

is crucial for OP method and for the related Levinshon-Petrin method. This imposes restric-

tions on the underlying model of market competition and inputs demands. For instance, this

assumption implicitly establishes that firms operate in the same input markets and they do

not have any monopsony power in these markets, for instance, no internal labor markets.

Since a firm’s input demand depends also on output price (or on the exogenous demand

variables affecting product demand), assumption OP-2 also implies that firms operate in
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the same output market with either homogeneous goods or completely symmetric product

differentiation. Note that these economics restrictions can be relaxed if the researcher has

data on inputs prices at the firm level, that is, rit is observable.

The method proceeds in two-steps. The first step estimates αL using a control function

approach, and it relies on assumptions (OP-1) and (OP-2). This first step is the same with

and without endogenous exit. The second step estimates αK and it is based on assumptions

(OP-3) and (OP-4). Olley-Pakes method deals both with the simultaneity problem and with

the selection problem due to endogenous exit.

Step 1: Estimation of αL. Assumptions (OP-1) and (OP-2) imply that ωit = f−1
K (`i,t−1, kit, iit, rt).

Solving this equation into the PF we have:

yit = αL `it + αK kit + f−1
L (`i,t−1, kit, iit, rt) + eit

= αL `it + φt(`i,t−1, kit, iit) + eit

(4.19)

where φt(`i,t−1, kit, iit) ≡ αK kit + f−1
L (`i,t−1, kit, iit, rt). Without a parametric assumption

on the investment equation fK , equation (4.19) is a semiparametric partially linear model.

The parameter αL and the functions φ1, φ2, ..., φT can be estimated using semiparametric

methods. Olley and Pakes use polynomial series approximations for the nonparametric

functions φt. Alternatively, one can use the method in Robinson (1988).

This method is a control function method. Instead of instrumenting the endogenous re-

gressors, we include additional regressors that capture the endogenous part of the error term

(that is, proxy for the productivity shock). By including a flexible function in (`i,t−1, kit, iit),

we control for the unobservable ωit. Therefore, αL is identified if given (`i,t−1, kit, iit) there

is enough cross-sectional variation left in `it.

The key conditions for the identification of αL are: (a) invertibility of fL (`i,t−1, kit, ωit, rt)

with respect to ωit; (b) rit = rt, that is, no cross-sectional variability in unobservables, other

than ωit, affecting investment; and (c) given (`i,t−1, kit, iit, rt), current labor `it still has

enough sample variability. Assumption (c) is key, and it forms the basis for Ackerberg,

Caves, and Frazer (2015) criticism (and extension) of Olley-Pakes approach.

Example 3.3. Consider Olley-Pakes model but with a parametric specification of the opti-
mal investment equation (ID). More specifically, the inverse function f−1

K has the following

linear form:

ωit = γ1 iit + γ2 `i,t−1 + γ3 kit + rit (4.20)

Solving this equation into the PF, we have that:

yit = αL `it + (αK + γ3) kit + γ1 iit + γ2 `i,t−1 + (rit + eit) (4.21)
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Note that current labor `it is correlated with current input prices rit. That is the reason

why we need Assumption OP-2, that is, rit = rt. Given that assumption we can control

for the unobserved rt by including time-dummies. Furthermore, to identify αL with enough

precision, there should not be high collinearity between current labor `it and the other

regressors (kit, iit, `i,t−1). �

Note that —in this first step —the control function approach deals also with the selection

problem due to endogenous exit. This is because the control function controls for the value

of the unobserved productivity ωit such that there is not a selection problem associated to

this unobservable. This is not longer these case in step 2 of this method.

Step 2: Estimation of αK . For the sake of clarity, we first describe a version of the method

that does not deal with the selection problem. We will discuss later the approach to deal

with endogenous exit.

Given the estimate of αL in step 1, the estimation of αK is based on Assumptions (OP-3)

and (OP-4), that is, the Markov structure of the productivity shock, and the assumption of

time-to-build productive capital. Since ωit is first order Markov, we can write:

ωit = E[ωit | ωi,t−1] + ξit = h (ωi,t−1) + ξit (4.22)

where ξit is an innovation which is mean independent of any information at t−1 or before. his

some unknown function. Define φit ≡ φt(`i,t−1, kit, iit), and remember that φt(`i,t−1, kit, iit) =

αK kit + ωit. Therefore, we have that:

φit = αK kit + h (ωi,t−1) + ξit

= αK kit + h
(
φi,t−1 − αK ki,t−1

)
+ ξit

(4.23)

Though we do not know the true value of φit, we have consistent estimates of these values

from step 1: that is, φ̂it = yit − α̂L `it.2

If function h(.) is nonparametrically specified, equation (4.23) is a partially linear model.

However, it is not a standard partially linear model because the argument in function h(.) is

not observable. That is, though φi,t−1 and ki,t−1 are observable to the researcher (after the

first step), the argument φi,t−1−αKki,t−1 is unobservable because parameter αK is unknown.

To estimate function h(.) and parameter αK , Olley and Pakes propose a recursive version

of the semiparametric method in the first step. For the sake of illustration, suppose that we

consider a quadratic function for h(.): that is, h(ω) = π1ω+π2ω
2. Then, given an initial value

of αK , we construct the variable ω̂
αK
it = φ̂it−αKkit, and estimate parameters (αK , π1, π2) by

applying OLS to the regression equation φ̂it = αKkit + π1ω̂
αK
it−1 + π2(ω̂αKit−1)2 + ξit. Given the

OLS estimate of αK , we construct new values ω̂
αK
it = φ̂it−αKkit and estimate again αK , π1,

2In fact, φ̂it is an estimator of φit + eit, but this does not have any incidence on the consistency of the
estimator.
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and π2 by OLS. We apply this recursive method repeatedly until convergence: that is, until

the distance between the estimates (αK ,π1,π2) are two consecutive iterations is smaller than

a small constant.

An alternative to this recursive procedure is the following Minimum Distance method.

Suppose that —again for concreteness —the specification of function h(ω) is quadratic. We

have the regression model:

φ̂it = β1 kit + β2 φ̂i,t−1 + β3 φ̂
2

i,t−1 + β4 ki,t−1 + β5 k
2
i,t−1 + β6 φ̂i,t−1ki,t−1 + ξit (4.24)

where, according to the model, the parameters β in this regression satisfy the following

restrictions: β1 = αK ; β2 = π1; β3 = π2; β4 = −π1αK ; β5 = π2α
2
K ; and β6 = −2π2αK . We

can estimate the six β parameters by OLS. Then, in a second step, we use the OLS estimate

of β and its variance-covariance matrix to estimate (αK ,π1,π2) by minimum distance imosing

the six restrictions that relate the vector β with (αK ,π1,π2). More precisely, this minimum

distance estimator is:

(α̂K , π̂1, π̂2) = arg min
(αK ,π1,π2)

[
β̂ − f(αK , π1, π2)

]′ [
V̂ (β̂)

]−1 [
β̂ − f(αK , π1, π2)

]
(4.25)

where: β̂ is the column vector of OLS estimates; V̂ (β̂) is its estimated variance matrix; and

f(αK , π1, π2) is the column vector with the functions (αK , π1, π2, −π1αK , π2α
2
K , −2π2αK).

Example 3.4: Suppose that ωit follows the AR(1) process ωit = ρ ωi,t−1 + ξit, where

ρ ∈ [0, 1) is a parameter. Then, h (ωi,t−1) = ρωi,t−1 = ρ(φi,t−1−αK ki,t−1), and we can write:

φit = β1 kit + β2 φi,t−1 + β3 ki,t−1 + ξit (4.26)

where β1 = αK , β2 = ρ, and β3 = −ραK . We can see that a regression of φit on kit, φi,t−1

and ki,t−1 identifies —in fact, over-identifies —the parameters αK and ρ. �

Time-to build is a key assumption for the consistency of this method. If new in-

vestment at period t is productive in the same period t, then we have that: φit = αK

ki,t+1 + h
(
φi,t−1 − αK kit

)
+ ξit. Now, the regressor ki,t+1 depends on investment at period

t and therefore it is correlated with the innovation in productivity ξit.

Empirical Application.
Olley and Pakes (1996) study the US telecom equipment industry during the period

1974-1987. During this period, the industry experience substantial technological change and

deregulation. There were elimination of barriers to entry. The antitrust decisions against

AT&T —the Consent Decree in 1984 —divestiture AT&T —the industry leader. There was

substantial entry/exit of plants.

The authors use annual firm level data on output, capital, labor, and investment from

the US Census of manufacturers. They estimate the production function for this industry.
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Table 3.2 presents their estimates using different estimation methods: OLS, Within-Groups,

and the Olley-Pakes method described above. We can see that going from the OLS balanced

panel to OLS full sample almost doubles βK and reduces βL by 20%. This is evidence of

the importance of endogenous exit. Controlling for simultaneity further increases βK and

reduces βL.

Table 3.2: Olley and Pakes (1996); Production Function Estimation

Table 3.3: Olley and Pakes (1996); Productivity estimates

4.4.2. Levinshon and Petrin method. Levinshon and Petrin (2003) propose an alternative

control function method. A main difference between the models and methods by OP and

Levinshon and Petrin (LP) is that the later use a control function for the unobserved pro-

ductivity that comes from inverting the demand for intermediate inputs, instead of inverting
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the investment equation as in OP method. There are two main motivations for using this

alternative control function. First, investment can be responsive only to persistent shocks

in TFP; materials is responsive to every shock in TFP. Second, in some datasets there is

a substantial fraction of observations with zero investment. At iit = 0 (corner solution /

extensive margin) there is not invertibility between iit and ωit. This has two implications:

loss of effi ciency because the smaller number of observations; after the estimation of the

model, we cannot recover the value of TFP for those observations with zero investment.

LP consider a Cobb-Douglas production function in terms of labor, capital, and interme-

diate inputs (materials):

yit = αL `it + αK kit + αM mit + ωit + eit (4.27)

The investment equation is replaced with the intermediate input demand:

mit = fM (`i,t−1, kit, ωit, rit) (4.28)

Note that this demand for intermediate inputs is static in the sense that the lagged value

mit−1 is not an argument in this demand function.

Levinshon and Petrin maintain assumptions OP-2 to OP-4, but replace the assumption of

invertibility of the investment function in OP-1 with the following assumption of invertibility

of the demand for intermediate inputs.

Assumption LP-1: fM (`i,t−1, kit, ωit, rit) is invertible in ωit.

Similarly to Olley-Pakes method, the key identification restriction in Levinshon-Petrin

method is that the only unobservable variable in the intermediate input demand equation

that has cross-sectional variation across firms is the productivity shock ωit. This is assump-

tion OP-2: there is not cross-sectional variation in input prices such that rit = rt for every

firm i.

LP method also proceeds in two-steps. The first step consists of the least squares es-

timation of the parameter αL and the nonparametric functions {φt : t = 1, 2, ..., T} in the
semiparametric regression equation:

yit = αL `it + φt(`i,t−1, kit,mit) + eit (4.29)

where φt(`i,t−1, kit,mit) = αK kit+f−1
M (`i,t−1, kit,mit, rt) and f−1

M represents the inverse func-

tion of the demand for intermediate inputs with respect to productivity.

The second step is also in the spirit of OP’s second step, but it is substantially differ-

ent because it requires instrumental variables or GMM estimation. More specifically, the

estimates of αL and φt are plugged-in, such that we have the regression equation:

φit = αK kit + αM mit + h
(
φi,t−1 − αK ki,t−1 − αM mi,t−1

)
+ ξit (4.30)
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The main different with respect to the OP method is that now the regressor mit is corre-

lated with the error term ξit such that it requires using instrumental variables. LP propose

two approaches: "unrestricted method": instrument mit with its lagged values [see GNR

(2013) criticism]; "restricted method": under static inputs, price-taking: βM = Cost of

materials/Revenue.

Example 3.5: As in equation 3.4 above, suppose that ωit follows the AR(1) process ωit = ρ

ωi,t−1 + ξit. Then, h (ωi,t−1) = ρωi,t−1 = ρ(φi,t−1−αK ki,t−1−αM mi,t−1), and we have that:

φit = β1 kit + β2 mit + β3 φi,t−1 + β4 ki,t−1 + β5 mi,t−1 + ξit (4.31)

where: β1 = αK , β2 = αM , β3 = ρ, β4 = −ραK , and β5 = −ραM . We have only three free
parameters —αK , αM , and ρ —and the model implies four moment conditions: E(kit ξit) = 0;

E(φi,t−1 ξit) = 0; E(ki,t−1 ξit) = 0; and E(mi,t−1 ξit) = 0. These four moment conditions

can identify —in fact, over-identify —the three parameters. Furthermore, note that we could

include an additional moment condition: E(`i,t−1 ξit) = 0. �

Empirical application.
LP use plant-level data from 8 different Chilean manufacturing industries during the

period 1979-1985.

Table 3.4: Levinsohn and Petrin (2003): Input shares

Table 3.5: Levinsohn and Petrin (2003): Frequency of nonzeroes
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Table 3.6: Levinsohn and Petrin (2003): PF estimates

4.4.3. Ackerberg-Caves-Frazer Critique. Under Assumptions (OP-1) and (OP-2), we can

invert the investment equation to obtain the productivity shock ωit = f−1
K (`i,t−1, kit, iit, rt).

Then, we can solve the expression into the labor demand equation, `it = fL (`i,t−1, kit, ωit, rt),

to obtain the following relationship:

`it = fL
(
`i,t−1, kit, f

−1
K (`i,t−1, kit, iit, rt), rt

)
= Gt (`i,t−1, kit, iit) (4.32)

This expression shows an important implication of Assumptions (OP-1) and (OP-2). For

any cross-section t, there should be a deterministic relationship between employment at

period t and the observable state variables (`i,t−1, kit, iit). In other words, once we condition

on the observable variables (`i,t−1, kit, iit), employment at period t should not have any cross-

sectional variability. It should be constant. This implies that in the regression in step 1,

yit = αL `it + φt(`i,t−1, kit, iit) + eit, it should not be possible to identify αL because the

regressor `it does not have any sample variability that is independent of the other regressors

(`i,t−1, kit, iit).
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Example 3.6: The problem can be illustrated more clearly by using linear functions for the
optimal investment and labor demand. Suppose that the inverse function f−1

K is ωit = γ1

iit+γ2 `i,t−1+γ3 kit+γ4rt; and the labor demand equation is `it = δ1`i,t−1+δ2kit+δ3ωit+δ4rt.

Then, solving the inverse function f−1
K into the production function, we get:

yit = αL `it + (αK + γ3) kit + γ1 iit + γ2 `i,t−1 + (γ4rt + eit) (4.33)

And solving the inverse function f−1
K into the labor demand, we have that:

`it = (δ1 + δ3γ2)`i,t−1 + (δ2 + δ3γ3)kit + δ3γ1iit + (δ4 + δ3γ4)rt (4.34)

Equation (4.34) shows that there is perfect collinearity between `it and (`i,t−1, kit, iit) and

therefore it should not be possible to estimate αL in equation (4.33). Of course, in the data we

will find that `it has some cross-sectional variation independent of (`i,t−1, kit, iit). Equation

(4.34) shows that if that variation is present it is because input prices rit have cross-sectional

variation. However, that variation is endogenous in the estimation of equation (4.33) because

the unobservable rit is part of the error term. That is, if there is apparent identification,

that identification is spurious. �

After pointing out this important problem in the Olley-Pakes model and method, Acker-

berg, Caves, and Frazer discuss additional conditions in the model under which the Olley-

Pakes estimator is consistent —that is, there is not a perfect collinearity problem, and the

control function approach still solves the endogeneity problem.

For identification, we need some source of exogenous variability in labor demand that is

independent of productivity and does not affect capital investment. Ackerberg-Caves-Frazer

discuss several possible arguments/assumptions that incorporate this kind of exogenous vari-

ability in the model.

Consider a model with same Cobb-Douglas PF as in OP model but with the following

specification of labor demand and optimal capital investment:

(LD′) `it = fL
(
`i,t−1, kit, ωit, r

L
it

)
(ID′) iit = fK

(
`i,t−1, kit, ωit, r

K
it

) (4.35)

Ackerberg-Caves-Frazer propose to maintain Assumptions (OP-1), (OP-3), and (OP-4), and

to replace Assumption (OP-2) by the following assumption.

Assumption ACF: Unobserved input prices rLit and r
K
it are such that conditional on (t, iit,

`i,t−1, kit): (a) rLit has cross-sectional variation, that is, var(r
L
it |t, iit, `i,t−1, kit) > 0; and (b)

rLit and r
K
it are independently distributed.

There are different possible interpretations of Assumption ACF. The following list of

conditions (a) to (d) is a group of economic assumptions that generate Assumption ACF: (a)

the capital market is perfectly competitive and the price of capital is the same for every firm
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(rKit = rKt ); (b) there are internal labor markets such that the price of labor has cross sectional

variability; (c) the realization of the cost of labor rLit occurs after the investment decision takes

place, and therefore rLit does not affect investment; and (d) the idiosyncratic labor cost shock

rLit is not serially correlated such that lagged values of this shock are not state variables for

the optimal investment decision. Aguirregabiria and Alonso-Borrego (2014) consider similar

assumptions for the estimation of a production function with physical capital, permanent

employment, and temporary employment.

4.4.4. Other identifying conditions: Quasi-fixed inputs. Consider a Cobb-Douglas PF

with labor and capital as only inputs. Suppose that OP assumptions hold such that `it is

perfectly collinear with φt(`i,t−1, kit, iit). If both capital and labor are quasi-fixed inputs, then

it is possible to use a control function method in the spirit of OP or LP to identify/estimate

βL and βK . Or in other words, this model has moment conditions that identify βL and βK
(Wooldridge, EL 2009).

In the first step we have:

yit = βL `it + φt(`i,t−1, kit, iit) + eit

= βL gt(`i,t−1, kit, iit) + φt(`i,t−1, kit, iit) + eit

= ψt(`i,t−1, kit, iit) + eit

In this first step, we estimate ψt(`i,t−1, kit, iit) nonparametrically. In the second step, given

ψit, and taking into account that ψit = βL `it + βK kit + ωit, and ωit = h (ωi,t−1) + ξit, we

have that:

ψit = βL `it + βK kit + h (ψit − βL `it−1 + βK kit−1) + ξit

In this second step, `it is correlated with ξit, but (kit, ψit, `it−1, kit−1) are not, and (`it−2,kit−2)

can be used to instrument `it. This approach is in the same spirit as the Dynamic Panel Data

(DPD) methods of Arellano-Bond and Blundell-Bond. This approach cannot be applied if

some inputs (for instance, materials) are perfectly flexible. The PF coeffi cient parameter of

the flexible inputs cannot be identified from the moment conditions in the second step.

4.4.5. Other identifying conditions: F.O.C. for flexible inputs. Klette and Griliches (1996),

Doraszelski and Jaumandreu (2013), and Gandhi, Navarro, and Rivers (2017) propose com-

bining conditions from the PF with conditions from the demand of variable inputs. This

approach requires the price of the variable input to be observable to the researcher, though

this price may not have cross-sectional variation across firms.

Note that in the LP method, the function that relates mit with the state variables is

just the condition "VMP of materials equal to price of materials". The parameters in this

condition are the same as in the PF. This approach takes these restrictions into account.
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For the CD-PF, with materials as flexible input, we have that:

(PF ) yit = βL `it + βK kit + βM mit + ωit + eit

(FOC) pt − pMt = ln(βM) + βL `it + βK kit + (βM − 1)mit + ωit

The difference between these two equations is:

ln(sMit ) = ln(βM) + eit

where sMit ≡
PM
t Mit

PtYit
is the ratio between material expenditures and revenue. The para-

meter(s) of the flexible inputs are identified from the expensiture-share equations. The

parameter(s) of the quasi-fixed inputs are identified using the dynamic conditions described

above.

Gandhi, Navarro, and Rivers (2017) show that this approach can be extended in two

important ways: (1) to a nonparametric specification of the production function: yit =

f (`it, kit,mit) + ωit + eit; and (2) to a model with monopolistic competition — instead of

perfect competition —with an isoelastic product demand. Their approach to get extension

(2) relies on an important assumption: there is not any bias or missing parameter in the

marginal cost of the flexible input. For instance, suppose that the marginal cost of material

were MCMt = PM
t τ , then our estimate of βM will actually estimate βM τ .

4.5. Olley and Pakes on Endogenous Selection.
4.5.1. Semiparametric selection models. The estimator in Olley and Pakes (1996) controls

for selection bias due to endogenous exit of firms. Before describing their approach, it can

be helpful to describe some general features of semiparametric selection models.

Consider a selection model with outcome equation,

yi =

 xi β + εi if di = 1

unobserved if di = 0
(4.36)

and selection equation

di =

 1 if h(zi)− ui ≥ 0

0 if h(zi)− ui < 0
(4.37)

where xi and zi are exogenous regressors; (ui, εi) are unobservable variables independently

distributed of (xi, zi); and h(.) is a real-valued function. We are interested in the consistent

estimation of the vector of parameters β. We would like to have an estimator that does not

rely on parametric assumptions on the function h or on the distribution of the unobservables.

The outcome equation can be represented as a regression equation: yi = xi β + εd=1
i ,

where εd=1
i ≡ {εi|di = 1} = {εi|ui ≤ h(zi)}. Or similarly,

yi = xiβ + E(εd=1
i |xi, zi) + ε̃i (4.38)
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where E(εd=1
i |xi, zi) is the selection term. The new error term, ε̃i, is equal to εd=1

i −
E(εd=1

i |xi, zi) and, by construction, it has mean zero and it is mean-independent of (xi, zi).

The selection term is equal to E (εi | xi, zi, ui ≤ h(zi)). Given that ui and εi are independent

of (xi, zi), it is simple to show that the selection term depends on the regressors only through

the function h(zi): that is, E (εi | xi, zi, ui ≤ h(zi)) = g(h(zi)). The form of the function g

depends on the distribution of the unobservables, and it is unknown if we adopt a nonpara-

metric specification of that distribution. Therefore, we have the following partially linear

model: yi = xiβ + g(h(zi)) + ε̃i.

Define the propensity score Pi as:

Pi ≡ Pr (di = 1 | zi) = Fu (h(zi)) (4.39)

where Fu is the CDF of u. Note that Pi = E (di | zi), and therefore we can estimate propen-
sity scores nonparametrically using a Nadaraya-Watson kernel estimator or other nonpara-

metric methods for conditional means. If ui has unbounded support and a strictly increasing

CDF, then there is a one-to-one invertible relationship between the propensity score Pi and

h(zi). Therefore, the selection term g(h(zi)) can be represented as λ(Pi), where the function

λ is unknown. The selection model can be represented using the partially linear model:

yi = xiβ + λ(Pi) + ε̃i. (4.40)

A suffi cient condition for the identification of β (without a parametric assumption on λ)

is that E (xi x
′
i | Pi) has full rank. Given equation (4.40) and nonparametric estimates

of propensity scores, we can estimate β and the function λ using standard estimators for

partially linear model such as sieve methods, kernel-based methods like Robinson (1988), or

differencing methods like Yatchew (2003).

4.5.2. Olley and Pakes method to control for endogenous exit. Now, we describe Olley-

Pakes procedure for the estimation of the production function taking into account endogenous

exit. The first step of the method (that is, the estimation of αL) is not affected by the selec-

tion problem because we are controlling for ωit using a control function approach. However,

there is endogenous selection in the second step of the method.

For simplicity consider that the productivity shock follows an AR(1) process: ωit = ρ

ωi,t−1 − ξit. Then, the "outcome" equation is:

φit =

 αK kit + ρ φi,t−1 + (−ραK) ki,t−1 + ξit if dit = 1

unobserved if dit = 0
(4.41)

The exit/stay decision is: {dit = 1} iff {ωit ≥ v(`it−1, kit)}. Taking into account that ωit =

ρωi,t−1+ξit, and that ωi,t−1 = φi,t−1−αK kit−1, we have that the condition {ωit ≥ v(`it−1, kit)}
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is equivalent to:

dit =

 1 if ξit ≤ v(`it−1, kit)− ρ(φi,t−1 − αKkit−1)

0 if ξit > v(`it−1, kit)− ρ(φi,t−1 − αKkit−1)
(4.42)

The propensity score is Pit ≡ E
(
dit | `it−1, kit, φi,t−1, kit−1

)
such that Pit is a function of(

`it−1, kit, φi,t−1, kit−1

)
. The equation controlling for selection is:

φit = β1 kit + β2 φi,t−1 + β3 ki,t−1 + λ (Pit) + ξ̃it (4.43)

where β1 = αK , β2 = ρ, and β2 = −ραK . By construction, ξ̃it is mean independent of
kit, kit−1, φi,t−1, and Pit. We can estimate parameters β1, β2, and β3 and function λ (.) in

the regression equation (4.43) by using standard methods for semiparametric partially linear

models.

The method to control for selection in Olley and Pakes (1996) is a bit more involved

because the stochastic process for the productivity shock is nonparametric: ωit = h(ωi,t−1)−
ξit. Therefore, the regression model is:

φit = αK kit + h
(
φi,t−1 − αK ki,t−1

)
+ λ (Pit) + ξ̃it (4.44)

such that we have two nonparametric functions, h(.) and λ (.). However, the identification

and estimation of the model proceeds in a very similar way. For instance, we can consider

a polynomial approximation to these nonparametric functions and estimate the parameters

by least squares.

5. Applications: Innovation and productivity growth

5.1. What determines productivity? There are large and persistent differences in
TFP across firms. This evidence is ubiquitous even within narrowly defined industries and

products.

Large TFP differences. A commonly used measure of the heterogeneity in TFP across

firms is ratio between the 90th to 10th percentile in the (cross-sectional) distribution. Using

data from U.S. manufacturing industries —4-digit SIC industries —Syverson (2004) reports

ratio that on average are equal to 1.92. For industries in Denmark, Fox and Smeets (2011)

report an average ratio of 3.75. This ratio is even larger in developing countires. For instance,

Hsieh and Klenow (2009) report average ratio above 5 for China and India.

Persistent TFP differences. A statistic that is commonly used to measure this persistent

is the slope parameter in simple regression of the log-TFP of a firm on its log-TFP at previous

year. Most studies report estimates of this autoregressive coeffi cient between 0.6 to 0.8.

Furthermore, studies show that these differences in productivity have an important im-

pact on different decisions such market exit, exporting, or investing in R&D.
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Why do firms differ in their productivity levels? What mechanism can support such large

differences in productivity in market equilibrium? Can producers control the factors that

influence productivity or are they purely external effects of the environment? If firms can

partly control their TFP, what type of choices increase it?

5.1.1. A simple model of TFP dispersion in equilibrium. Following Syverson (2004), I

present here a very stylized model to illustrate how dispersion in TFP within the same

industry is perfectly possible in equilibrium, and that it can be driven by very common

forces that exist in most markets. Consider an homogeneous product industry and let the

profit of a firm be πi = R(qi, d) −C(qi, Ai, w) −F , where: R(qi, d) is the revenue function;

C(qi, Ai, w) is the variable cost function; qi is output; Ai is TFP; d is the state of the demand;

w represents input prices; and F is the fixed cost. Firms with different TFP coexist in the

same market if it is not optimal for the firm with the largest TFP to produce all the quantity

demanded in the market. The key necessary and suffi cient condition for this to happen is

that the profit function of a firm is strictly concave in output qi. That is, either the revenue

function R(.) is strictly concave in qi —market power, oligopoly competition —or the cost

function C(.) is strictly convex in qi —diseconomies of scale, fixed inputs.

For instance, consider a perfectly competitive industry such that the revenue function is

R(qi, d) = P (d) qi that is linear in output qi. Suppose that there are decreasing resturns

to scale such that the cost function C(qi, Ai, w) is strictly convex in qi. Then, even in this

perfectly competitive industry we have that the firm with the highest TFP does not produce

all the output demanded in the market.

Consider the —somehow —opposite case. The industry has a constant returns to scale

technology such that the cost function is C(qi, Ai, w) = c(Ai, w) qi that is linear in output.

This industry is characterized by Cournot competition. This implies that the revenue func-

tion is R(qi, d) = P (qi +Q−i, d) qi, where P (.) is the inverse demand function. This revenue

function is strictly concave in qi —provided the demand curve is downward sloping.

More formally, the equilibrium in the industry can be described by two types of condi-

tions. At the intensive margin, optimal q∗i = q∗[Ai, d, w] is such that:

MRi ≡
∂R(qi, Ai, d)

∂qi
=
∂C(qi, Ai, w)

∂qi
≡MCi (5.1)

At the extensive margin, a firm is active in the market if:

R(q∗[Ai, d, w], Ai, d)− C(q∗[Ai, d, w], Ai, w)− F ≥ 0 (5.2)

If variable profit is strictly concave, this equilibrium can support firms with different TFPs.

It is not optimal for the firm with highest TFP to provide all the output in the industry.

Firms with different TFPs —above a certain threshold value —coexist and compete in the

same market.
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5.1.2. How can firms affect their TFP?. There are multiple ways in which firms can

affect their TFP. The following is a list —non exhaustive —of practives the firms can follow

to increase their TFP, and empirical papers that have found evidence for these effects.

(i) Humand resources and managerial practices: Bloom and Van Reenen (2007); Ich-

niowski and Shaw (2003). (ii) Learning-by-doing: Benkard (2000). (iii) Organizational

structure such as outsourcing or (the opposite) vertical integration. (iv) Adoption of new

technologies: Brynjolfsson et al. (2008). (v) Investment in R&D. (vi) Innovation.

There is a long literature linking R&D investment and productivity. Innovation. Many

firms undertake both process and product innovation without formally reporting R&D spend-

ing. Multiple studies show evidence that R&D and innovation are very important factors to

explain firm heterogeneity in TFP level and growth. As usual, the main diffi culty in these

studies comes from separating causation from correlation.

For the rest of this section, we review models, methods, and datasets in different empirical

applications dealing with the causal effect of R&D and/or innovation on TFP.

6. Estimating the effects of R&D on productivity

Investment in R&D and innovation is expensive. Investors —firms and governments —

are interested in measuring its returns, both private and social. Process R&D is directed

towards invention of new methods of production. Product R&D tries to create new and

improved goods. Both process and product R&D can increase a firm’s TFP. It can have also

spillover effects in other firms: competition spillovers, and/or knowledge spillovers.

6.1. Knowledge capital model. In an influential paper, Grilliches (1979) proposes
a model and method to measure knowledge capital, that is, the capital generated by in-

vestments in R&D that is intangable and different to physical capital. This model is often

referred as the knowledge capital model, and many studies have used it to measure the returns

to R&D.

The model is based on the estimation of a production function. Consider a Cobb-Douglas

PF in logs:

yit = βL `it + βK kit + βM mit + βR k
R
it + ωit + eit

where kit is the logarithm of the stock of physical capital, and kRit is logarithm of the of

stock of knowledge capital. A major diffi culty is the measurement of the stock of knowledge

capital. Let Rit be the investment in R&D of firm i at period t, and let KR
it be the firm’s

stock of knowledge capital: that is, KR
it = exp{kRit}. Suppose that the researcher observes Rit

for t = 1, 2, ...Ti. However, the researcher does not observe the stock of knowledge capital.

Grilliches (1979) proposes the following perpetual inventory method to obtain the sequence
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of stocks KR
it for t = 1, 2, ...Ti. Suppose that the stock follows the transition rule:

KR
it = (1− δR) KR

i,t−1 +Rit

where δR is the depreciation rate of knowledge capita. Given values for δR and for the the

initial condition KR
i0, we can use the data on R&D investments to construct the sequence

{KR
it : t = 1, 2, ...Ti}.
How to choose δR andKR

i0? It is diffi cult to know the true value of the rate of technological

obsolescence, δR: it can be endogenous, and vary across industries and firms. Researchers

have considered different approaches to estimate this depreciation rate: using patent renewal

data (Pakes and Schankerman, 1984; Pakes, 1986); or using Tobin’s Q model (Hall, 2007).

The estimates of this depreciation rate in the literature range between 10% and 35%.Different

authors have performed sensitivity analysis on the estimates of βR for different value of δR.

They report small differences, if any, in the estimate of βR when δR varies between 8% and

25%.

6.2. Extending the knowledge capital model. Doraszelski and Jaumandreu (2013)
propose and estimate a model that extends the knowledge capital model in important ways.

In their model, TFP and Knowledge capital (KC) are unobservables to the researcher. They

follow stochastic processes that are endogenous and depend on (observable) R&D invest-

ments. The model accounts for uncertainty and heterogeneity across firms in the relationship

between R&D and TFP. The model takes into account that the outcome of R&D investments

is subject to a high degree of uncertainty.

For the estimation of the structural parameters in PF and stochastic process of KC, the

authors exploit first order conditions for variable inputs.

6.2.1. Model. Consider the production function in logs:

yit = βL `it + βK kit + βM mit + ωit + eit (6.1)

log-TFP ωit follows a stochastic process with transition probability p (ωit+1 | ωit, rit) where
rit is log-R&D expenditure. Every period t a firm chooses static inputs (`it,mit) and invest-

ment in physical capital and R&D (iit, rit) to maximize its value.

V (sit) = max
iit,rit

{
π(sit)− c(1)(iit)− c(2)(rit) + ρ E [V (sit+1)|sit, iit, rit]

}
(6.2)

with sit = (kit, ωit, input prices [wit], demand shifters [dit]).

The Markov structure of log-TFP implies:

ωit = E [ωit | ωit−1, rit−1] + ξit = g (ωit−1, rit−1) + ξit

where E [ξit | ωit−1, rit−1] = 0. The productivity innovation ξit captures two sources of

uncertainty for the firm: the uncertainty linked to the evolution of TFP; and the uncertainty
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inherent to R&D —for instance, chances of making a new discovery, its degree of applicability,

successful implementation, etc.

The authors identification approach exploits static marginal conditions of optimality.

Obtaining these conditions require an assumption about competition. The authors assume

monopolistic competition. More precisely, the assume the following form for the marginal

revenue:

MRit = Pit

(
1− 1

η(pit, dit)

)
(6.3)

where η(pit, dit) is the price elasticity of demand for firm i, that is, monopolisitc competition.

The marginal condition of optimality for labor provides a closed-form expression for labor

demand. Solving for log-TFP in the labor demand equation, we get:

ωit = λ− βK kit + (1− βL − βM) `it + (1− βM) (wit − pit)

+ βM (pMit − pit)− ln

(
1− 1

η(pit, dit)

) (6.4)

We represent the RHS as h(xit, β), such that ωit = h(xit, β), with xit = (kit, `it, wit, pMit,

pit, dit).

6.2.2. Estimation. Combining the PF equation with the stochastic process for TFP, and

the marginal condition for optima labor, we have the equation:

yit = βL `it + βK kit + βM mit + g [h(xit−1, β), rit−1] + ξit + eit (6.5)

And form the marginal condition for labor we have:

h(xit, β) = g [h(xit−1, β), rit−1] + ξit (6.6)

The "parameters" in this system of equations are: βL, βK , βM , g, and η. The unobservables

ξit and eit is mean independent of any observable variable at period t−1 or before. Therefore,

xit−1 and rit−1 are exogenous w.r.t. ξit + eit. Capital stock kit is also exogenous because

time-to-build. But we need to instrument `it and mit.
Identification. To see that the parameters of the model are identified, it is convenient to

consider a simplified version with: βK = βM = 1/η = 0 and g [ωt−1, rt−1] = ρω ωt−1 + ρr

rt−1. Them we have:

yit = βL `it + ρω [(1− βL) `it−1 + wit−1 − pit−1] + ρr rit−1 + ξit + eit (6.7)

Using as instruments Zit = (yit−1, `it−1, wit−1−pit−1, rit−1), moment conditions E [Zit (ξit + eit)] =

0 identify βL, ρω, ρr. Given the identification of these parameters, we know ωit = h(xit, β) =

(1− βL)`it + (wit − pit). The model implies, that:

ξit = h(xit, β)− ρω h(xit, β)− ρr rit−1 (6.8)
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such that ξit is identified, and so its variance V ar(ξit) that represents uncertainty in the link

between R&D and TFP.

The instrument wit−1−pit−1 plays a very important role in the identification of the model.

Without variation in lagged (real) input prices the model is NOT identified. But note that

the model does not use contemporaneous input prices as instruments because they can be

correlated with the innovation ξit.

6.2.3. Data. Panel of Spanish manufacturing firms (N = 1, 870). Annual data for period

1990 − 1999 (max Ti = 10). 10 industries (SIC 2-digits). Period of rapid growth in output

and physical capital, coupled with stagnant employment. R&D intensity = R&D ex-
penditure / Sales. Average among all firms is 0.6% (smaller than in France, Germany, or
UK, > 2%). R&D intensity among performers (column 13) is between 1% and 3.5%.

Table 3.7: Doraszelski and Jaumandreu (2013): Descriptive statistics

Production Function Estimates. Comparing GMM and OLS estimates, correcting for

endogeneity has the expected implications, for instance, βL and βM decline, and βK. in-

creases. There are not big differences in the β estimates across industries. Test of OIR from

instruments: Cannot be rejected at 5% level. Test of parameter restrictions (in the two

equations): Rejected at 5% level only in 2 out of 10 industries.

Table 3.8: Doraszelski and Jaumandreu (2013): PF estimates
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Stochastic Process for TFP. The model where TFP is exogenous (doesn’t depend on

R&D) is clearly rejected. Models with linear effects or without complementarity between ωt−1

and rt−1 are rejected. V ar(e) is approx. equal to V ar(ω) in most industries. V ar(ξ)/V ar(ω)

is between 30% and 75%. Very significant uncertainty of the effect of R&D on TFP. Signifi-

cant differences across industries.

Table 3.9: Doraszelski and Jaumandreu (2013): Stochastic process TFP

Testing three versions of the Knowledge capital model. Basic model: ωit + eit = βR

kRit + eit. Rejected for all industries. Hall and Hayashi (1989) and Klette (1996) KC
model. KR

it =
[
KR
it−1

]σ [
1 +RR

it−1

]1−σ
exp{ξit}. Using D&J notation: ωit = σ ωit−1 +(1−σ)

rit−1 + ξit. Rejected at 5% in 8 industries, and at 7% in all industries. Model with: βR



116 3. ESTIMATION OF PRODUCTION FUNCTIONS

kRit + ωit + eit, and ωit with exogenous Markov process. Rejected at 5% in 2 industries, and

at 10% in 6 industries.

Table 3.10: Doraszelski and Jaumandreu (2013): Testing Knowledge capital

R&D and TFP (Counterfactuals). Distribution of TFP with R&D stochastically dom-

inates distribution without R&D. Differences in means are between 3% and 5% for all

industries and firm sizes, except for small firms in industries with low observed R&D inten-

sity.

Figure 3.1: Doraszelski and Jaumandreu (2013): R&D and productivity
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Elasticities of TFP w.r.t. R&D and lagged TFP. Elasticity w.r.t. R&D: Considerable
variation between and within industries. Average is 0.015. Degree of persistence: Con-
siderable between and within industries. Non-performers have a higher degree of persistence

than performers. Persistence is negatively related to the degree of uncertainty.
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Table 3.11: Doraszelski and Jaumandreu (2013): Elasticity TFP lagged R&D

Table 3.9: Doraszelski and Jaumandreu (2013): Elasticity TFP lagged TFP
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Table 3.10: Doraszelski and Jaumandreu (2013): Uncertainty and persistence
TFP

Summary of results. They model TFP growth as the consequence of R&D expenditures

with uncertain outcomes. Results show that this model can explain better the relationship

between TFP and R&D than standard Knowledge Capital models without uncertainty and

nonlinearity. R&D is a major determinant of the differences in TFP across firms and of their

evolution. They also find that firm-level uncertainty in the outcome of R&D is considerable.

Their estimates suggest that engaging in R&D roughly doubles the degree of uncertainty in

the evolution of a producer’s TFP.
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7. Exercises

7.1. Exercise 1. Consider an industry for an homogeneous product. Firms use capital
and labor to produce output according to a Cobb-Douglas technology with parameters αL
and αK and Total Factor Productivity (TFP) A.

Question 1.1. Write the expression for this Cobb-Douglas production function (PF).

Suppose that firms are price takers in the input markets for labor and capital. Let WL and

WK be the price of labor and capital, respectively. Capital is a fixed input such that the

fixed cost for a firm, say i, is FCi = WK Ki. The variable cost function, V C(Y ), is defined

as the minimum cost of labor to produce an amount of output Y .

Question 1.2. Derive the expression for the variable cost function of a firm in this industry.
Explain your derivation. [Hint: Given that capital is fixed and there is only one variable

input, the minimization problem is trivial. The PF implies that there is only one possible

amount of labor that give us a certain amount of output].

Question 1.3. Using the expressions for the fixed cost and for the variable cost function in
Q1.2:

(a) Explain how an increase in the amount of capital affects the fixed cost and the variable

cost of a firm.

(b) Explain how an increase in TFP affects the fixed cost and the variable cost.

Suppose that the output market in this industry is competitive: firms are price takers. The

demand function is linear with the following form: P = 100 − Q, where P and Q are the

industry price and total output, respectively. Suppose that αL = αK = 1/2, and the value

of input prices are WL = 1/2 and WK = 2. Remember that firms’capital stocks are fixed

(exogenous), and for simplicity suppose that all the firms have the same capital stock K = 1.

Question 1.4. Using these primitives, write the expression for the profit function of a firm
(revenue, minus variable cost, minus fixed cost) as a function of the market price, P , the

firm’s output, Yi, and its TFP, Ai.

Question 1.5. Using the condition "price equal to marginal cost", obtain the optimal

amount of output of a firm as a function of the market price, P , and the firm’s TFP, Ai.

Explain your derivation.

Question 1.6. A firm is active in the market (that is, it finds optimal to produce a positive
amount of output) only if its profit is greater or equal than zero. Using this condition show

that a firm is active in this industry only if its TFP satisfies the condition Ai ≥ 2/P . Explain

your derivation.
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Let (P ∗, Q∗, Y ∗1 , Y
∗

2 , ..., Y
∗
N) the equilibrium price, total output, and individual firms’

outputs. Based on the previous results, the market equilibrium can be characterized by the

following conditions: (i) the demand equation holds; (ii) total output is equal to the sum

of firms’individual outputs; (iii) firm i is active (Y ∗i > 0) if and only if its total profit is

greater than zero; and (iv) for firms with Y ∗i > 0, the optimal amount of output is given by

the condition price is equal to marginal cost.

Question 1.7. Write conditions (i) to (iv) for this particular industry.

Question 1.8. Combine conditions (i) to (iv) to show that the equilibrium price can be

written as the solution to this equation:

P ∗ = 100− P ∗
[

N∑
i=1

A2
i 1{Ai ≥ 2/P ∗}

]
where 1{x} is the indicator function that is defined as 1{x} = 1 if condition x is true, and

1{x} = 0 if condition x is false. Explain your derivation.

Suppose that the subindex i sorts firms by their TFP such that firm 1 is the most effi cient,

then firm 2, etc. That is, A1 > A2 > A3 > .....

Question 1.9. Suppose that A1 = 7, A2 = 5, and A3 = 1. Obtain the equilibrium price,

total output, and output of each individual firm in this industry. [Hint: Start with the

conjecture that only firms 1 and 2 produce in equilibrium. Then, confirm this conjecture.

Note that we do not need to know the values of A4, A5, etc].

Question 1.10. Explain why the most effi cient firm, with the largest TFP, does not produce
all the output of the industry.

7.2. Exercise 2. The Stata datafile blundell_bond_2000_production_function.dta
contains annual information on sales, labor, and capital for 509 firms for the period 1982-

1989 (8 years). Consider a Cobb-Douglas production function in terms of labor and capital.

Use this dataset to implement the following estimators.

Question 2.1. OLS with time dummies. Test the null hypothesis αL + αK = 1. Provide

the code in Stata and the table of estimation results. Comment the results.

Question 2.2. Fixed Effects estimator with time dummies. Test the null hypothesis of no
time-invariant unobserved heterogeneity: ηi = ηi for every firm i. Provide the code in Stata

and the table of estimation results. Comment the results.
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Question 2.3. Fixed Effects - Cochrane Orcutt estimator with time dummies. Test the
two over-identifying restrictions of the model. Provide the code in Stata and the table of

estimation results. Comment the results.

Question 2.4. Arellano-Bond estimator with time dummies and non-serially correlated

transitory shock. Provide the code in Stata and the table of estimation results. Comment

the results.

Question 2.5. Arellano-Bond estimator with time dummies and AR(1) transitory shock.
Provide the code in Stata and the table of estimation results. Comment the results.

Question 2.6. Blundell-Bond system estimator with time dummies and non-serially cor-

related transitory shock. Provide the code in Stata and the table of estimation results.

Comment the results.

Question 2.7. Blundell-Bond system estimator with time dummies and AR(1) transitory

shock. Provide the code in Stata and the table of estimation results. Comment the results.

Question 2.8. Based on the previous results, select your preferred estimates of the produc-
tion function. Explain your choice.

7.3. Exercise 3. The Stata datafile data_mines_eco2901_2017.dta contains annual
information on output and inputs from 330 copper mines for the period 1992-2010 (19 years).

The following is a description of the variables.

Variable name Description

id : Mine identification number
year : Year [from 1992 to 2010]
active : Binary indicator of the event “mine is active during the year”
prod_tot : Annual production of pure copper of the mine [in thousands of tonnes]
reserves : Estimated mine reserves [in thousands of ore]
grade : Average ore grade (in %) of mined ore during the year (% copper / ore)
labor_n_tot : Total number of workers per year (annual equivalent)
cap_tot : Measure of capital [maximum production capacity of the mine]
fuel_cons_tot : Consumption of fuel (in physical units)
elec_cons_tot : Consumption of electricity (in physical units)
materials_tot : Consumption of intermediate inputs / materials (in $ value)
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Note that some variables have a few missing values even at years when the mine is actively

producing.

Question 3.1. Consider a Cobb-Douglas production function in terms of labor, capital,
fuel, electricity, and ore grade. Use this dataset to implement the following estimators:

• OLS

• Fixed-Effects

• Arellano-Bond estimator with non-serially correlated transitory shock

• Arellano-Bond estimator with AR(1) transitory shock

• Blundell-Bond estimator with non-serially correlated transitory shock

• Blundell-Bond estimator with AR(1) transitory shock

• Olley-Pakes (Using the first difference in cap_tot as investment)

• Levinshon-Petrin

Question 3.2. Suppose that these mines are price takers in the input markets. Consider
that the variable inputs are labor, fuel, and electricity.

(a) Derive the expression for the Variable Cost function for a mine (that is,

the minimum cost to produce an amount of output given input prices).

(b) Let lnMCit be the logarithm of the realized Marginal Cost of mine i at

year t. I have not included data on input prices in this dataset, so we will

assume that mines face the same prices for variable inputs, and normalize to

zero the contribution of these input prices to lnMCit. Calculate the quantiles

5%, 25%, 50%, 75%, and 95% in the cross-sectional distributions of lnMCit

at each year in the sample. Present a figure with the time-series of these five

quantiles over the sample period. Comment the results.

(c) For a particular sample year, say 2005, calculate the contribution of each

component of lnMCit (that is, total factor productivity, capital, ore grade,

and output) to the cross-sectional variance of lnMCit. Present it in a table.

Comment your results.

[Note: To measure the contribution of each component, use the following ap-

proach. Consider y = β1x1+β2x2+...+βKxK . A measure of the contribution of

xj to var(y) is ρj ≡
var(y)− var(y | xj = constant)

var(y)
. Note that ρj ∈ (0, 1) for

any variable xj. However, in general,
∑K

j=1 ρj can be either smaller or greater

than one, depending the sign of the covariances between the components.]
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(d) Consider the balance panel of mines that are active in the industry every

year during the sample period. Repeat exercises (b) and (c) for this balanced

panel. Compared your results with those in (c) and (d). Comment the results.
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CHAPTER 4

Static Models of Competition in Prices and Quantities

1. Introduction

In most industries, the decisions of how much to produce and the price to charge are

fundamental determinants of the firm’s profit. These decisions are also main sources of

strategic interactions between firms. In the market for an homogeneous good, the market

price of the product depends on the total quantity produced by all the firms in the industry.

In a differentiated product industry, demand for a firm’s product depends on the prices

of products sold by other firms in the industry. This type of strategic interactions have

first order importance to understand competition and outcomes in most industries. For this

reason, models of competition where firms choose prices or quantities are at the core of

Industrial Organization.

The answer to many economy questions in IO require not only the estimation of demand

and cost functions but also the explicit specification of an equilibrium model of competition.

For instance, evaluating the effects of a merger, or a sales tax, or the entry in the market of

a new product, require the explicit specification of a model of competition.

From an empirical point view, there are several purposes in the estimation of models

of competition in prices or quantities. In many empirical applications, the researcher has

information on firms’prices and quantities sold, but information on firms’costs is not always

available. The researcher may not observe even the amounts of firms’inputs, such that it is

not possible to obtain costs by estimating the production function as described in chapter

3. In this context, empirical models of competition in prices or quantities may provide an

approach to obtain estimates of firms’marginal costs and the structure of the marginal

cost function. Given an assumption about competition (for instance, perfect competition,

Cournot, Bertrand, Stackelberg, collusion), the model predicts that a firm’s marginal cost

should be equal to a particular (model specific) marginal revenue. This is the key condition

that is used to estimate firms’marginal costs in this class of models. Typically, the first step

in the econometric analysis of these models consists in the estimation of the demand function

or demand system. Given the estimated demand, we can construct an estimate of the realized

marginal revenue for every observation in the sample. This measure of marginal revenue

provides, directly, an estimate of the realized marginal cost at each sample observation.
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Finally, we use this sample of realized marginal costs to estimate the marginal cost function,

and in particular how the marginal cost depends on firm’s output of different products

(that is, economies of scale and scope), and possibly on other firm’s characteristics such as

historical cumulative output (that is, learning by doing), installed capacity, or geographic

distance between the firm’s production plants (that is, economies of density).

The value of a firm’s marginal revenue depends on the form of competition in the indus-

try, or the nature of competition. Given the same demand function, the marginal revenue

is different under perfect competition, Cournot, Bertrand, or collusion. The researcher’s

selection of a model of competition typically implies answers the following choices: (a) is

the product homogeneous or differentiated; (b) do firms compete in prices or in quantities?;

(c) is there collusion between some or all the firms in the industry?; and (d) what does a

firm believe about the behavior of other firms in the market? For instance, if the researcher

assumes that the product is homogenous, firms compete in quantities, there is no collusion

in the industry, and firms choose their levels of output under the belief that the other firms

will not change their respective output levels (that is, Nash assumption), then the form of

competition is the one in the Cournot model. In principle, some of these assumptions may

be supported by the researcher’s knowledge of the industry. However, in general, some of

these assumptions are diffi cult to justify. Ideally. we would like to learn from our data

about the nature of competition. Suppose that the researcher has data on firms’marginal

costs (or estimates of these costs based on a production function) and an estimation of the

demand system. Then, given an assumption about the form of competition in this industry

(for instance, perfect competition, Cournot, collusion), the researcher can use the demand to

obtain firms’marginal revenues and check whether they are equal to the observed marginal

costs. That is, the researcher can test if a particular form of competition is consistent with

the data. In this way, it is possible to find the form of competition that is consistent with

the data, for instance, identify if there is evidence of collusive behavior. We will see in this

chapter that, even if the researcher does not have data on firms’costs, it is still possible

to combine the demand system and the equilibrium conditions to jointly identify marginal

costs and the nature of competition in the industry. This is the main purpose of the so called

conjectural variation approach.

In this chapter, we describe the specification and estimation of empirical models of

Cournot competition in an homogenous product industry, Bertrand competition in a dif-

ferentiated product industry, and the conjectural variation approach both in homogenous

and differentiated product industries.
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2. Homogenous product industry

2.1. Estimating marginal costs from equilibrium conditions. First, we consider
the situation where the researcher does not have direct measures of marginal costs and uses

the equilibrium conditions to estimate these costs.

2.1.1. Perfect competition. We first illustrate this approach in the context of a perfectly

competitive industry for an homogeneous product. Suppose that the researcher knows, or is

willing to assume, that the industry under study is perfectly competitive, and she has data on

the market price and on firms’output for T periods of time (or T geographic markets) that

we index by t. The dataset consists of {pt, qit} for i = 1, 2, ..., Nt and t = 1, 2, ..., T , where

Nt is the number of firms active at period t. The variable profit of firm i is pt qit − Ci(qit).
Under perfect competition, the marginal revenue of any firm i is the market price, pt. The

marginal condition of profit maximization for firm i is pt = MCi(qit) where MCi(qit) is the

marginal cost, MCi(qit) ≡ C ′i(qit). Under perfect competition, all the firms should have

the same marginal costs. This is a clear testable restriction of the assumption of perfect

competition with homogeneous product.

Consider a particular specification of the cost function. With a Cobb-Douglas production

function, we have that:

MCi(qit) = qθit W
α1
1it ...W

αJ
Jit exp{εMC

it } (2.1)

Wjit is the price of variable input j for firm i, and α’s are technological parameters in the

Cobb-Douglas production function. εMC
it is an unobservable to the researcher that captures

the cost (in)effi ciency of a firm and that depends on the firm’s total factor productivity,

unobserved input prices and unobserved fixed inputs. The technological parameter θ is

equal to 1
αV
− 1, and αV is the sum of the Cobb-Douglas coeffi cients of all the variable

inputs. Therefore, the equilibrium condition pt = MCi(qit) implies the following regression

model in logarithms:

ln (pt) = θ ln(qit) + α1 ln(W1it) + ...+ αJ ln(WJit) + εMC
it (2.2)

We can distinguish three cases for parameter θ. Constant Returns to Scale (CRS): αV = 1

such that θ = 0 and this implies that the marginal cost function is a constant function.

Decreasing (Increasing) Returns to Scale: αV < 1 (αV > 1) such that θ > 0 (θ < 0) and the

log-marginal cost function is an increasing (decreasing) linear function of log-output. The

Using data on prices and quantities, we can estimate the slope parameter θ in this

regression equation. Given estimates of the parameters θ and α’s we can estimate εMC
it as a

residual from this regression. Therefore, we can estimate the marginal cost function function

of each firm. Since the dependent variable of the regression, ln (pt), is constant over firms,
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then, by construction, firms that produce more are more cost-effi cient according to the term

α1 ln(W1it) + ...+ αJ ln(WJit) + εMC
it .

Estimation of equation (2.2) by OLS suffers of an endogeneity problem. The equilibrium

condition implies that firms with a large value of εMC
it are less cost-effi cient and, and all

else equal, should have a lower level of output. Therefore, the regressor ln(qit) is negatively

correlated with the error term εMC
it . This negative correlation between the regressor and the

error term implies that the OLS estimator provides a downward biased estimate of the true

θ. For instance, the OLS estimate could show increasing returns to scale, θ < 0, when the

true technology has decreasing returns to scale, θ > 0. This endogeneity problem does not

disappear if we consider the model in market means.

We can deal with this endogeneity problem by using instrumental variables. Suppose

that XD
t is an observable variable (or vector of variables) that affects the demand of the

product but not the marginal costs of the firms. The equilibrium of the model implies that

these demand variables should be correlated with firms’outputs, ln(qit). Of course, this

condition is testable. Under the assumption that these observable demand variables XD
t

are not correlated with the unobserved term in the marginal cost, E(XD
t εMC

it ) = 0, we

can use these variables as instruments for log-output in the regression equation (??) for the
consistent estimation of θ.

2.1.2. Cournot competition. Now, suppose that the researcher assumes that the market

is not perfectly competitive and that firms compete a la Nash-Cournot. The demand can

be represented using the inverse demand function pt = P
(
Qt, X

D
t

)
, where Qt ≡

∑N
i=1 qit is

the market total output, and XD
t is a vector of exogenous market characteristic that affect

demand. Each firm chooses its own output qit to maximize profit. Profit maximization

implies the condition of marginal revenue equal to marginal cost, and the marginal revenue

function is:

MRit = pt + P ′Q
(
Qt, X

D
t

) [
1 +

dQ(−i)t

dqit

]
qit (2.3)

P ′Q
(
Qt, X

D
t

)
is the derivative of the inverse demand function with respect to total output.

Variable Q(−i)t is the aggregate output of firms other than i, and the derivative
dQ(−i)t

dqit
repre-

sents the belief or conjecture that firm i has about how other firms will respond by changing

their output when this firm changes marginally its own output. Under the assumption of

Nash-Cournot competition, this belief or conjecture is zero:

Nash− Cournot⇔
dQ(−i)t

dqit
= 0 (2.4)

Firm i takes as fixed the quantity produced by the rest of the firms, Q(−i)t, and chooses

her own output qit to maximize her profit. Therefore, the first order condition of optimality
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under Nash-Cournot competition is:

MRit = pt + P ′Q
(
Qt, X

D
t

)
qit = MCi(qit) (2.5)

We assume that the profit function is globally concave in qit for any positive value of Q(−i)t

such that there is a unique value of qit that maximizes the firm’s profit, and it is fully

characterized by the marginal condition of optimality that establishes that marginal revenue

equals marginal cost.

Consider the same specification of the cost function as before. Suppose that the demand

function has been estimated in a first step such that there is a consistent estimate of the

demand function. Therefore, the researcher can construct consistent estimates of marginal

revenues pt+P ′Q
(
Qt, X

D
t

)
qit for every firm i. Then, the econometric model can be described

in terms of the following linear regression model in logarithms:1

ln (MRit) = θ ln(qit) + α1 ln(W1it) + ...+ αJ ln(WJit) + εMC
it (2.6)

We are interested in the estimation of the parameter θ and α’s and of the firms’relative

effi ciency, εMC
it .

OLS estimation of this regression function suffers of the same endogeneity problem as in

the perfect competition case described above. The model implies that E(ln (qit) ε
MC
it ) 6= 0,

and more specifically there is a negative correlation between a firm’s output and its unob-

served ineffi ciency. To deal with this endogeneity problem, we can use instrumental variables.

As in the case of perfect competition, we can use observable variables that affect demand but

not costs, XD
t , as instruments. With Cournot competition, we may have additional types of

instruments.

Suppose that the researcher observes some exogenous input prices Wit = (W1it, ...,WJit)

and that at least one of these prices has cross-sectional variation over firms. For instance,

suppose that there is information at the firm level on the firm’s wage rate, or its capital

stock, or its installed capacity. Note that, in equilibrium the input price of the competitors

have an effect on the level of output of a firm. That is, given its own input prices Wit,

log-output ln(qit) still depends on the input prices of other firms competing in the market,

Wjt for j 6= i. A firm’s output increases if, all else equal, the wage rates of a competitor

increases. Note that the partial correlation between Wjt and ln(qit) is a testable condition.

Under the assumption that the vector Wjt is exogenous, that is, E(Wjt ε
MC
it ) = 0, a natural

approach to estimate this model is using IV or GMM based on moment conditions that use

the characteristics of other firms as an instrument for output. For instance, the moment

1For notational simplicity, here I omit the estimation error from the estimation of the demand function in
the first step. Note that, in this case, this estimation error only implies measurement error in the dependent
variable and it does not affect the consistency of the instrumental variables estimator described below or the
estimation of robust standard errors.
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conditions can be:

E
([

ln(Wit)∑
j 6=i ln(Wjt)

]
[ln (MRit)− θ ln(qit)−Wit α]

)
= 0 (2.7)

2.2. Identification of the nature of competition: Conjectural variation model.
2.2.1. Model. Consider an industry where, at period t, the inverse demand curve is pt =

P
(
Qt, X

D
t

)
, and firms, indexed by i, have cost functions Ci(qit). Every firm i, chooses its

amount of output, qit, to maximize its profit, pt qit − Ci(qit). Without further assumptions,
the marginal condition for the profit maximization of a firm is marginal revenue equal to

marginal cost, where the marginal revenue of firm i is:

MRit = pt + P ′Q
(
Qt X

D
t

) [
1 +

∂Q(−i)t

∂qit

]
qit (2.8)

As mentioned above, the term
∂Q(−i)t

∂qit
represents the belief that firm i has about how the

other firms in the market will respond if she changes its own amount of output marginally.

We denote this conjecture or belief as the conjectural variation of firm i at period t, and

denote it as CVit ≡
∂Q(−i)t

∂qit
.

As researchers, we can consider different assumptions about firms’beliefs or conjectural

variations. Different assumptions on CVs imply different models of competition with their

corresponding equilibrium outcomes. John Nash (1951) proposed the following conjecture:

when a player constructs her best response, she believes that the other players will not

response to a change in her decision. In the Cournot model, Nash conjecture implies that

CVit = 0. For every firm i, the "perceived" marginal revenue is MRit = pt + P ′Q
(
Qt X

D
t

)
qit, and the condition pt + P ′Q

(
Qt X

D
t

)
qit = MCi(qit) implies the Cournot equilibrium.

There are CVs that generate the perfect competition equilibrium and the collusive or

cartel equilibrium.

Perfect competition. For every firm i, CVit = −1. Note that this conjecture implies

that: MRit = pt + P ′Q
(
Qt X

D
t

)
[1− 1] qit = pt, and the conditions pt = MCi(qit) imply the

perfect competition equilibrium.

Collusion (Cartel). For every firm i, CVit = Nt − 1. This conjecture implies, MRit =

pt + P ′Q
(
Qt X

D
t

)
Nt qit, that generates that equilibrium conditions pt + P ′Q

(
Qt X

D
t

)
Nt

qit = MCi(qit). When firms have constant and homogeneous MCs, this condition implies

pt + P ′Q
(
Qt X

D
t

)
Qt = MCt, which is the equilibrium condition for the Monopoly (collusive

or cartel) outcome.
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The value of the beliefs / CV parameters are related to the nature of competition.

Perfect competition: CVit = −1; MRit = pt

Nash-Cournot: CVit = 0; MRit = pt + P ′Q (Qt) qit

Cartel all firms: CVit = Nt − 1; MRit = pt + P ′Q (Qt) Qt

(2.9)

Given this result, one can argue that CV is closely related to the nature of competition, and

therefore with equilibrium price and quantities. If CV is negative, the degree of competition

is stronger than Cournot. The closer to −1, the more competitive. If CV is positive, the

degree of competition is weaker than Cournot. The closer to Nt − 1, the less competitive.

Interpreting CVit as an exogenous parameter is not correct. Conjectural variations rep-

resent firms’beliefs, and as such they are endogenous outcomes from the model.

2.2.2. Estimation with information on marginal costs. Consider an homogeneous product

industry and a researcher with data on firms’quantities and marginal costs, and market

prices over T periods of time: {pt,MCit, qit} for i = 1, 2, ..., Nt and t = 1, 2, ..., T . Under the

assumption that every firm chooses the amount of output that maximizes its profit given its

belief CVit, we have that the following condition holds:

pt + P ′Q
(
Qt X

D
t

)
[1 + CVit] qit = MCit (2.10)

And solving for the conjectural variation, we have:

CVit =
pt −MCit

−P ′Q (Qt XD
t ) qit

− 1 =

[
pt −MCit

pt

] [
1

qit/Qt

]
|ηt| − 1 (2.11)

where ηt is the demand elasticity. Note that
pt−MCit

pt
is the Lerner index and qit/Qt is the

market share of firm i. This equation shows that, given data on quantities, prices, demand

and marginal costs, we can identify the firms’beliefs that are consistent with these data and

with profit maximization. Let us denote
[
pt−MCit

pt

] [
1

qit/Qt

]
as the Lerner-index-to-market-

share ratio of a firm. If the Lerner-index-to-market-share ratios are close zero, then the

estimated values of CV will be close to −1 unless the absolute demand elasticity is large. In

contrast, if the Lerner-index-to-market-share ratios are large (that is, larger than the inverse

demand elasticity), then estimated CV values will be greater than zero, and can reject the

hypothesis of Cournot competition in favor of collusion.

Under the restriction that all the firms have the same marginal costs and conjectural

variations, equation (2.11) that relates the Lerner index with the conjectural variation be-

comes:
pt −MCt

pt
=

[
1 + CVt
Nt

]
1

|ηt|
(2.12)
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where Nt is the number of firms in the market. This is the equation that we use in the

empirical application that we describe at the end of this section. According to this expres-

sion, market power, as measured by the Lerner Index, depends on the elasticity of demand

(negatively), the number of firms in the market (negatively), and the conjectural variation

(positively).

2.2.3. Estimation without information on marginal costs. So far, we have considered the

estimation of CV parameters when the researcher knows both demand and firms’marginal

costs. We now consider the case where the researcher knows the demand, but it does not

know firms’marginal costs. Identification of CVs requires also de identification of marginal

costs. Under some conditions, we can jointly identify CVs and MCs using the marginal

conditions of optimality and the demand.

The researcher observes data
{
pt, qit, XD

t , X
MC
t : i = 1, ...Nt; t = 1, ..., T

}
, where XD

t

are variables affecting consumer demand, for instance, average income, population, and Wt

are variables affecting marginal costs, for instance, some input prices. Consider the linear

(inverse) demand equation:

pt = α0 + α1 X
D
t − α2 Qt + εDt (2.13)

with α2 ≥ 0, and εDt is unobservable to the researcher. Consider the marginal cost function:

MCit = β0 + β1 Wt + β2 qit + εMC
it (2.14)

with β2 ≥ 0, and εMC
it is unobservable to the researcher. Profit maximization implies pt +

dPt
dQt

[1 + CVit] qit = MCit. Since the demand function is linear and
dPt
dQt

= −α2, we have:

pt = β0 + β1 Wt + [β2 + α2(1 + CVit)] qit + εMC
it (2.15)

This equation describes the marginal condition for profit maximization. We assume now

that CVit = CV for every observation i, t in the data. The structural equations of the model

are the demand equation in (2.13) and the equilibrium condition in (2.15).

Using this model and data, can we identify (that is, estimate consistently) the CV pa-

rameter? For the structural model described by equations (2.13) and (2.15), the answer to

this question is negative. However, we will see that a simple modification of this model im-

plies separate identification of CV and MC parameters. We first describe the identification

problem.

Identification of demand parameters. The estimation of the regression equation for the

demand function needs to deal with the well-known simultaneity problem. In equilibrium,

output Qt is correlated with the error term εDt . The model implies a valid instrument to

estimate demand. In equilibrium, Qt depends on the exogenous cost variable Wt. This

variable does not enter in the demand equation. If Wt is not correlated with εDt , then this
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variable satisfies all the conditions for being a valid instrument. Parameters α0, α1, and α2

are identified using this IV estimator.

Identification of CV and MCs. In the regression equation (2.15) we also need to deal with

a simultaneity problem. In equilibrium, output qit is correlated with the error term εMC
it .

The model implies a valid instrument to estimate this equation. In equilibrium, qit depends

on the exogenous demand shifter XD
t . Note that X

D
t does not enter in the marginal cost

and in the right hand side of the regression equation (2.15). If XD
t is not correlated with

εMC
it , then this variable satisfies all the conditions for being a valid instrument such that the

parameters β0, β1, and γ ≡ β2 + α2(1 + CV ) are identified using this IV estimator.

Note that we can identify the parameter γ ≡ β2 + α2(1 + CV ) and the slope of inverse

demand function, α2. However, knowledge of γ and α2 is not suffi cient to identify separately

CV and the slope of the MC, β2. Given estimated values for γ and α2, equation γ =

β2 + α2(1 + CV ) implies a linear relationship between CV and β2 and there are infinite

values of these parameters that satisfy this restriction. Even we restrict CV to belong to

the values with a clear economic interpretation, such that CV ∈ {−1, 0, N − 1} and β2 to

greater or equal than zero, we do not have identification of these parameters. For instance,

suppose that N = 2, γ = 2, and α2 = 1 such that we have the constraint 2 = β2 + (1 +CV )

or equivalently, β2 + CV = 1. This equation is satisfied by any of the following forms of

competition and values of β2 ≥ 0. Perfect competition: CV = −1 and β2 = 2. Cournot

competition: CV = 0 and β2 = 1. And perfect collusion: CV = N − 1 = 1 and β2 = 0.

Following Bresnahan (1981), we can provide a graphical representation of this identifi-

cation problem. Suppose that we have followed the approach described above to estimate

consistently demand parameters, marginal cost parameters β0 and β1, and the parameter

γ. We can define two hypothetical marginal cost functions: the marginal cost under the

hypothesis of perfect competition (CV = −1 such that β2 = γ), MCc ≡ β0 + β1 W + γ q;

and the marginal cost under the hypothesis of monopoly or perfect collusion (CV = N − 1

such that β2 = γ−α2N),MCm ≡ β0 +β1 W +(γ−α2N) q. That is, MCc andMCm are the

marginal cost functions that rationalize the observed values (pt, qit) under the hypotheses of

perfect competition and monopoly, respectively. Figure 5.1 shows that the observed price

and quantity in market 1, say (p1, q1), can be rationalized either as the point where the

demand function D1 crosses the marginal costMCc, or as the monopoly outcome defined by

the marginal revenue MR1 and the marginal cost MCm.
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Figure 4.1: One data point: No identification of PC vs. collusion

If the model is described by equations (2.13) and (2.15), the observation of prices and

quantities (pt, qt) from multiple markets does not help to solve this identification problem.

Suppose that we keep Wt constant such that the observations (pt, qt) for t = 1, 2, ..., T

are generated by different values of the demand shifters XD
t and εDt . This implies parallel

vertical shifts in the demand curve and in the corresponding marginal revenue curve, as

represented in Figure 5.2. As explained above for observation (p1, q1), all the observations

{pt, qt : t = 1, 2, ..., T} can be rationalized either as perfect competive equilibria that come
from the intersection of demand curves {Dt : t = 1, 2, ..., T} and marginal cost MCc, or as

monopoly outcomes that are determined by the intersection of the marginal revenue curves

{MRt : t = 1, 2, ..., T} and the marginal cost MCm.
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Figure 4.2: Multiple data points: No identification of PC vs. collusion

This graphical analysis provides also an intuitive interpretation of a solution to this

identification problem. This solution involves generalizing demand function so that changes

in exogenous variables do more than just a parallel shift in the demand curve and the

marginal revenue. We introduce additional exogenous variables that are capable of rotating
the demand curve. Consider Figure 5.3. We have two data points as represented by points

E1 and E2. Now, point E2 is associated with a change in the demand curve that consists in

a rotation around point E1. Under perfect competition, this rotation in the demand curve

should not have any effect in equilibrium prices and quantities. Therefore, under perfect

competition the value of (P, q) in market 2 should be the same as in market 1. Since point

E2 is different to E1, we can reject the hypothesis of perfect competition. Changes in the

slope of the demand have and effect on prices and quantities only if firms market power.
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Figure 4.3: Multiple data points: Identification of PC vs. collusion

We now present more formally the identification of the model illustrated in Fugure 5.3.

Consider now the following demand equation:

pt = α0 + α1 X
D
t − α2 Qt − α3 [Rt Qt] + εDt (2.16)

Rt is an observable variable that affects the slope of the demand. Some possible candidates

for these variables are the price of a substitute or complement product, seasonal variables,

or the consumer demographics. The key condition is that the parameter α3 is different to

zero. That is, when Rt varies, there is a rotation in the demand curve, that is, a change

in the slope of the demand curve. Note that this condition is testable. Given this demand

model, we have that dPt
dQt

= −α2−α3 Rt, and the marginal condition for profit maximization

implies the following regression model:

pt = β0 + β1 Wt + γ1 qit + γ2 (Rt qit) + εMC
it (2.17)

with γ1 ≡ β2 + α2 [1 + CV ] and γ2 ≡ α3 [1 + CV ].

Equations (2.16) and (2.17) describe the structural model. Using this model and data,

we can identify separately CV and MC parameters. Demand parameters can be identified

similarly as before, using Wt as an instrument for output. Parameters α0, α1, α2, and

α3 are identified using this IV estimator. The model also implies a valid instrument to

estimate the parameters in the equilibrium equation in (2.17). We can instrument qit using

XD
t . Parameters β0, β1, γ1, and γ2 are identified. Note that γ1 = β2 + α2 [1 + CV ] and

γ2 = α3 [1 + CV ] such that that given γ2 and α3 we identify CV , and given γ1, α2, and CV

we identify β2. The identification of CV is very intuitive: 1 + CV = γ2/α3. It measures
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the ratio between the sensitivity of price with respect to (Rt qit) in the equilibrium equation

relative to the sensitivity of price with respect to (Rt Qt) in the demand equation.

The sample variation in the slope of the inverse demand plays a key role in the identifi-

cation of the CV parameter. An increase in the slope means that the demand becomes less

price sensitive, more inelastic. For a monopolist, when the demand becomes more inelastic,

the optimal price should increase. In general, for a firm with high level of market power

(high CV), we should observe an important increase in prices associated with an increase in

the slope. On the contrary, if the industry is characterized by very low market power (low

CV) the increases in prices should be practically zero. Therefore, the response of prices to

an exogenous change in the slope of the demand contains key information for the estimation

of θ.

2.2.4. An application: The sugar industry. Genesove andMullin (GM) study competition

in the US sugar industry during the period 1890-1914. Why this period? The reason is that

for this period they can collect high quality information on the value of marginal costs. Two

aspects play are important in the collection of information on marginal costs. First, the

production technology of refined sugar during this period was very simple and the marginal

cost function can be characterized in terms of a simple linear function of the cost of raw

sugar, the main intermediate input in the production of refined sugar. Most importantly,

during this period there was an important investigation of the industry by the US anti-

trust authority. As a result of that investigation, there are multiple reports from expert

witnesses that provide estimates about the structure and magnitude of production costs in

this industry.

As we describe below, GM use this information on marginal costs to test the validity of

the standard conjectural variation approach for estimation of price cost margins and marginal

costs. Here I describe briefly the main idea for this approach.

Let pt = P (Qt) be the inverse demand function in the industry. Under the conjectural

variation approach, and under the assumption that all the firms are identical in their marginal

costs and in their conjectural variations, the marginal revenue at period t is:

MRt = pt − [1 + CVt]
Qt

Nt

dP (Qt)

dQt

(2.18)

where dP (Qt)/dQt is the derivative of the inverse demand function. The condition for profit

maximization (marginal revenue equals marginal cost) is pt − [1 + CVt]
Qt
Nt

dP (Qt)
dQt

= MCt,

and it implies the following condition for the Lerner Index:

pt −MCt
pt

=

[
1 + CVt
Nt

]
1

|ηt|
(2.19)
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Therefore, if we observe prices and can estimate the demand elasticity and the marginal cost,

then we have a simple and direct estimate of the conjectural variation. Without information

on MCs, the estimation of the CV should be based: (a) on our estimation of demand, and

in particular, on exclusion restrictions that permit the identification of demand parameters;

and (b) on our estimation of the MC function, on exclusion restrictions that permit the

identification of this function. If assumptions (a) or (b) are not correct, our estimation of

the CV and therefore of the Lerner Index, will be biased. GM evaluate these assumptions by

comparing the estimates of CV using information on MCs and not using that information.

The rest of this section describes the following aspects of this empirical application: (a)

The industry; (b) The data; (c) Estimates of demand parameters; and (d) Estimation of

CV.

The industry. Homogeneous product industry. Highly concentrated during the sample

period, 1890-1914. The industry leader, American Sugar Refining Company (ASRC), had

more than 65% of the market share during most of these years.

Production technology. Refined sugar companies buy "raw sugar" from suppliers in

national or international markets, transformed it into refined sugar, and sell it to grocers.

They sent sugar to grocers in barrels, without any product differentiation. Raw sugar is

96% sucrose and 4% water. Refined sugar is 100% sucrose. The process of transforming raw

sugar into refined sugar is called "melting", and it consists of eliminating the 4% of water

in raw sugar. Industry experts reported that the industry is a "fixed coeffi cient" production

technology:2

Qrefined = λ Qraw

where Qrefined is refined sugar output, Qraw is the input of raw sugar, and λ ∈ (0, 1) is a

technological parameter. That is, 1 ton of raw sugar generates λ tons units of refined sugar.

Marginal cost function. Given this production technology, the marginal cost function
is:

MC = c0 +
1

λ
praw

where praw is the price of the input raw sugar (in dollars per pound), and c0 is a component

of the marginal cost that depends on labor and energy. Industry experts unanimously report

that the value of the parameter λ was close to 0.93, and c0 was around $0.26 per pound.

Therefore, the marginal cost at period (quarter) t, in dollars per pound of sugar, was:

MCt = 0.26 + 1.075 prawt

2Actually, the fixed coeffi cient Leontieffproduction function isQrefined = min {λ Qraw ; f(L,K)} where
f(L,K) is a function of labor and capital inputs. However, cost minimization will generally imply that
Qrefined = λ Qraw = f(L,K).
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The data. Quarterly US data for the period 1890-1914. The dataset contains 97 quarterly

observations on industry output, price, price of raw sugar, imports of raw sugar, and a

seasonal dummy.

Data = { Qt, pt, prawt , IMPt, St : t = 1, 2, ..., 97}

IMPt represents the imports of raw sugar from Cuba. And St is a dummy variable for

the Summer season: St = 1 is observation t is a Summer quarter, and St = 0 otherwise.

The summer was a high demand season for sugar because most the production of canned

fruits was concentrated during that season, and the canned fruit industry accounted for an

important fraction of the demand of sugar.

Based on this data, we can also obtain a measure of marginal cost asMCt = 0.26+1.075

prawt .

Estimates of demand parameters. GM estimate four different models of demand. The

main results are consistent for the four models. Here I concentrate on the linear demand,

Qt = βt (αt − pt), and the inverse demand equation is:

pt = αt −
1

βt
Qt

We can refer to βt to the price sensitivity of demand, which is the inverse of the slope of the

demand curve, that is, higher price sensitivity implies a smaller slope of the demand curve.

GM consider the following specification for αt and βt:

αt = αL (1− St) + αH St + eDt

βt = βL (1− St) + βH St

αL, αH , βL, and βH are parameters. αL and βL are the intercept and the slope of the demand

during the "Low Season" (when St = 0). And αH and βH are the intercept and the slope of

the demand during the "High Season" (when St = 1). eDt is an error term that represents

all the other variables that affect demand and that we do not observe. Therefore, we can

write the following inverse demand equation:

pt = αL + (αH − αL)St +
1

βL
(−Qt) +

(
1

βH
− 1

βL

)
(−StQt) + eDt

This is a regression equation where the explanatory variables are a constant term, St, (−Qt),

and (−StQt), and the parameters are αL, (αH−αL), 1
βL
, and

(
1
βH
− 1

βL

)
. From the estimation

of these parameters, we can recover αL, αH , βL, and βH .

As we have discussed before, Qt is an endogenous regressor in this regression equation.

We need to use IV to deal with this endogeneity problem. In principle, it seems that we

could we prawt as an instrument. However, GM have a reasonable concern about the validity

of this instrument. The demand of raw sugar from the US accounts for a significant fraction
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of the world demand of raw sugar. Therefore, exogenous shocks in the demand of refined

sugar (eDt ) might generate an increase if the world demand of raw sugar and in p
raw
t such that

Cov(eDt , p
raw
t ) 6= 0. Instead they use imports of raw sugar from Cuba as an instrument: al-

most 100% of the production of raw sugar in Cuba was exported to US, and the authors claim

that variations in Cuban production of raw sugar was driven by supply/weather conditions

and not by the demand from US.

These are the parameter estimates.

Table 4.1: Genesove and Mullin: Demand estimates
Demand Estimates
Parameter Estimate Standard Error

αL 5.81 (1.90)
αH 7.90 (1.57)
βL 2.30 (0.48)
βH 1.36 (0.36)

In the high season the demand shifts upwards and becomes less elastic. The estimated

price elasticities of demand in the low and the high season are |ηL| = 2.24 and |ηH | = 1.04,

respectively. According to this, any model of oligopoly competition where firms have some

market power predicts that the price cost margin should increase during the price season

due to the lower price sensitivity of demand.

Before we discuss the estimates of the conjectural variation parameter, it is interesting to

illustrate the errors that researchers can make if in the absence of information about marginal

costs they estimate price cost margins by making an adhoc assumption about the value of

CV in the industry. As mentioned above, the industry was highly concentrated during

this period. Though there were approximately 6 firms active during most of the sample

period, one of the firms accounted for more than two-thirds of total output. Suppose three

different researchers of this industry, that we label as researchers M , C, and S. Researcher

M considers that the industry was basically a Monopoly/Cartel during this period (in fact,

there was anti-trust investigation, so there may be some suspicions of collusive behavior).

Therefore, she assumes that [1 +CV ]/N = 1. Researcher C considers that the industry can

be characterized by Cournot competition between the 6 firms, such that [1 +CV ]/N = 1/6.

Finally, researcher S thinks that this industry can be better described by a Stackelberg model

with 1 leader and 5 Cournot followers, and therefore [1 + CV ]/N = 1/(2 ∗ 6 − 1) = 1/11.

What are the respective predictions of these researchers about market power as measured

by the Lerner index? The following table presents the researchers’predictions and also the

actual value of the Lerner index based on our information on marginal costs (that we assume

is not available for these 3 researchers). Remember that Lerner = p−MC
p

=
[

1+CV
N

]
1
|η| .
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Table 4.2: Genesove and Mullin: Markups under different conduct parameters
Predicted Market Power Based on Different Assumptions on 1+CV

N

Assumed 1+CV
N

Predicted Lerner Actual Lerner Predicted Lerner Actual Lerner

Low season:
[

1+CV
N |ηL|

]
Low season:pL−MC

pL
High season:

[
1+CV
N |ηH |

]
High season:pH−MC

pH

Monopoly: 1+CV
N

= 1 1
2.24

= 44.6% 3.8% 1
1.04

= 96.1% 6.5%

Cournot: 1+CV
N

=1
6

1/6
2.24

= 7.4% 3.8% 1/6
1.04

= 16.0% 6.5%

Stackelberg: 1+CV
N

= 1
11

1/11
2.24

= 4.0% 3.8% 1/11
1.04

= 8.7% 6.5%

This table shows that the researcher M will make a very seriously biased prediction of

market power in the industry. Since the elasticity of demand is quite low in this industry,

especially during the high season, the assumption of Cartel implies a very high Lerner index,

much higher than the actual one. Researcher C also over-estimates the actual Lerner index.

The estimates of researcher S are only slightly upward biased.

Consider the judge of an anti-trust case where there is very little reliable information on

the actual value of MCs. The picture of industry competition that this judge gets from the

three researchers is very different. This judge would be interested in measures of market

power in this industry that do not depend on an adhoc assumption about the value of CV.

Estimation of conjectural variation. Suppose that we do not observe the MC and we

use the approach described Section 2 to estimate the CV and then the lerner index. The

condition marginal revenue equal to marginal cost implies the following equation:

pt = c0 + c1 p
raw
t + θ

Qt

βt
+ eMC

t

with θ ≡ (1 +CV )/N . We treat c0 and c1 (the parameters in the marginal cost function) as

parameter to estimate because we do not know that c0 = 0.26 and c0 = 1.075. We interpret

eMC
t as an error term in the marginal cost. After the estimation of the demand equation, we

have β̂t = 2.30(1− St) + 1.36 St. Therefore, we estimate the equation:

pt = c0 + c1 p
raw
t + θ

Qt

β̂t
+ eMC

t

Since Qt is endogeneously determined, it should be correlated with eMC
t . To deal with

this endogeneity problem, GM use instrumental variables. Again, the use imports from Cuba

as an instrument for Qt. In principle, they might have considered the seasonal dummy St
as an instrument, but they were probably concerned that there may be also seasonality in

the marginal cost such that eMC
t and St might be correlated (for instance, wages of seasonal

workers). The following table presents these IV estimates of c0, c1 and θ, their standard
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errors (in parentheses) and the "true" values of these parameters based on the information

on marginal costs.

Table 4.3: Genesove and Mullin: Estimates of conduct and marginal cost
parameters

Estimates of Marginal Costs and θ
Parameter Estimate (s.e.) "True" value(Note)

1+CV
N

0.038 (0.024) 0.10

c0 0.466 (0.285) 0.26

c1 1.052 (0.085) 1.075

The "true" value of 1+CV
N

using information of MC is obtained using the relationship
1+CV
N

= (p−MC
p

) |η|. The estimates of 1+CV
N
, c0, and c1, are not too far from their "true"

values. This seems a validation of the CV approach for this particular industry. Based

on this estimate of 1+CV
N
, the predicted values for the Lerner index in the low season is[

1+CV
N

]
1
|ηL|

=
0.038

2.24
= 1.7%, and the predicted Lerner Index in high season

[
1+CV
N

]
1
|ηH |

=

0.038

1.04
= 3.6%. Remember that the true values of the Lerner index using information on

marginal costs were 3.8% in the low season and 6.5% in the high season. Therefore, the

estimates using the CV approach under-estimate the actual market power in the industry,

but by a relatively small magnitude.

3. Differentiated product industry

3.1. Model. Consider an industry with J differentiated products (for instance, auto-
mobiles) indexed by j ∈ J = {1, 2, ..., J}. Consumer demand for each of these products can
be represented using the demand system:

qj = Dj (p,x) for j ∈ J (3.1)

where p = (p1, p2, ..., pJ) is the vector of product prices, and x = (x1, x2, ..., xJ) is a vector

of other product attributes. There are F firms in the industry, indexed by f ∈ {1, 2, ..., F}.
Each firm f owns a subset Jf ⊂ J of the brands. The profit of firm f is:

Πf =
∑
j∈Jf

pj qj − Cj(qj) (3.2)

where Cj(qj) is the cost of producing a quantity qj of product j. Firms compete in prices.

Bertrand. For the moment, we assume Nash-Bertrand competition: each firm chooses its

own prices to maximize profits and takes the prices of other firms as given. The first order



3. DIFFERENTIATED PRODUCT INDUSTRY 145

conditions of optimality for profit maximization of firm f are: for any j ∈ Jf

qj +
∑
k∈Jf

[pk −MCk]
∂Dk

∂pj
= 0 (3.3)

where MCj is the marginal cost C ′j(qj). We can write this system in vector form. For firm

f :

qf + ∆Df
[
pf −MCf

]
= 0 (3.4)

where qf , pf , and MCf are column vectors with the quantities, prices, and marginal costs,

respectively, for every product j ∈ Jf , and ∆Df is the square matrix with the demand-price

derivatives
∂Dk

∂pj
for every j, k ∈ Jf . Solving for price-cost margins in this system:

pf −MCf = −
[
∆Df

]−1
qf (3.5)

The RHS of this equation depends only on demand parameters, not costs. Given an estimated

demand system, the vector of Price-Cost Margins under Nash-Bertrand competition (and a

particular ownership structure of brands),is known to the researcher.

EXAMPLE. Single product firms and Logit model. For single product firms, the marginal
condition of optimality is:

pj −MCj = −
[
∂Dj

∂pj

]−1

qj (3.6)

In the logit demand system, we have that:

Dj (p,x) = H
exp

{
x′jβ − α pj

}
1 +

∑J
k=1 exp {x′kβ − α pk}

(3.7)

where H represents market size, and β and α are parameters. This demand system implies

that
∂Dj

∂pj
= −α H sj(1 − sj) where sj is the market share sj ≡ qj/H. Therefore, in this

model:

PCMj ≡ pj −MCj =
1

α(1− sj)
(3.8)

We see that in this model the price-cost margin of a firm declines with the price sensitivity

of demand, α, and increases with the own market share, sj. �

EXAMPLE. Logit model with Multi-product firms. With multiproduct firms we have that,

the F.O.C. is qj +
∑
k∈Jf

PCMk
∂Dk

∂pj
= 0. In Logit demand system:

∂Dj

∂pj
= −α H sj(1− sj)

and for k 6= j,
∂Dj

∂pk
= α H sj sk. And this implies:

PCMj =
1

α
+
∑
k∈Jf

PCMk sk (3.9)
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The RHS is firm specific but it does not vary across products within the same firm. This

condition implies that all the products owned by a firm have the same price-cost margin.

This condition implies that the price-cost margin is:

PCMj = PCM f =
1

α
(

1−
∑

k∈Jf sk

) (3.10)

For the Logit demand model, a multi-product firm charges the same price-cost margin to

all its products. This prediction does not extend to more general/flexible demand systems.

Note also that a multi-product firm charges higher prices than a single-product firm:

1

α
(

1−
∑

k∈Jf sk

) > 1

α (1− sj)
(3.11)

This prediction is robust and it extends to Bertrand competition when products are substi-

tutes. �

Multiproduct as source of market power. We can write F.O.C. for firm f product

j as:

PCMj =

[
−∂Dj

∂pj

]−1

qj

+

[
−∂Dj

∂pj

]−1
 ∑
k∈Jf ; k 6=j

PCMk
∂Dk

∂pj

 (3.12)

With substitutes,
∂Dk

∂pj
> 0 for k 6= j, and the second term is positive. Selling multiple

products contribute to increase the price-cost margin of each of the products.

Collusion and other ownership structures. Suppose that there is collusion between
some or all the firms. We can represent a collusive setting as a partition of the set of firms,

into a number R of groups or "rinks". Let F = {1, 2, ..., F} be the set of all the firms,
and let R1, R2, ..., RR be a partition of the set F such that R1∪ R2∪ ...∪ RR = F and

Rr ∩ Rr′ = ∅ for r 6= r′. According to this partition, a firm belongs to one and only one

rink. We also use R(f) to denote the rink the rink to which firm f belongs.

A collusion rink, together with the ownership structure of the products, implies a set of

products from all the firms in the rink. Then, we can define:

JR(f) ≡ {j : j ∈ Jf ′ for some f ′ ∈ R(f)} ≡
⋃

f ′∈R(f)
Jf ′

We also define the dummy variables Θ
R(f)
j ≡ 1{j ∈ JR(f)}. No extreme example are no

collusion and collusion of all the firms. With no collusion we have that the number of rinks

R is equal to the number of firms F , and JR(f) = Jf , and Θ
R(f)
j = 1{j ∈ Jf}. With collusion
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of all firms, we have that there is only one rink, R = 1, R1 = F , JR(1) = J , and all the
indicators ΘRj are equal to one.

Firm f maximizes its collusion rink profit:
J∑
j=1

Θ
R(f)
j [pj qj − Cj(qj)]

The F.O.C.s for firm f : for j ∈ Jf

qj +

J∑
k=1

[pk −MCk] Θ
R(f)
k

∂Dk

∂pj
= 0

In vector form, using all the products that belong to the collusion rink R(f)

qR(f) +
[
∆DR(f)

] [
PCMR(f)

]
= 0

∆DR(f) = matrix of demand-price derivatives
∂Dk

∂pj
for every j, k in the collusion rink of firm

f . Such that:

PCMR(f) = −
[
∆DR(f)

]−1
qR(f)

3.2. Estimating MCs based on assumption on form of competition. The re-
searcher has data from J products over T markets, and knows the ownership structure:

Data = {pjt, qjt, xjt : j = 1, ..., J ; t = 1, 2, ..., T}

Suppose that the demand function has been estimated in a fist step, such that there is a

consistent estimator of the demand system Dj (pt,xt). For every firm f , the research has

an estimate of vector −
[
∆Df

t

]−1

qft for every firm f . Therefore, under the assumption of

Bertrand competition she has consistent estimates of the vectors of MCs:

MCf
t = pft +

[
∆Df

t

]−1

qft

Similarly, given an hypothetical collusion rink R(f) represented by the indicators Θ
R(f)
j , the

researcher can construct
[
∆DR(f)

]−1
qR(f) and obtain the estimate of marginal costs:

MC
R(f)
t = p

R(f)
t +

[
∆D

R(f)
t

]−1

q
R(f)
t

Different hypothesis about collusion, or ownership structures of products (for instance, merg-

ers), imply different Price-Cost margins and different estimates of marginal costs. After

estimating the realized values of MCs, we can estimate the marginal cost function.

Consider the following cost function:

C(qjt) =
1

γ + 1
qγ+1
jt exp{x′jtα + ωjt}

Such that:

MCjt = qγjt exp{x′jtα + ωjt}



148 4. STATIC MODELS OF COMPETITION IN PRICES AND QUANTITIES

where ωjt is unobservable to the researcher. The econometric model is:

ln (MCjt) = γ ln (qjt) + x′jtα + ωjt

We are interested in the estimation of the parameters α and γ.

Endogeneity: The equilibrium model implies that E(ln (qtj) ωjt) 6= 0. Firms/products

with larger ωjt are less effi cient in terms of costs (or products are more costly to produce),

and this, all else equal, implies a smaller amount of output.

Instrumental variables. Suppose that E(xkt ωjt) = 0 for any (k, j). We can use as

instruments for ln (qjt) the characteristics of other firms/products.

E
([

xjt∑
k 6=j xkt

] [
ln (MCjt)− γ ln (qjt)− x′jtα

])
= 0

3.3. Testing the nature of competition. Suppose that the researcher observes the
true MCjt. Or more realistically, observes a measure of costs, SMC

obs , for instance, the mean

value of the MCs of all products and firms in the industry; the mean value of the MC of

one particular firm. Given an estimated demand system and an hypothesis about collusion,

represented by a matrix of collusion rink dummies ΘR = {ΘR(f)
j }, we can obtain the MCs

under this hypothesis: MCj(Θ
R).

Let SMC(ΘR) the value of the statistic (for instance, mean value of all MCs) under the

hypothesis ΘR. We can use SMC(ΘR) and SMC
obs to construct a test of the null hypothesis

ΘR. For instance, if SMC is a vector of sample means, we could use a Chi-square test. This

is the approach in Nevo (2001). It is possible to consider Θ
R(f)
j as parameters to estimate,

similarly as the conjectural variation parameters in the homogeneous product case. Using

the estimated demand, our specification of the MC function, and the F.O.C.s of profit

maximization, it is possible to jointly identify Θ
R(f)
j and parameters in MCs. We need

similar rotation demand variables as in the homogeneous demand case (Nevo, 1998).

Testing form of competition: Without info on MCs. Instead of estimating Θ
R(f)
j some

papers have used non-nested hypothesis tests to test null hypothesis of Collusion against the

alternative of Bertrand (or viceversa). The most commonly used non-nested tests procedures

are: Cox-Test and Vuong-Test. Davidson and McKinnon provide an intuitive interpretation

of these tests: Obtain residuals from the model under H0; Run regression of the residuals

on variable in the model under H1; Under null, #obs × R-squared of this regression is

Chi-square.
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3.3.1. Competition and Collusion in the American Automobile Industry.

Table 4.4: Bresnahan (1987) : Descriptive Statistics

Table 4.5: Bresnahan (1987) : Tests of conduct parameters
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Table 4.6: Bresnahan (1987) Estimates demand and MCs (collusion 1954 and
1956)

Estimates Demand and MCs: Bertrand 1954, 1955, 1956. The estimated structural

model under the maintained assumption of collusion in years 1954 and 1956 and Bertrand

competition in1955 implies very stable coeffi cient estimates over the three years. That is,

the observed changes in quantity and prices in 1955 can be fully explained by the change

in conduct, and not by a change in demand or costs parameters. Instead, the models that

impose Collusion over the three years, or Bertrand over the three years imply estimates of

structural parameters with strong and implausible changes in demand and costs in year 1955.

3.3.2. Conduct in the Ready-to-eat cereal industry.

Nevo (2001). Ready-to-Eat (RTE) cereal market: highly concentrated; many apparently

similar products, and yet price-cost margins (PCM) are high. What are the sources of mar-

ket power? Product differentiation? Multi-product firms? Collusion? Nevo: (1) estimates a

demand system of differentiated products for this industry; (2) recovers PCMs and compare

them to rough/aggregate estimates of PCM at the industry level; (3) based on this compari-

son, tests Bertrand vs (full) Collusion [and rejects collusion]; (4) Under Bertrand, compares

estimated PCMs with the counterfactual with single-product firms.

Data. A market is a city-quarter. IRI data on market shares and prices. 65 cities x

20 quarters [Q188-Q492] x 25 brands [total share is 43-62%]. Most of the price variation is

cross-brand (88.4%), the remainder is mostly cross-city, and a small amount is cross-quarter.

Relatively poor brand characteristics so model includes brand fixed effects.
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Table 4.7: Nevo (2001) : Market shares

Table 4.8: Nevo (2001): Demand estimates
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Direct measure of mean value of the price-cost margin in the industry: 31%

Table 4.9: Nevo (2001): Average markups under different conduct hypotheses

Michel andWeiergraeber (2018). This paper studies competition in the US cereal industry

during 1991-96. Two important events during this period: (1) Merger of Post and Nabisco

in 1993; (2) massive wholesale price reduction in 1996. The paper emphasizes importance

of allowing conduct "parameters" to vary over time and across firms in the same
industry. The authors are also particularly concern with finding powerful instruments to
separately identify conduct and marginal costs. They propose novel instruments that exploit

information on firms’promotional activities.
Data. Consumer level scanner data from the Dominick’s Finer Food (DFF). 58 super-

market stores located in the Chicago metropolitan area. Sample Period: February 1991 to
October 1996. Data aggregated at the monthly level (69 months). Focus on 26 brands of
cereals from the 6 nationwide manufacturers: Kellogg’s, General Mills, Post, Nabisco,
Quaker Oats, and Ralston Purina. Brands classified in 3 groups: adult, family, and kids.

Importantly: dataset contains information on wholesale prices (not only retail prices), and
in-store promotional activities.
Market shares. Very concentrated industry: CR1 ' 45%; CR2 ' 75%. Firms market

shares are more or less stable over the sample period, though with some changes after 1993

merger.

Post and Nabisco merger is 1993. Main concern of antitrust authority was the strong

substitutability in the adult cereal segment between Post’s and Nabisco’s products (price

increase after merger). The merger did not lead to any product entry or exit or any changes

in existing products. Following the merger, Post+Nabisco increased significantly its prices,
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and this price increased was followed by the other firms. In principle, this could be explained

under Bertrand-Nash competition, without any change in conduct.

On April 1996, Post decreased its wholesale prices by 20%. This was followed, a few

weeks later, by significant price cuts by the other firms. Average decrease in the wholesale

price between April and October 1996 of 9.66% (and 7.5% in retail price). Reduced form

regressions for wholesale prices: log(pwjst) = PROMOjst β + δ1 AFTMERt + δ2 Y 96t +

α
(1)
j +α

(2)
s + εjst. 96,512 observations. Rich controls for promotions variables, and store-level

aggregate demand. Estimated effects: after-merger (δ1) 0.0609 (s.e. = 0.0023); year-1996

(δ2) -0.0983 (s.e. = 0.0015).

Structural model.

Demand: Random coeffi cients nested logit model. Random coeffi cients logit model

discrete choice demand model: uijt = xj βi + βPROi PROjt + αi pjt + ξjt + εijt. PROjt

total (aggregated over stores and type of promotion) in-store promotions of product j dur-

ing month t. Similar to Nevo (2001) but, very importantly, including in-store promotional

variables. BLP-Instruments: Characteristics of other products. The authors exploit the

substantial amount of sample variation in Promotion variables. Results: Price coeffi cient
is highly negative; High-income consumers are less price-sensitive; Promotions have a signif-

icant positive effect.

Supply side: Flexible conduct parameter framework that specifies the degree of co-
operation by a matrix of parameters that capture the degree to which firms internalize
their rivals’profits. Manufacturers’marginal costs: Constant, MCjt = Wjt γ+ωjt, and

ωjt follows AR(1) process. Conduct parameters: Parameter λff ′t ∈ [0, 1] represents the

degree to which firm f internalizes the profits of firm f ′ when setting its whole sale price in

month t. Identification of MCs and Conduct. Consider the case of two single-product firms.

Their pricing equations are:

p1 −
(
∂s1

∂p1

)−1

s1 = MC1 + λ12 (p2 −MC2)

(
∂s1

∂p1

)−1
∂s2

∂p1

p2 −
(
∂s2

∂p2

)−1

s2 = MC2 + λ21 (p1 −MC1)

(
∂s2

∂p2

)−1
∂s1

∂p2

We need instruments. The number of instruments needed increases with the number of

firms, because we have more λ parameters. "BLP instruments" = characteristics of other

products. Two issues with this type of instruments: (1) often are weak instruments; (2) if

product characteristics do not vary across markets or time, these instruments are collinear

with brand fixed effects. Instead the authors use promotional variables of other products

as instruments. Demand elasticities are significantly affected by these variables. They have

substantial variation across products, over time, and markets.
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Still, there is the concern that promotional variables are endogenous, that is, correlated

with the unobservable component of the marginal cost. Promotions are chosen by firms:

it is more profitable to make promotions when marginal costs are low. To deal with this

endogeneity, the authors make the following assumptions on the error structure and the
timing of promotion decisions. Error structure: Fixed effects (product, store and
seasonal) and AR(1) shock: ωjt = ρ ωjt−1 + vjt. . The model is estimated using quasi-

differences: (yjt − ρ yjt−1) = (xjt − ρ xjt−1) β + vjt. Timing assumption: Promotions are
negotiated between manufacturers and retailers at least one month in advanced. Therefore,

PROMOjt is not correlated with the i.i.d. shock vjt.

Empirical results. Strong evidence for coordination between 1991-1992. On average the

conduct parameter is 0.277: that is, a firm values $1 of its rivals’profits as much as $0.277 of

its own profits. Because this coordination, pre-merger price-cost margins are 25.6% higher
than under multiproduct Bertrand-Nash pricing. After the Post + Nabisco merger in 1993,

the degree of coordination increased significantly, on average to 0.454. Towards year 1996,

the degree of coordination becomes close to 0, consistent with multiproduct Bertrand-Nash

pricing.

Counterfactuals: if firms had competed ala Bertrand-Nash before 1996: Consumer welfare

would have increased by between $1.6−$2.0 million per year; Median wholesale prices would

have been 9.5% and 16.3% lower during the pre-merger and post-merger periods.

3.4. Conjectural variation model with differentiated products. Consider an in-
dustry with a differentiated product. There are two firms in this industry, firm 1 and firm 2.

Each firm produces and sells only one brand of the differentiated product: brand 1 is pro-

duced by firm 1, and brand 2 is produced by firm 2. The demand system has the structure of

a logit demand model, where consumers choose between three different alternatives: j = 0,

represents the consumer decision of not purchasing any of the two products; and j = 1 and

j = 2 represent the consumer purchase of product 1 and 2, respectively. The utility of no

purchase (j = 0) is zero. The utility of purchasing product j ∈ {1, 2} is β xj−α pj+εj, where
the variables and parameters have the interpretation that we have seen in class. Variable

xj is a measure of the quality of product j, for instance, the number of stars of the product

according to consumer ratings. Therefore, we have that β > 0. The random variables ε1

and ε2 are independently and identically distributed over consumers with a type I extreme

value distribution, that is, Logit model of demand. Let H be the number of consumers in

the market. We define the market shares s0, s1, and s2 such that s0 + s1 + s2 = 1 and sj
represents the proportion of consumers choosing alternative j.
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The logit model implies that the market share of product 1, s1, is:

s1 =
exp {β x1 − α p1}

1 + exp {β x1 − α p1}+ exp {β x2 − α p2}
The profit function of firm j ∈ {0, 1} is πj = pj qj− cj qj, where: qj is the quantity sold by

firm j (that is, qj = H sj); and cj is firm j′s marginal cost, that is assumed constant, that

is, linear cost function.

Suppose that firms take their qualities x1 and x2 as given and compete in prices ala

Bertrand. The F.O.C. implies:

p1 − c1 =
1

α (1− s1)

Now, suppose that the researcher is not willing to impose the assumption of Bertrand com-

petition and considers a conjectural variations model. Define the conjecture parameter CV1

as the belief or conjecture that firm 1 has about how firm 2 will change its price when firm 1

changes marginally its price. That is, CV1 represents the belief or conjecture of firm 1 about
∂p2

∂p1

. Similarly, CV2 represents the belief or conjecture of firm 2 about
∂p2

∂p1

. Then, the f.o.c.

for profit maximization is:

q1 + (p1 − c1)

[
∂q1

∂p1

+
∂q1

∂p2

CV1

]
= 0

Solving for the price-cost margin, we have that:

p1 − c1 =
1

α (1− s1 − s2CV1)

Suppose that the researcher does not know the magnitude of the marginal costs c1 and

c2, but she knows that the two firms use the same production technology, the same type

of variable inputs, and purchase these inputs in the same markets where they are price

takers. Therefore, the researcher knows that c1 = c2 = c, though she does not know the

magnitude of c. The marginal conditions for profit maximization for the two firms, together

with the condition c1 = c2 = c, imply that price difference between these two firms, p1 − p2,

is a particular function of their markets shares and the conjectural variations. The marginal

conditions for firms 1 and 2 are p1−c = 1
α (1−s1−s2CV1)

and p2−c = 1
α (1−s2−s1CV1)

, respectively.

The difference between these two equations implies:

p1 − p2 =
1

α (1− s1 − s2CV1)
− 1

α (1− s2 − s1CV2)

The researcher observes prices p1 = $200 and p2 = $195 and market shares s1 = 0.5 and

s2 = 0.2. Firm 1 has both a larger price and a larger market share because its product has

better quality, that is, x1 > x2. Though not really relevant to answer this question, note

that in this industry the higher quality product does not imply a larger marginal cost but
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only a larger fixed cost. The researcher has estimated the demand system and knows that

α = 0.01. Solving the data into the previous equation, we have:

$200− $195 =
100

1− 0.5− 0.2 CV1

− 100

1− 0.2− 0.5 CV2

This is a condition that the parameters CV1 and CV2 should satisfy. Using this equation we

can show that the hypothesis of Nash-Bertrand competition (that requires CV1 = CV2 = 0)

implies a prediction about the price difference p1 − p2 that is substantially larger than the

price difference that we observe in the data. The hypothesis of Nash-Bertrand competition,

CV1 = CV2 = 0, implies that the right hand side of the equation in Q15(b) is:

100

0.5
− 100

0.8
= 200− 125 = $75

That is, Nash-Bertrand implies a price difference of $75 but the price difference in the data

is only $5. The hypothesis of Collusion, CV1 = CV2 = 1, implies that the right hand side of

the equation in Q15(b) is:
100

0.5− 0.2
− 100

0.8− 0.5
= $0

That is, Collusion implies a price difference of $0, which is close to the price difference of $5

that we observe in the data.

4. Quantity and price competition with incomplete information

In this chapter, we have considered different factors that can affect price and quantity

competition and market power in an industry. Economies of scale and scope, firms’hetero-

geneity in marginal costs, product differentiation, multi-product firms, or conduct/form of

competition are among the most important features that we have considered so far. All the

models that we have considered assume that firms have perfect knowledge about demand,

their own costs, and the costs of their competitors. In game theory, this type of models are

denoted as games of complete information. This assumption can quite unrealistic in some

industries. Firms have uncertainty about current and future realizations of demand, costs,

market regulations, or the behavior of competitors. This uncertainty can have substantial

implications for their decisions and profits, and for the effi ciency of the market. For example,

firms may gather better information and use it in their pricing or production strategies to

improve their profits and the probability of survival in the market.

The assumption of firms’ complete information has been the status quo in empirical

models of Cournot or Bertrand competition. In reality, firms often face significant uncertainty

about demand and about their rivals costs and strategies. Firms are different in their ability

and their costs for collecting and processing information, for similar reasons as they are

heterogeneous in their costs of production or investment. In this section, we study models
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and empirical applications of price and quantity competition that allow for firms’incomplete

and asymmetric information. Our main purpose is to study how limited information affects

competition and market outcomes.

4.1. Cournot competition with private information: Theory. Vives (2002) stud-
ies theoretically the importance of firms’ private information as a determinant of prices,

market power, and consumer welfare. He considers a market in which firms compete ala

Cournot and have private information. Then, he studies the relative weights of private in-

formation and market power in accounting for the welfare losses at the market outcome. He

shows that in large enough markets, abstracting from market power provides a much better

approximation than abstracting from private information. IfM represents market size, then

the effect of market power is of the order of 1/M for prices and 1/M2 on per-capita dead-

weight loss, while the effect of private information is of the order of 1/
√
M for prices and

1/M for per-capita deadweight loss. Numerical simulations of the model show that there

is a critical value for market size M∗ (that depends on the values of structural parameters)

such that the effect of private information dominates the effect of market power if and only

if market size is greater than this threshold value.

Consider the market of an homogeneous product where firms compete a la Cournot and

there is free market entry. A firm’s marginal cost is subject to idiosyncratic shocks that

are private information of the firm. The demand function and the marginal cost functions

are linear such that the model is linear-quadratic. This feature facilitates substantially the

characterization of a Bayesian Nash equilibrium in this model with incomplete information.

There are M consumers in the market and each consumer has an indirect utility function

U(x) = α x− β x2/2− p x, where x is the consumption of the good, p is the market price,
and α > 0 and β > 0 are parameters. This utility function implies the market level inverse

demand function, p = P (Q) = α − (β/M) Q. Firms are indexed by i. If firm i is actively

producing in the market its cost function is C(qi, θi) = θi qi+(γ/2) q2
i such that its marginal

cost is MCi = θi + γ qi. Variable θi represents a random shock that is private information

of firm i. These random shocks are i.i.d. over firms with a distribution with mean µθ and

variance σ2
θ that are common knowledge for all the firms. Every active firm producing in the

market should pay a finxed cost F > 0.

The model is a two-stage game. At the first stage, firms decide whether to enter the

market or not. If a firm decides to enter, it pays a fixed cost F > 0. When a firm makes

its entry decision it does not know yet the realization of it idiosyncratic θi. Therefore, the

entry decision is based on the maximization of expected profits. At the second stage, each

active firm i that has decided to enter observes its own θi but not the θ’s of the other active

firms, and compete according to a Bayesian Nash-Cournot equilibrium.
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We now solve the equilibrium of the model starting at the second stage. Suppose that

there are n firms active in the market. The expected profit of firm i is:

πi(θi) = E [P (Q) | θi] qi − θi qi −
γ

2
q2
i

=

(
α− βM

(
qi + E

[∑
j 6=i

qj

]))
qi − θi qi −

γ

2
q2
i

(4.1)

where βM ≡ β/M , and the expectation E [.] is over the distribution of the variables θj for

j 6= i, which are not known to firm i. A Bayesian Nash Equilibrium (BNE) is an n-tuple of

of strategy functions, [σ1(θ1), σ2(θ1), ...,σn(θn)], such that for every firm i:

σi(θi) = arg max
qi

E [P (Q) | θi, σj for j 6= i] qi − θi qi −
γ

2
q2
i (4.2)

We first order condition of optimality for the best response of firm i implies:

qi = σi(θi) = [γ + 2βM ]−1

[
α− θi − βM

∑
j 6=i

E (σj(θj))

]
(4.3)

Since firms are identical up to the private information θi, it seems reasonable to focus on

symmetric BNE such that σi(θi) = σ(θi) for every firm i. Imposing this restriction in the

best response condition (4.3), taking expectations over the distribution of θi, and solving for

σe ≡ E (σ(θi)), we obtain that:

σe ≡ E (σ(θi)) = [γ + βM (n+ 1)]−1 [α− µθ] (4.4)

And solving this expression in (4.3), we obtain the following closed-form expression for the

equilibrium strategy function under BNE:

qi = σ(θi) =
α− µθ

γ + βM (n+ 1)
− θi − µθ
γ + 2βM

(4.5)

Under this equilibrium, the expected profit of an active firm, before knowing the realization

of θi is:

E [π(θi)] = [βM + γ/2] E
[
σ(θi)

2
]

=
[α− µ2

θ]

[γ + βM (n+ 1)]2
+

σ2
θ

[γ + 2βM ]2
(4.6)

Given this expected profit, we can obtain the the equilibrium number of entrants in the

first stage of the game. Given a market of size M , the free-entry number of firms n∗(M) is

approximated by the solution to E [π(θi)]−F = 0. Given the expression for the equilibrium

profit, it is simple to verify that n∗(M) is of the same order as market size M . That is,

the ratio n∗(M)/M of the firms per consumer is bounded away from zero and infinity. It is

interesting to compare this equilibrium to the Cournot equilibriumwith complete information

(CI). In this full information model, we have that:

qCIi =
α− θ̃n

γ + βM (n+ 1)
− θi − θ̃n
γ + 2βM

(4.7)
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where θ̃n ≡ (n− 1)−1
∑

j 6=i θj.

From the point of view of a social planner, the optimal allocation in this industry can

be achieved if firms share all their information and behave as price takers. Let us label

this equilibrium as CI − PT form complete information with price taking behavior. If p

and W are the price and the total welfare, respectively, under the "true" model (with both

Cournot conduct and private information), then the differences p−pCI−PT andW −WCI−PT

represent the combined effect of incomplete information and Cournot behavior on prices and

on welfare. To measure the specific effects of incomplete information and Cournot behavior,

it is convenient to define two models. A model that considers Cournot competition in the

market but ignores the existence of asymmetric information, that we label as CI for complete

information. And a model that considers incomplete information but assumes that firms are

price takers, that we label as PT for complete information. Consider the decomposition:

p− pCI−PT = [p− pPT ] + [pPT − pCI−PT ]

WCI−PT −W = [WCI−PT −WPT ] + [WPT −W ]
(4.8)

The term p− pPT captures the effect of Cournot behavior (market power) on prices, and the
term pPT − pCI−PT captures the effect of incomplete information. Similarly, WCI−PT −W
is the total deadweight loss, [WCI−PT −WPT ] is the contribution of incomplete information,

and [WPT −W ] is the constribution of Cournot competition. Note that this is one of different

ways we can decompose these effects. For instance, we could also consider the decomposi-

tions, p − pCI−PT = [p− pCI ] + [pCI − pCI−PT ] and WCI−PT − W = [WCI−PT −WCI ] +

[WCI −W ]. The main results are the same using one or the other decomposition.

In this model, as market size M (and therefore n) goes to inifinity, these differences go

to zero: [p− pCI−PT ] −→ 0 and
WCI−PT −W

M
−→ 0. As market size increases, market price

and welfare per capita converge to the optimal allocation. That is, private information and

Cournot behavior have an effect only when the market is not too large. Main result. There
is a critical value for market size, M∗ (that depends on the values of structural parameters),

such that the effect of private information, on prices and consumer welfare, dominates the

effect of market power if and only if market size is greater than this threshold value.
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Policy implications. Antitrust authorities look with suspicion the information exchanges

between firms because they can help collusive agreements. The collusion concern is most

important in the presence of a few players because collusion is easier to be sustained in

this case.(repeated game). This paper shows that with few firms market power (Cournot)

has the most important contribution to the DWL, so it seems reasonable to control these

information exchanges. When market size and the number of firms increase, information

asymmetry becomes a more important factor in the the DWL. In this case, it seems optimal

to allow for some information sharing between firms.

4.2. Cournot competition with private information: Application. Armantier
and Richard (2003) study empirically how firms’asymmetric information on marginal costs

affects competition and outcomes in the US airline industry. They also investigate how

marketing alliances that facilitate information sharing can affect competition.

They investigate American Airlines’(AA) and United Airlines’(UA) duopoly petition

at Chicago O’Hare airport during the third quarter of 1993



5. EXERCISES 161

5. Exercises

5.1. Exercise 1. Consider an industry with a differentiated product. There are two
firms in this industry, firms 1 and 2. Each firm produces and sells only one brand of the

differentiated product: brand 1 is produced by firm 1, and brand 2 by firm 2. The demand

system is a logit demand model, where consumers choose between three different alternatives:

j = 0, represents the consumer decision of no purchasing any product; and j = 1 and j = 2

represent the consumer purchase of product 1 and 2, respectively. The utility of no purchase

(j = 0) is zero. The utility of purchasing product j ∈ {1, 2} is β xj − α pj + εj, where

the variables and parameters have the interpretation that we have seen in class. Variable

xj is a measure of the quality of product j, for instance, the number of stars of the product

according to consumer ratings. Therefore, we have that β > 0. The random variables ε1

and ε2 are independently and identically distributed over consumers with a type I extreme

value distribution, that is, Logit model of demand. Let H be the number of consumers in

the market. Let s0, s1, and s2 be the market shares of the three choice alternatives, such

that sj represents the proportion of consumers choosing alternative j and s0 + s1 + s2 = 1.

Question 1.1. Based on this model, write the equation for the market share s1 as a function

of the prices and the qualities x’s of all the products.

Question 1.2. Obtain the expression for the derivatives: (a)
∂s1

∂p1

; (b)
∂s1

∂p2

; (c)
∂s1

∂x1

; and

(d)
∂s1

∂x2

. Write the expression for these derivatives in terms only of the market shares s1

and s2 and the parameters of the model.

The profit function of firm j ∈ {0, 1} is πj = pj qj− cj qj−FC(xj), where: qj is the quantity

sold by firm j (that is, qj = H sj); cj is firm j′s marginal cost, that is assumed constant,

that is, linear cost function; and FC(xj) is a fixed cost that depends on the level of quality

of the firm.

Question 1.3. Suppose that firms take their qualities x1 and x2 as given and compete in

prices ala Bertrand.

(a) Obtain the equation that describes the marginal condition of profit maximization of firm

1 in this Bertrand game. Write this equation taking into account the specific form of
∂s1

∂p1

in

the Logit model.

(b) Given this equation, write the expression for the equilibrium price-cost margin p1 − c1

as a function of s1 and the demand parameter α.

Now, suppose that the researcher is not willing to impose the assumption of Bertrand com-

petition and considers a conjectural variations model. Define the conjecture parameter CV1
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as the belief or conjecture that firm 1 has about how firm 2 will change its price when firm 1

changes marginally its price. That is, CV1 represents the belief or conjecture of firm 1 about
∂p2

∂p1

. Similarly, CV2 represents the belief or conjecture of firm 2 about
∂p2

∂p1

.

Question 1.4. Suppose that firm 1 has a conjectural variation CV1.

(a) Obtain the equation that describes the marginal condition of profit maximization of firm

1 under this conjectural variation. Write this equation taking into account the specific form

of
∂s1

∂p1

in the Logit model. [Hint: Now, we have that:
dq1

dp1

=
∂q1

∂p1

+
∂q1

∂p2

∂p2

∂p1

, where
∂q1

∂p1

and

∂q1

∂p2

are the expressions you have derived in Q1.2].

(b) Given this equation, write the expression for the equilibrium price-cost margin p1 − c1

as a function of the market shares s1 and s2, and the parameters α and CV1.

Question 1.5. Suppose that the researcher does not know the magnitude of the marginal
costs c1 and c2, but she knows that the two firms use the same production technology, they

use the same type of variable inputs, and they purchase these inputs in the same markets

where they are price takers. Under these conditions, the researcher knows that c1 = c2 = c,

though she does not know the magnitude of the marginal cost c.

(a) The marginal conditions for profit maximization in Q1.4(b), for the two firms, together

with the condition c1 = c2 = c, imply that price difference between these two firms, p1 − p2,

is a particular function of their markets shares and their conjectural variations. Derive the

equation that represents this condition.

(b) The researcher observes prices p1 = $200 and p2 = $195 and market shares s1 = 0.5 and

s2 = 0.2. Firm 1 has both a larger price and a larger market share because its product has

better quality, that is, x1 > x2. The researcher has estimated the demand system and knows

that α = 0.01. Plug in these data into the equation in Q1.5(a) to obtain a condition that

the parameters CV1 and CV2 should satisfy in this market.

(c) Using the equation in Q1.5(b), show that the hypothesis of Nash-Bertrand competition

(that requires CV1 = CV2 = 0) implies a prediction about the price difference p1 − p2 that

is substantially larger than the price difference that we observe in the data.

(d) Using the equation in Q1.5(b), show that the hypothesis of Collusion (that requires

CV1 = CV2 = 1) implies a prediction about the price difference p1 − p2 that is much closer

to the price difference that we observe in the data.

5.2. Exercise 2. To answer the questions in this part of the problem set you need to

use the dataset verboven_cars.dta Use this dataset to implement the estimations describe

below. Please, provide the STATA code that you use to obtain the results. For all the models

that you estimate below, impose the following conditions:
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- For market size (number of consumers), use Population/4, that is, pop/4

- Use prices measured in euros (eurpr).

- For the product characteristics in the demand system, include the characteristics: hp,

li, wi, cy, le, and he.

- Include also as explanatory variables the market characteristics: ln(pop) and log(gdp).

- In all the OLS estimations include fixed effects for market (ma), year (ye), and brand

(brd).

- Include the price in logarithms, that is, ln(eurpr).

- Allow the coeffi cient for log-price to be different for different markets (countries). That

is, include as explanatory variables the log price, but also the log price interacting (multi-

plying) each of the market (country) dummies except one country dummy (say the dummy

for Germany) that you use as a benchmark.

Question 2.1.
(a) Obtain the OLS-Fixed effects estimator of the Standard logit model. Interpret the results.

(b) Test the null hypothesis that all countries have the same price coeffi cient.

(c) Based on the estimated model, obtain the average price elasticity of demand for each

country evaluated at the mean values of prices and market shares for that country.

Question 2.2. Consider the equilibrium condition (first order conditions of profit maxi-

mization) under the assumption that each product is produced by only one firm.

(a) Write the equation for this equilibrium condition. Write this equilibrium condition as an

equation for the Lerner Index,
pj −MCj

pj
.

(b) Using the previous equation in Q2.2(a) and the estimated demand in Q2.1, calculate the

Lerner index for every car-market-year observation in the data.

(c) Report the mean values of the Lerner Index for each of the counties/markets. Comment

the results.

(d) Report the mean values of the Lerner Index for each of the top five car manufacturers

(that is, the five car manufacturers with largest total aggregate sales over these markets and

sample period). Comment the results.

Question 2.3.
(a) Using the equilibrium condition and the estimated demand, obtain an estimate of the

marginal cost for every car-market-year observation in the data.

(b) Run an OLS-Fixed effects regression where the dependent variable is the estimated value

of the marginal cost, and the explanatory variables (regressors) are the product characteris-

tics hp, li, wi, cy, le, and he. Interpret the results.
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CHAPTER 5

Empirical Models of Market Entry

In a model of market entry the endogenous variables are firms’s decisions to be active

in the market and, in some cases, the characteristics of the products that firms provide.

In the previous chapters, we have taken the number of firms and products in a market as

exogenously given or, more precisely, as predetermined in the first stage of a two-stage game

of competition. In this chapter, we study the first stage of the competition game.

Empirical games of market entry in retail markets share as common features that the

payoff of being active in the market depends on market size, entry cost, and the number and

characteristics of other active firms. The set of structural parameters of the model varies

considerably across models and applications, but it typically includes parameters that repre-

sent the entry cost and the strategic interactions between firms (competition effects). These

parameters play a key role in the determination of the number of firms in the market, their

characteristics, and their spatial configuration. These costs cannot be identified from the

estimation of demand equations, production functions, or marginal conditions of optimality

for prices or quantities. Instead, in a structural entry model, entry costs are identified using

the principle of revealed preference: if we observe a firm operating in a market it is because

its value in that market is greater than the value of shutting down and putting its assets

in alternative uses. Under this principle, firms’entry decisions reveal information about the

underlying or latent profit function. Empirical games of market entry can be also useful to

identify strategic interactions between firms that occur through variable profits. In empir-

ical applications where a sample variation in prices is very small but there is a substantial

variation in entry decisions, an entry model can provide more information about demand

substitution between stores and products than the standard approach of using prices and

quantities to estimate demand. Furthermore, data on prices and quantities at the store

level are sometimes diffi cult to obtain, while data on firms entry/exit decisions are more

commonly available.

In empirical applications of games of market entry, structural parameters are estimated

using data on firms’entry decisions in a sample of markets. The estimated model is used

to answer empirical questions on the nature of competition and the structure of costs in an

industry, and to make predictions about the effects of changes in structural parameters or of

167
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counterfactual public policies affecting firms’profits, for example, subsidies, taxes, or zoning

laws.

An important application of models of entry is the study of firms’decision about the

spatial location of their products, their production plants, or their stores. Competition in

differentiated product markets is often characterized by the importance of product location

in the space of product characteristics. More specifically, the geographic location of stores

is important in retail markets. As shown in previous chapters, the characteristics of firms’

products relative to those of competing products can have substantial effects on demand and

costs, and consequently on prices, quantities, profits, and consumer welfare. Firms need to

choose product location carefully so that they are accessible to many potential customers.

For instance, opening a store in attractive locations is typically more expensive (for example,

higher land prices) and it can be associated with stronger competition. Firms should consider

this trade-offwhen choosing the best store location. The study of the determinants of spatial

location of products is necessary to inform public policy and business debates such as the

value of a merger between multiproduct firms, spatial pre-emption, cannibalization between

products of the same firm, or the magnitude of economies of scope. Therefore, it is not

surprising that models of market entry, store location, and spatial competition have played

a fundamental role in the theory of industrial organization at least since the work of Harold

Hotelling (1929). However, empirical work on structural estimation of these models has

been much more recent and it has followed the seminal work by Bresnahan and Reiss (1990,

1991a).

1. Some general ideas

1.1. What is a model of market entry? Models of market entry in IO can be charac-
terized in terms of three main features. First, the key endogenous variable is a firm decision

to operate or not in a market. Entry in a market should be understood in a broad sense. The

standard example is the decision of a firm to enter in an industry by first time. However,

applications of entry models include also decisions of opening a new store, introducing a new

product, adopting a new technology, the release of a new movie, or the decision to bid in an

auction, among others. A second important feature is that there is an entry cost associated

with being active in the market. Finally, the payoff of being active in the market depends on

the number (and the characteristics) of other firms active in the market, that is, the model

is a game.

Consider a market with N firms that decide whether to be active. We index firms with

i ∈ {1, 2, ..., N}. Let ai ∈ {0, 1} be a binary variable that represents the decision of firm i

of being active in a market (ai = 1) or not (ai = 0). The profit of not being active is zero.
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The profit of an active firm is Vi(n)− Fi where Viis the variable profit of firm i when there

are n firms active in the market, and Fi is the entry cost for firm i. The number of active

firms, n, is endogenous and is equal to n =
∑N

i=1 ai. Under Nash assumption, every firm

takes as given the decision of the other firms and makes a decision that maximizes its own

profit. Therefore, the best response of firm i under Nash equilibrium is:

ai =

 1 if Vi

(
1 +

∑
j 6=i aj

)
− Fi ≥ 0

0 if Vi

(
1 +

∑
j 6=i aj

)
− Fi < 0

(1.1)

For instance, consider a market with two potential entrants with V1(n) = V2(n) = 100− 20

n and F1 = F2 = F , such that Vi (1 + aj)− Fi = 80− F − 20 aj. The best responses are:

a2 = 0 a2 = 1
a1 = 0 (0 , 0) (0 , 80− F )
a1 = 1 (80− F , 0) (60− F , 60− F )

(1.2)

We can see that the model has different predictions about market structure depending on the

value of the fixed cost. If F ≤ 60, duopoly, (a1, a2) = (1, 1), is the unique Nash equilibrium.

If 60 < F ≤ 80, then either the monopoly of firm 1 (a1, a2) = (1, 0) or the monopoly of firm 2

(a1, a2) = (0, 1) are Nash equilibria. If F > 80, then no firm in the market (a1, a2) = (0, 0) is

the unique Nash equilibrium. The observe actions of the potential entrants reveal information

about profits, about fixed costs.

[The principle of Revealed Preference] The estimation of structural models of mar-
ket entry is based on the principle of Revealed Preference. In the context of these models,

this principle establishes that if we observe a firm operating in a market it is because its

value in that market is greater than the value of shutting down and putting its assets in

alternative uses. Under this principle, firms’entry decisions reveal information about the

underlying latent firm’s profit (or value).

[Static models] The first class of models that we study are static. There are many
differences between static and dynamic models of market entry. But there is a simple dif-

ference that I think it is relevant to point out now. For static models of entry, we should

understand "entry" as "being active in the market" and not as a transition from being "out"

of the market to being "in" the market. That is, in these static models we ignore the fact

that, when choosing whether to be active or not in the market, some firms are already active

(incumbents) and other firms not (potential entrants). That is, we ignore that the choice of

non-being active in the market means "exit" for some firms and "stay out" for others.

1.2. Why do we estimate models of market entry? The specification and estima-
tion of models of market entry is motivated by the need to endogenize the number of firms
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in the market, as well as some characteristics that operate at the extensive margin. Endog-

enizing the number of firms in the market is a key aspect in any model of IO where market

structure is treated as endogenous. Once we endogenize the number of firms in the market,

we need to identify entry cost parameters, and these parameters cannot be identify from

demand equations, production functions, and marginal conditions of optimality for prices

and quantities. We identify entry costs from the own entry model. More generally, we can

distinguish the following motives for the estimation of models of market entry.

(a) Identification of entry cost parameters. Parameters such us fixed production
costs, entry costs, or investment costs do not appear in demand or production equations, or

in the marginal conditions of optimality in firms’decisions of prices or quantities. However,

fixed costs contribute to the market entry decision. These parameters can be important in

the determination of market structure and market power in an industry.

(b) Data on prices and quantities may not be available at the level of individual
firm, product, and market. Many countries have excellent surveys of manufacturers or

retailers with information at the level of specific industry (5 or 6 digits NAICS, SIC) and

local markets (census tracts) on the number of establishments and some measure of firm size

such as aggregate revenue. Though we observe aggregate revenue at the industry-market

level, we do not observe P and Q at that level. Under some assumptions, it is possible to

identify structural parameters using these data and the structure of an entry model.

(c) Econometric effi ciency. The equilibrium entry conditions contain useful infor-

mation for the identification of structural parameters. Using this information can increase

significantly the precision of our estimates. In fact, when the sample variability in prices and

quantities is small, the equilibrium entry conditions may have a more significant contribution

to the identification of demand and cost parameters than demand equations or production

functions.

(d) Controlling for endogeneity of firms’entry decisions in the estimation of
demand and production functions. In some applications, the estimation of a demand
system or a production function requires dealing with the endogeneity of firms’(and prod-

ucts) entry. For instance, Olley and Pakes (1996) show that ignoring the endogeneity of

a firm’s decision to exit from the market can generate significant biases in the estimation

of production functions. Similarly, in the estimation of demand of differentiated products

not all the products are available in every market of time period. We observe a product

only in those markets where demand for this product is high enough to make it profitable

to introduce that product. Ignoring this endogeneity of the presence of products can in-

troduce important biases in the estimation of demand (Ciliberto, Murry, and Tamer, 2016;



2. DATA 171

Ghandi and Houde, 2016). Dealing with the endogeneity of product presence may require

the specification and estimation of a model of market product entry.

The type of data used, the information structure of the entry game, and the assumptions

about unobserved heterogeneity, are important characteristics of an entry game that have

implications on the identification, estimation, and predictions of the model.

2. Data

The datasets that have been used in empirical applications of structural models of entry

in retail markets consist of a sample of geographic markets with information on firms’entry

decisions and consumer socio-economic characteristics over one or several periods of time.

In these applications, the number of firms and time periods is typically small such that

statistical inference (that is, the construction of sample moments and the application of law

of large numbers and central limit theorems) is based on a ‘large’number of markets. In

most applications, the number of geographic markets is between a few hundred and a few

thousand. Within these common features, there is substantial heterogeneity in the type of

data that have been used in empirical applications.

In this section, we concentrate on four features of the data that are particularly important

because they have substantial implications on the type of model that can be estimated, the

empirical questions that we can answer, and the econometric methods to use. These features

are: (1) the selection of geographic markets; (2) presence or not of within-market spatial

differentiation; (3) information on prices, quantities, or sales at the store level; and (4)

information on potential entrants.

2.1. Selection of geographic markets. In a seminal paper, Bresnahan and Reiss
(1990) use cross-sectional data from 149 small US towns to estimate a model of entry of

automobile dealerships. For each town, the dataset contains information on the number of

stores in the market, demographic characteristics such as population and income, and input

prices such as land prices. The selection of the 149 small towns is based on the following

criteria: the town belongs to a county with fewer than 10 000 people; there is no other

town with a population of over 1000 people within 25 miles of the central town; and there

is no large city within 125 miles. These conditions for the selection of a sample of markets

are typically described as the ‘isolated small towns’market selection. This approach has

been very influential and has been followed in many empirical applications of entry in retail

markets. The main motivation for using this sample selection is in the assumptions of spatial

competition in the Bresnahan—Reiss model. That model assumes that the location of a store

within a market does not have any implication on its profits or in the degree of competition

with other stores. This assumption is plausible only in small towns where the possibilities
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for spatial differentiation are very limited. If this model were estimated using a sample of

large cities, we would spuriously find very small competition effects simply because there is

negligible or no competition at all between stores located far away of each other within the

city. The model also assumes that there is no competition between stores located in different

markets. This assumption is plausible only if the market under study is not geographically

close to other markets; otherwise the model would ignore relevant competition from stores

outside the market.

Although the ‘isolated small towns’approach has generated a good number of important

applications, it has some limitations. The extrapolation to urban markets of the empirical

findings obtained in these samples of rural markets is in general not plausible. Focusing

on rural areas makes the approach impractical for many interesting retail industries that

are predominantly urban. Furthermore, when looking at national retail chains, these rural

markets account for a very small fraction of these firms’total profits.

2.2. Within market spatial differentiation. The limitations of the ‘isolated small
towns’ approach have motivated the development of empirical models of entry in retail

markets that take into account the spatial locations and differentiation of stores within a

city market. The work by Seim (2006) was seminal in this evolution of the literature. In

Seim’s model, a city is partitioned into many small locations or blocks, for example, census

tracts, or a uniform grid of square blocks. A city can be partitioned into dozens, hundreds,

or even thousands of these contiguous blocks or locations. In contrast to the ‘isolated small

towns’approach, these locations are not isolated, and the model allows for competition effects

between stores at different locations. The datasets in these applications contain information

on the number of stores, consumer demographics, and input prices at the block level. This

typically means that the information on store locations should be geocoded, that is, the

exact latitude and longitude of each store location. Information on consumer demographics

is usually available at a more aggregate geographic level.

The researcher’s choice for the size of a block depends on multiple considerations, includ-

ing the retail industry under study, data availability, specification of the unobservables, and

computational cost. In principle, the finer is the grid the more flexible can be the model

to measure spatial substitution between stores. The computational cost of estimating the

model can increase rapidly with the number of locations. The assumption on the distribution

of the unobservables across locations is also important, too. A common approach is to use

a definition of a block/location at which demographic information is available, for example,

the set of locations is equal to the set of census tracts within the city. While convenient, a

drawback of this approach is that some blocks, especially those in the periphery of a city,

tend to be very large. These large blocks are often problematic because (1) within-block
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spatial differentiation seems plausible, and (2) the distance to other blocks becomes highly

sensitive to choices of block centroids. In particular, a mere use of geometric centroids in

these large blocks can be quite misleading as the spatial distribution of population is often

quite skewed. To avoid this problem, Seim (2006) uses population weighted centroids rather

than (unweighted) geometric centroids. An alternative approach to avoid this problem is to

draw a square grid on the entire city and use each square as a possible location, as in Datta

and Sudhir (2013) and Nishida (2015). The value of consumer demographics in a square

block is equal to the weighted average of the demographics at the census tracts that overlap

with the square. The advantage of this approach is that each submarket has a uniform shape.

In practice, implementation of this approach requires the removal of certain squares where

entry cost is prohibitive. These areas include those with some particular natural features

(for example, lakes, mountains, and wetlands) or where commercial space is prohibited by

zoning. For example, Nishida (2015) excludes areas with zero population, and Datta and

Sudhir (2013) remove areas that do not have any ‘big box’stores as these areas are very

likely to be zoned for either residential use or small stores.

So far, all the papers that have estimated this type of model have considered a sample of

cities (but not locations within a city) that is still in the spirit of Bresnahan—Reiss isolated

small markets approach. For instance, Seim selects US cities with population between 40 000

and 150 000 people, and without other cities with more than 25 000 people within 20 miles.

The main reason for this is to avoid the possibility of outside competition at the boundaries

of a city. It is interesting that in the current generation of these applications, statistical

inference is based on the number of cities and not on the number of locations. A relevant

question is whether this model can be estimated consistently using data from a single city

with many locations, that is, the estimator is consistent when the number of locations goes

to infinity. This type of application can be motivated by the fact that city characteristics

that are relevant for these models, such as the appropriate measure of geographic distance,

transportation costs, or land use regulations and zoning, can be city specific. Xu (2014)

studies an empirical game of market entry for a single city (network) and presents conditions

for consistency and asymptotic normality of estimators as the number of locations increases.

As far as we know, there are not yet empirical applications following that approach.

2.3. Information on prices, quantities, or sales at the store Level. Most appli-
cations of models of entry in retail markets do not use data on prices and quantities due to

the lack of such data. The most popular alternative is to estimate the structural (or semi-

structural) parameters of the model using market entry data only, for example, Bresnahan

and Reiss (1990), Mazzeo (2002), Seim (2006), or Jia (2008), among many others. Typically,

these studies either do not try to separately identify variable profits from fixed costs, or they
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do it by assuming that the variable profit is proportional to an observable measure of market

size. Data on prices and quantities at store level can substantially help the identification

of these models. In particular, it is possible to consider a richer specification of the model

that distinguishes between demand, variable cost, and fixed cost parameters, and includes

unobservable variables into each of these components of the model.

A sequential estimation approach is quite convenient for the estimation of this type of

model. In a first step, data on prices and quantities at the store level can be used to

estimate a spatial demand system as in Davis (2006) for movie theatres or Houde (2012)

for gas stations. Note that, in contrast to standard applications of demand estimation of

differentiated products, the estimation of demand models of this class should deal with the

endogeneity of store locations. In other words, in these demand models, not only prices are

endogenous but also the set of ‘products’or stores available at each location is potentially

correlated with unobserved errors in the demand system. In a second step, variable costs can

be estimated using firms’best response functions in Bertrand or Cournot model. Finally,

in a third step, we estimate fixed cost parameters using the entry game and information of

firms’entry and store location decisions. It is important to emphasize that the estimation of

a demand system of spatial differentiation in the first step provides the structure of spatial

competition effects between stores at different locations, such that the researcher does not

need to consider other type of semi-reduced form specifications of strategic interactions, as

in Seim (2006) among others.

In some applications, price and quantity are not available, but there is information on

revenue at the store level (for example, Ellickson and Misra 2012; Aguirregabiria et al. 2013,

Suzuki 2013). This information can be used to estimate a (semi reduced form) variable profit

function in a first step, and then in a second step the structure of fixed costs is estimated.

2.4. Information on potential entrants. An important modelling decision in em-
pirical entry games is to define the set of potential entrants. In most cases, researchers

have limited information on the number of potential entrants, let alone their identity. This

problem is particularly severe when entrants are mostly independent small stores (for ex-

ample, mom-and-pop stores). A practical approach is to estimate the model under different

numbers of potential entrants and examine how estimates are sensitive to these choices, for

example, Seim (2006) and Jia (2008). The problem is less severe when most entrants belong

to national chains (for example, big box stores) because the names of these chains are often

obvious and the number is typically small.

It is important to distinguish three types of data sets. The specification and the identi-

fication of the model is different for each of these three types of data.
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(1) Only global potential entrants. The same N firms are the potential entrants in

every market. We know the identity of these "global" potential entrants. Therefore, we

observe the decision of each of these firms in every independent market. We observe market

characteristics, and sometimes firm characteristics which may vary or not across markets.

The data set is {sm, xim, aim : m = 1, 2, ...,M ; i = 1, 2, ..., N} where m is the market index;

i is the firm index; sm is a vector of characteristics of market m such as market size, average

consumer income, or other demographic variables; xim is a vector of characteristics of firm

i; and aim is the indicator of the event "firm i is active in market m".

Examples. Berry (1992) considers entry in airline markets. A market is a city pair

(for instance, Boston-Chicago). The set of markets consists of all the pairs of US cities

with airports. Every airline company operating in US is a potential entrant in each of these

markets. aim is the indicator of the event "airline i operates in city pair m". Toivanen and

Waterson (2000) consider entry in local markets by fast-food restaurants in UK. Potential

entrants are Burger King, McDonalds, KFC, Wendys, etc.

(2) Only local potential entrants. We do not know the identity of the potential entrants.
In fact, most potential entrants may be local, that is, they consider entry in only one local

market. For this type of data we only observe market characteristics and the number of

active firms in the market. The data set is: {sm, nm : m = 1, 2, ...,M} where nm is the

number of firms operating in market m. Notice also that we do not know the number of

potential entrants N , and this may vary over markets.

Examples. Bresnahan and Reiss (REStud, 1990). Car dealers in small towns. Bresna-
han and Reiss (JPE, 1991). Restaurants, dentists and other retailer and professional services

in small towns. Seim (2003). Video rental stores.

(3) Both global and local potential entrants. This case combines and encompasses
the previous two cases. There are NG firms which are potential entrants in all the markets,

and we now the identity of these firms. But there are also other potential entrants which

are just local. We observe {sm, nm, zim, aim : m = 1, 2, ...,M ; i = 1, 2, ..., NG}.With this data
we can nonparametrically identify Pr(nm, am|xm). We can allow for heterogeneity between

global players in a very general way. Heterogeneity between local players should be much

more restrictive.

3. Models

3.1. Road map. (a) Bresnahan and Reiss. We start with a simple and pioneer

model in this literature: the models in Bresnahan and Reiss (JPE, 1991). This paper

together with Bresnahan and Reiss (REStud, 1990) were significant contributions to the

structural estimation of models of market entry that opened a new literature that has grown
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significantly during the last 20 years. In that paper, Bresnahan and Reiss show that given a

cross-section of "isolated" local markets where we observe the number of firms active, and

some exogenous market characteristics, including market size, it is possible to identify fixed

costs and the "degree of competition" or the "nature of competition" in the industry. By

"nature of competition" these authors (and after them, this literature) means a measure

of how a firm’s variable profit declines with the number of competitors. What is most

remarkable about Bresnahan and Reiss’s result is how with quite limited information (for

instance, no information about prices of quantities) the researcher can identify the degree of

competition using an entry model.

(b) Relaxing the assumption of homogeneous firms. Bresnahan and Reiss’s model
is based on some important assumptions. In particular, firms are homogeneous and they have

complete information. The assumption of firm homogeneity (both in demand and costs) is

strong and can be clearly rejected in many industries. Perhaps more importantly, ignoring

firm heterogeneity when present can lead to biased and misleading results about the degree

of competition in a industry. Therefore, the first assumption that we relax is the one of

homogeneous firms.

As shown originally in the own work of Bresnahan and Reiss (Journal of Econometrics,

1991), relaxing the assumption of firm homogeneity implies two significant econometric chal-

lenges. The entry model becomes a system of simultaneous equations with endogenous binary

choice variables. Dealing with endogeneity in a binary choice system of equations is not a

simple econometric problem. In general, IV estimators are not available. Furthermore, the

model now has multiple equilibria. Dealing with both endogeneity and multiple equilibria

in this class of nonlinear models is an interesting but challenging problem in econometrics.

(c) Approaches to deal with endogeneity/multiple equilibria in games of com-
plete information. Then, we will go through different approaches that have been used in
this literature to deal with the problems of endogeneity and multiple equilibria. It is worth-

while to distinguish two groups of approaches or methods. The first group of methods
is characterized by imposing restrictions that imply equilibrium uniqueness for any value

of the exogenous variables. Of course, firm homogeneity is a type of assumption that im-

plies equilibrium uniqueness. But there are other assumptions that imply uniqueness even

when firms are heterogeneous. For instance, a triangular structure in the strategic inter-

actions between firms (Heckman, Econometrica 1978), or sequential entry decisions (Berry,

Econometrica 1993) imply equilibrium uniqueness. Given these assumptions, these papers

deal with the endogeneity problem by using a maximum likelihood approach. The sec-
ond group of methods do not impose equilibrium uniqueness. The pioneering work by
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Jovanovic (Econometrica 1989) and Tamer (2003) were important contributions for this ap-

proach. These authors showed (Jovanovic for a general stylized econometric model, and

Tamer for a two-player binary choice game) that identification and multiple equilibria are

very different issues in econometric models. Models with multiple equilibria can be (point)

identified, and we do not need to impose equilibrium uniqueness as a form to get identifica-

tion. Multiple equilibria can be a computational nuisance in the estimation of these models,

but it is not an identification problem. This simple idea has generated a significant and

growing literature that deals with computational simple methods to estimate models with

multiple equilibria, and more specifically with the estimation of discrete games.

(d) Games of incomplete information. Our next step will be to relax the assumption
of complete information by introducing some variables that are private information of each

firm. We will see that the identification and estimation of these models can be significantly

simpler than in the case of models of complete information.

3.2. Static game with single-store firms. We start with the description of a static
entry game between single-store firms. Later, we extend this framework to incorporate

dynamics and multi-store firms. There are N retail firms that are potential entrants in

a market. We index firms by i ∈ {1, 2, . . . , N}. From a geographic point of view, the

market is a compact set C in the Euclidean space R2, and it contains L locations where

firms can operate stores. These locations are exogenously given and they are indexed by

` ∈ {1, 2, . . . , L}. Firms play a two-stage game. In the first stage, firms make their entry
and store location decisions. Each firm decides whether to be active or not in the market, and

if active, the location of its store. We can represent a firm’s decision using an L-dimensional

vector of binary variables, ai ≡ {ai` : ` = 1, 2, . . . , L}, where ai` ∈ {0, 1} is the indicator
of the event ‘firm i has a store in location l’. For single-store firms, there is at most one

component in the vector ai that is equal to one while the rest of the binary variables must

be zero. In the second stage they compete in prices (or quantities) taking entry decisions as

given. The equilibrium in the second stage determines equilibrium prices and quantities at

each active store.

The market is populated by consumers. Each consumer is characterized by her preference

for the products that firms sell and by her geographical location or home address h that

belongs to the set of consumer home addresses {1, 2, . . . , H}. The set of consumer home
addresses and the set of feasible business locations may be different.5 Following Smith (2004),

Davis (2006), or Houde (2012), aggregate consumer demand comes from a discrete choice

model of differentiated products where both product characteristics and transportation costs

affect demand. For instance, in a spatial logit model, the demand for firm i with a store in
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location ` is:

qi` =

H∑
h=1

M(h)
ai` exp{xi β − α pi` − τ(dh`)}

1 +
∑N

j=1

∑L
`′=1 aj`′ exp{xj β − α pj`′ − τ dh`′}

where qi` and pi` are the quantity sold and the price, respectively, at store (i, `); M(h)

represents the mass of consumers living in address h; the term within the square brackets

is the market share of store (i,l) among consumers living in address h; xi is a vector of

observable characteristics (other than price) of the product of firm i; and β is the vector of

marginal utilities of these characteristics; α is the marginal utility of income; dh` represents

the geographic distance between home address h and business location l; and τ(dh`) is an

increasing real-valued function that represents consumer transportation costs.

Given this demand system, active stores compete in prices à la Nash—Bertrand to max-

imize their respective variable profits, (pi` − ci`) qi`, where ci` is the marginal cost of store
(i, `), that is exogenously given. The solution of the system of best response functions can

be described as a vector of equilibrium prices for each active firm/store. Let p∗i (`, a−i, x)

and q∗i (`, a−i, x) represent the equilibrium price and quantity for firm i given that this firm

has a store at location l , that the rest of the firms’entry/location decisions are represented

by the vector a−i ≡ {aj : j 6= i}, and that these firms’ characteristics are denoted by
x ≡ (x1, x2, . . . , xN). Similarly, we can define the equilibrium (indirect) variable profit,

V P ∗i (`, a−i, x) = [p(`, a−i, x)− ci`] q∗i (`, a−i, x)

Consider now the entry stage of the game. The profit of firm i if it has a store in location

` is:

πi(`, a−i, x) = V P ∗i (`, a−i, x)− ECi`

whereECi` represents the entry cost of firm i at location l, that for the moment is exogenously

given. The profit of a firm that is not active in the market is normalized to zero, that is,

πi(0, a−i, x) = 0, where with some abuse of notation, we use ` = 0 to represent the choice

alternative of no entry in any of the L locations.

The description of an equilibrium in this model depends on whether firms have complete

or incomplete information about other firms’costs. The empirical literature on entry games

has considered both cases. In the complete information model, a Nash equilibrium is an

N-tuple {a∗i : i = 1, 2, . . . , N} such that for every firm i the following best response condition
is satisfied:

a∗i` = 1{πi(`, a∗−i, x) ≥ πi(`
′, a∗−i, x) for any `′ 6= `}

where 1{.} is the indicator function. In equilibrium, each firm is maximizing its own profit

given the entry and location decisions of the other firms.
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In a game of incomplete information, there is a component of a firm’s profit that is private

information of the firm. For instance, suppose that the entry cost of firm i is ECi` = eci`+εi`,

where eci` is public information for all the firms, and εi` is private information of firm i.

These private cost shocks can be correlated across locations for a given firm, but they are

independently distributed across firms, that is, εi ≡ {εi` : ` = 1, 2, . . . , L} is independently
distributed across firms with a distribution function Fi that is continuously differentiable

over RL and common knowledge to all the firms. A firm’s strategy is an L-dimensional

mapping αi(εi;x) ≡ {αi`(εi;x) : ` = 1, 2, . . . , L} where αi`(εi;x) is a binary-valued function

from the set of possible private information values, R^L and the support of x into {0, 1} such
that αi`(εi;x) = 1 means that firm i enters location ` when the value of private information

is εi. A firm has uncertainty about the actual entry decisions of other firms because it

does not know the realization of other firms’private information. Therefore, firms maximize

expected profits. Let πei (`, α−i, x) be the expected profit of firm i if it has a store at location

` and the other firms follow their respective strategies in α∗−i. By definition, π
e
i (`, α−i, x) ≡

Eε−i [πi(`, α−i(ε−i;x), x)], where Eε−i represents the expectation over the distribution of the
private information of firms other than i. A Bayesian Nash equilibrium in this game of

incomplete information is an N-tuple of strategy functions {α∗−i : i = 1, 2, . . . , N} such that
every firm maximizes its expected profit: for any εi,

α∗i`(εi;x) = 1{πei (`, α∗−i, x) ≥ πei (`
′, α∗−i, x) for any `′ 6= `}

In an entry game of incomplete information, firms’strategies (and therefore, a Bayesian

Nash equilibrium) can be described also using firms’probabilities of market entry, instead

of the strategy functions αi(εi;x). In sections 2.2.1 and 2.2.4, we present examples of this

representation in the context of more specific models.

3.3. Multi-store firms. Multi-store firms, or retail chains, have become prominent in
many retail industries such as supermarkets, department stores, apparel, electronics, fast

food restaurants, or coffee shops, among others. Cannibalization and economies of scope

between stores of the same chain are two important factors in the entry and location deci-

sions of a multi-store firm. The term cannibalization refers to the business stealing effects

between stores of the same chain. Economies of scope may appear if some operating costs

are shared between stores of the same retail chain such that these costs are not duplicated

when the number of stores in the chain increases. For instance, some advertising, inventory,

personnel, or distribution costs can be shared among the stores of the same firm. These

economies of scope may become quantitatively more important when store locations are ge-

ographically closer to each other. This type of economies of scope is called economies of

density. The recent empirical literature on retail chains has emphasized the importance of
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these economies of density, that is, Holmes (2011), Jia (2008), Ellickson et al. (2013), and

Nishida (2015). For instance, the transportation cost associated with the distribution of

products from wholesalers to retail stores can be smaller if stores are close to each other.

Also, geographic proximity can facilitate sharing inventories and even personnel across stores

of the same chain. We now present an extension of the basic framework that accounts for

multi-store firms.

A multi-store firm decides its number of stores and their locations. We can represent

a firm’s entry decision using the L-dimension vector ai ≡ {ai` : ` = 1, 2, . . . , L}, where
ai` ∈ {0, 1} is still the indicator of the event ‘firm i has a store in location `’. In contrast to

the case with single-store firms, now the vector a_i can take any value within the choice set

{0, 1}L. The demand system still can be described using equation (***). The variable profit
of a firm is the sum of variable profits over every location where the firm has stores,

∑L
`=1 ai`

(pi` − ci`)qi`. Firms compete in prices taking their store locations as given. A retail chain
may choose to have a uniform price across all its stores, or to charge a different price at each

store. In the Bertrand pricing game with spatial price discrimination (that is, different prices

at each store), the best response of firm i can be characterized by the first-order conditions:

qi` + (pi` − ci`)
∂qi`
∂pi`

+
∑
`′ 6=`

(pi`′ − ci`′)
∂qi`′

∂pi`
= 0

The first two terms represent the standard marginal profit of a single-store firm. The last

term represents the effect on the variable profits of all other stores within the firm, and it

captures how the pricing decision of the firm internalizes the cannibalization effect among

its own stores. A Nash-Bertrand equilibrium is a solution in prices to the system of best

response equations in (***). The equilibrium (indirect) variable profit of firm i is:

V P ∗i (ai, a−i;x) =
L∑
`=1

(p∗i (`, a−i;x)− ci`) q∗i (`, a−i;x)

where p∗i`(`, a−i;x) and q∗i (`, a−i;x) represent Bertrand equilibrium prices and quantities,

respectively.

The total profit of the retail chain is equal to total variable profit minus total entry cost:

πi(ai, a−i;x) = V P ∗i (ai, a−i;x) − ECi(ai). The entry costs of a retail chain may depend on
the number of stores (that is, (dis)economies of scale) and on the distance between the stores

(for example, economies of density). In section 2.2.5, we provide examples of specifications

of entry costs for multi-store retailers.

The description of an equilibrium in this game of entry between retail chains is similar

to the game between single-store firms. With complete information, a Nash equilibrium is
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an N-tuple {a∗i : i = 1, 2, . . . , N} that satisfies the following best response conditions:

πi(a
∗
i , a
∗
−i;x) ≥ πi(ai, a

∗
−i;x) for any ai 6= a∗i

With incomplete information, a Bayesian Nash equilibrium is an N-tuple of strategy functions

{α∗i (εi;x) : i = 1, 2, . . . , N} such that every firm maximizes its expected profit: for any εi:

πei (α
∗
i (εi;x), α∗−i, x) ≥ πei (ai, α

∗
−i, x) for any ai 6= α∗i (εi;x)

3.4. Dynamic game. Opening (or closing) a store is a forward-looking decision with
significant non-recoverable entry costs, mainly owing to capital investments which are both

firm and location-specific. The sunk cost of setting up new stores, and the dynamic strategic

behavior associated with them, are potentially important forces behind the configuration of

the spatial market structure that we observe in retail markets. We now present an extension

of the previous model that incorporates these dynamic considerations.

Time is discrete and indexed by t ∈ {. . . , 0, 1, 2, . . .}. At the beginning of period t a firm’s
network of stores is represented by the vector ait ≡ {ai`t : ` = 1, 2, . . . , L}, where ai`t is the
number of stores that firm ai`t operates in location ` at period t. For simplicity, we maintain

the assumption that a firm can have at most one store in a location, such that ai`t ∈ {0, 1}.
The market structure at period t is represented by the vector at ≡ {ait : i = 1, 2, . . . , N}
capturing the store network of all firms. Following the structure in the influential work on

dynamic games of oligopoly competition by Ericson and Pakes (1995) and Pakes andMcGuire

(1994), at every period t the model has two stages, similar to the ones described in the static

game above. In the second stage, taking the vector of firms’store networks a_t as given,

retail chains compete in prices in exactly the same way as in the Bertrand model described in

section 2.1.2. The equilibrium in this Bertrand game determines the indirect variable profit

function, V P ∗i (at; zt), where zt is a vector of exogenous state variables in demand and costs.

Some components of zt may be random variables, and their future values may not be known

at the current period. In the first stage, every firm decides its network of stores next period,

ai,t+1, and pays at period t the entry and exit costs associated to opening and closing stores.

The period profit of a firm is πi(ai,t+1, at, zt) = V P ∗i (at; zt) − FC(ait; zt) − ACi(ai,t+1, ait),

where FCi is the fixed cost of operating the network, and ACi is the cost of adjusting the

network from ait to ai,t+1, that is, costs of opening and closing stores. A firm chooses its

new network ai,t+1 to maximize the sum of its discounted expected future profits.

A Markov perfect equilibrium of this dynamic game is an N-tuple of strategy functions

{α∗i (at, zt) : i = 1, 2, . . . , N} such that every firm maximizes its expected intertemporal

profit:

α∗i (at, zt) = arg max
ai,t+1

[
πi(ai,t+1, at, zt) + δ Et(V α∗

i (ai,t+1, α
∗
−i(at, zt), zt+1)

]
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where δ ∈ (0, 1) is the discount factor, and V α∗
i (ait, a−it, zt) is the value of firm i when firms’

networks are equal to at, the value of exogenous state variables is zt, and the other firms

follow strategies α∗−i.

3.5. Specification assumptions. The games of entry in retail markets that have been
estimated in empirical applications have imposed different types of restrictions on the frame-

work that we have presented in section 2.1, for example, restrictions on firm and market

heterogeneity, firms’ information, spatial competition, multi-store firms, dynamics, or the

form of the structural functions. The motivations for these restrictions are diverse. Some re-

strictions are imposed to achieve identification or precise enough estimates of the parameters

of interest, given the researcher’s limited information on the characteristics of markets and

firms. For instance, as we describe in section 3, prices and quantities at the store level are

typically not observable to the researcher, and most sample information comes from firms’

entry decisions. These limitations in the available data have motivated researchers to use

simple specifications for the indirect variable profit function. Other restrictions are imposed

for computational convenience in the solution and estimation of the model, for example, to

obtain closed form solutions, to guarantee equilibrium uniqueness as it facilitates the estima-

tion of the model, or to reduce the dimensionality of the space of firms’actions or states. In

this subsection, we review some important models in this literature and discuss their main

identification assumptions. We have organized these models in an approximate chronological

order.

3.5.1. Homogeneous firms. Work in this field was pioneered by Bresnahan and Reiss. In

Bresnahan and Reiss (1991a), they study several retail and professional industries in US,

that is, pharmacies, tire dealers, doctors, and dentists. The main purpose of the paper is to

estimate the ‘nature’or ‘degree’of competition for each of the industries: how fast variable

profits decline when the number of firms in the market increases. More specifically, the

authors are interested in estimating how many entrants are needed to achieve an oligopoly

equilibrium equivalent to the competitive equilibrium, that is, hypothesis of contestable

markets (Baumol 1982). For each industry, their dataset consists of a cross-section of M small

‘isolated markets’. In section 3, we discuss the empirical motivation and implementation

of the ‘isolated markets’ restriction. For the purpose of the model, a key aspect of this

restriction is that the M local markets are independent in terms of demand and competition

such that the equilibrium in one market is independent of the one in the other markets.

The model also assumes that each market consists of a single location, that is, L = 1, such

that spatial competition is not explicitly incorporated in the model. For each local market,

the researcher observes the number of active firms (n), a measure of market size (s), and

some exogenous market characteristics that may affect demand and/or costs (x). Given



3. MODELS 183

this limited information, the researcher needs to restrict firm heterogeneity. Bresnahan and

Reiss propose a static game between single-store firms where all the potential entrants in a

market are identical and have complete information on demand and costs. The profit of a

store is π(n) = s ∗ vp(x, n)−EC(x)− ε, where vp(x, n) represents variable profit per capita

(per consumer) that depends on the number of active firms n, and EC(x) + ε is the entry

cost, where ε is unobservable to the researcher. The form of competition between active

firms is not explicitly modelled. Instead, the authors consider a flexible specification of the

variable profit per capita that is strictly decreasing but nonparametric in the number of

active stores. Therefore, the specification is consistent with a general model of competition

between homogeneous firms, or even between symmetrically differentiated firms.

Given these assumptions, the equilibrium in a local market can be described as a number

of firms n∗ that satisfies two conditions: (1) every active firm is maximizing profits by being

active in the market, that is, π(n∗) ≥ 0; and (2) every inactive firm is maximizing profits

by being out of the market, that is, π(n∗ + 1) < 0. That is, every firm is making its best

response given the actions of the others. Since the profit function is strictly decreasing in

the number of active firms, the equilibrium is unique and it can be represented using the

following expression: for any value n ∈ {0, 1, 2, . . .},

{n∗ = n} ⇔ {π(n) ≥ 0 and π(n+ 1) < 0}

⇔ {s ∗ vp(x, n+ 1)− EC(x) < ε ≤ s ∗ vp(x, n)− EC(x)}
Also, this condition implies that the distribution of the equilibrium number of firms given

exogenous market characteristics is:

Pr(n∗ = n | s, x) = F (s ∗ vp(x, n)− EC(x))− F (s ∗ vp(x, n+ 1)− EC(x))

where F is the CDF of ε. This representation of the equilibrium as an ordered discrete choice

model is convenient for estimation.

In the absence of price and quantity data, the separate identification of the variable profit

function and the entry cost function is based on the exclusion restrictions that variable profit

depends on market size and on the number of active firms while the entry cost does not

depend on these variables.

The previous model can be slightly modified to allow for firms’private information. This

variant of the original model maintains the property of equilibrium uniqueness and most of

the simplicity of the previous model. Suppose that now the entry cost of a firm is EC(x)+εi,

where εi is private information of firm i and it is independently and identically distributed

across firms with a CDF F . There areN potential entrants in the local market. The presence

of private information implies that, when potential entrants make entry decisions, they do



184 5. EMPIRICAL MODELS OF MARKET ENTRY

not know ex ante the actual number of firms that will be active in the market. Instead,

each firm has beliefs about the probability distribution of the number of other firms that are

active. We represent these beliefs, for say firm i, using the function Gi(n) ≡ Pr(n∗−i = n|s, x),

where n∗−i represents the number of firms other than i that are active in the market. Then,

the expected profit of a firm if active in the market is:

πei =

[
N−1∑
n=0

Gi(n) s ∗ vp(x, n+ 1)

]
− EC(x)− εi

The best response of a firm is to be active in the market if and only if its expected profit

is positive or zero, that is, ai = 1{πei ≥ 0}. Integrating this best response function over the
distribution of the private information εi we obtain the best response probability of being

active for firm i, that is, Pi ≡ F (
[∑N−1

n=0 Gi(n) s ∗ vp(x, n+ 1)
]
− EC(x)). Since all firms

are identical, up to their independent private information, it seems reasonable to impose

the restriction that in equilibrium they all have the same beliefs and, therefore, the same

best response probability of entry. Therefore, in equilibrium, firms’ entry decisions {ai}
are independent Bernoulli random variables with probability P , and the number of firms

active other than i in the market has a Binomial distribution with argument (N −1, P ) such

that Pr(n∗−i = n) = B(n|N − 1, P ). In equilibrium, the beliefs function G(n) should be

consistent with firms’best response probability P. Therefore, a Bayesian Nash Equilibrium

in this model can be described as a probability of market entry P^* that is the best response

probability when firms’beliefs about the distribution of other firms active in the market are

G(n) = B(n |N − 1, P ∗). We can represent this equilibrium condition using the following

equation:

P ∗ = F
([∑N−1

n=0 B(n|N − 1, P ∗) s ∗ vp(x, n+ 1)
]
− EC(x)

)
When the variable profit vp(x, n) is a decreasing function in the number of active stores, the

right-hand side in equation (14) is also a decreasing function in the probability of entry P,

and this implies equilibrium uniqueness. In contrast to the complete information model in

Bresnahan and Reiss (1991a), this incomplete information model does not have a closed form

solution for the equilibrium distribution of the number of active firms in the market. However,

the numerical solution of the fixed point problem in equation (9.14) is computationally very

simple, and so are the estimation and comparative statistics using this model.

Given that the only difference between the two models described in section 2.2.1 is in

their assumptions about firms’information, it seems reasonable to consider whether these

models are observationally different or not. In other words, does the assumption on complete

versus incomplete information have implications on the model predictions on competition?

Grieco (2014) investigates this question in the context of an empirical application to local

grocery markets. In Grieco’s model firms are heterogeneous in terms of (common knowledge)
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observable variables, and this observable heterogeneity plays a key role in his approach

to empirically distinguish between firms’ public and private information. Note that the

comparison of equilibrium conditions in equations (9.12) and (9.14) shows other testable

difference between the two models. In the game of incomplete information, the number of

potential entrants N has an effect on the whole probability distribution of the number of

active firms: a larger number of potential entrants implies a shift to the right in the whole

distribution of the number of active firms. In contrast, in the game of complete information,

the value of N affects only the probability Pr(n∗ = N |s, x) but not the distribution of

the number of active firms at values smaller than N. This empirical prediction has relevant

economic implications: with incomplete information, the number of potential entrants has a

positive effect on competition even in markets where this number is not binding.

3.5.2. Bresnahan and Reiss (JPE, 1991). They study several retail and professional in-

dustries in US: Doctors; Dentists; Pharmacies; Plumbers; car dealers; etc. For each industry,

say car dealers, the dataset consists of a cross-section of M small, "isolated" markets. We

index markets by m. For each market m, we observe the number of active firms (Nm), a

measure of market size (Sm), and some exogenous market characteristics that may affect

demand and/or costs (Xm).

Data = { Nm, Sm, Xm : m = 1, 2, ...,M}

There are several empirical questions that they want to answer. First, they want to

estimate the "nature" or "degree" of competition for each of the industries: that is, how fast

variable profits decline when the number of firms in the market increase. Second, but related

to the estimation of the degree of competition, BR are also interested in estimating how many

entrants are needed to achieve an equilibrium equivalent to the competitive equilibrium, that

is, hypothesis of contestable markets.

[Model] Consider a marketm. There is a number N∗ of potential entrants in the market.
Each firm decides whether to be active or not in the market. Let Πm(N) be the profit of

an active firm in market m when there are N active firms. The function Πm(N) is strictly

decreasing in N . If Nm is the equilibrium number of firms in marketm, then it should satisfy

the following conditions:

Πm(Nm) ≥ 0 and Πm(Nm + 1) < 0

That is, every firm is making her best response given the actions of the others. For active

firms, their best response is to be active, and for inactive firms their best response is not to

enter in the market.
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To complete the model we have to specify the structure of the profit function Πm(N).

Total profit is equal to variable profit, Vm(N), minus fixed costs, Fm(N):

Πm(N) = Vm(N)− Fm(N)

In this model, where we do not observe prices or quantities, the key difference in the specifi-

cation of variable profit and fixed cost is that variables profits increase with market size (in

fact, they are proportional to market size) and fixed costs do not.

The variable profit function of an incumbent firm in market m when there are N active

firms is:

Vm(N) = Sm vm(N) = Sm
(
XD
mβ − α(N)

)
where Sm represent market size; vm(N) is the variable profit per-capita; XD

m is a vector of

market characteristics that may affect the demand of the product, for instance, per capita

income, age distribution; β is a vector of parameters; and α(1), α(2), ...α(N) are parameters

that capture the degree of competition, such that we expect that α(1) ≤ α(2) ≤ α(3) ...

≤ α(N). Given that there is not firm-heterogeneity in the variable profit function, there is

an implicit assumption of homogeneous product or symmetrically differentiated product (for

instance, Salop circle city).

The specification fixed cost is:

Fm(N) = XC
m γ + δ(N) + εm

where XC
m is a vector of observable market characteristics that may affect the fixed cost, for

instance, rental price; and εm is a market characteristic that is unobservable to the researchers

but observable to the firms; and δ(1), δ(2), ...δ(N∗) are parameters. The dependence of the

fixed cost with respect to the number of firms is very unconventional or non-standard in IO.

Bresnahan and Reiss allow for this possibility and provide several interpretations. However,

the interpretation of the parameters δ(1), δ(2), ...δ(N∗) is not completely clear. In some

sense, BR allow the fixed cost to depend on the number firms in the market for robustness

reasons. There are several possible interpretations for why fixed costs may depend on the

number of firms in the market: (a) entry Deterrence: incumbents create barriers to entry;

(b) a shortcut to allow for firm heterogeneity in fixed costs, in the sense that late entrants are

less effi cient in fixed costs; and (c) actual endogenous fixed costs, for instance rental prices

or other components of the fixed costs, no included in XC
m, may increase with the number of

incumbents (for instance, demand effect on rental prices). For any of these interpretations

we expect δ(1) ≤ δ(2) ≤ δ(3) ... ≤ δ(N∗).

Since both α(N) and δ(N) increase with N , it is clear that the profit function Πm(N)

declines with N . Therefore, as we anticipated above, the equilibrium condition for the
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number of firms in the market can be represented as follows. For N ∈ {0, 1, ..., N∗}

{nm = N} ⇔ { Πm(N) ≥ 0 AND Πm(N + 1) < 0 }

It is simple to show that the model has a unique equilibrium for any value of the exoge-

nous variables and structural parameters. This is just a direct implication of the strict

monotonicity of the profit function Πm(N).

We have a random sample {Nm, Sm, X
D
m , X

C
m : m = 1, 2, ...,M} and we want to use this

sample to estimate the vector of parameters:

θ = {β, γ, σ, α(1), ..., α(N∗), δ(1), ..., δ(N∗)}

The unobserved component of the entry cost, εm, is assumed independent of (Sm, X
D
m , X

C
m)

and it is i.i.d. over markets with distribution N(0, σ). As usual in discrete choice models, σ

is not identified. We normalize σ = 1, which means that we are really identifying the rest

of the parameters up to scale. We should keep this in mind for the interpretation of the

estimation results.

Given this model and sample, BR estimate θ by (conditional) ML:

θ̂ = arg max
θ

M∑
m=1

log Pr(Nm | θ, Sm, XD
m , X

C
m)

What is the form of the probabilities Pr(Nm|θ, Sm, Xm,Wm) in B&R model? This entry

model is equivalent to anOrdered Probit model for the number of firms. We can represent
the condition {Πm(n) ≥ 0 AND Πm(n+1) < 0} in terms of thresholds for the unobservable
variable εm.

{Nm = n} ⇔ {Tm(n+ 1) < εm ≤ Tm(n)}
and for any n ∈ {1, 2, ..., N∗} we have that

Tm(N) ≡ SmX
D
mβ −XC

mγ − α(n)Sm − δ(n)

and Tm(0) = +∞, Tm(N∗ + 1) = −∞. This is the structure of an ordered probit model.
Therefore, the distribution of the number of firms conditional on the observed exogenous

market characteristics is:
Pr(Nm = n|Sm, XD

m , X
C
m) = Φ (Tm(n))− Φ (Tm(n+ 1))

Φ
(
SmX

D
mβ −XC

mγ − α(n)Sm − δ(n)
)

− Φ
(
SmX

D
mβ −XC

mγ − α(n+ 1)Sm − δ(n+ 1)
)

This is an Ordered Probit model. The model is very simple to estimate. Almost any
econometric software package includes a command for the estimation of the ordered probit.

[Application and Main Results] Data: 202 "isolated local markets". Why isolated
local markets? It is very important to include in our definition of market all the firms that
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are actually competing in the market and not more. Otherwise, we can introduce significant

biases in the estimated parameters. If our definition of market is too narrow, such that we

do not include all the firms that are actually in a market, we will conclude that there is little

entry either because fixed costs are too large or the degree of competition is strong: that is,

we will overestimate the α′s or the δ′s or both. If our definition of market is too broad, such

that we include firms that are not actually competing in the same market, we will conclude

that there is significant entry and to rationalize this wee need fixed costs to be small or to

have a low degree of competition between firms. Therefore, we will underestimate the α′s or

the δ′s or both.

The most common mistake of a broad definition of market is to have a large city as a

single market. The common mistake of a narrow definition of market is to have small towns

that are close to each other, or close to a large town. To avoid these type of errors, BR

construct "isolated local markets". The criteria to select isolated markets in US: (a) at least

20 miles from the nearest town of 1000 people or more; (b) At least 100 miles of cities with

100,000 people or more.

Population sizes between 500 and 75,000 people [see Figure 2 in the ]. Industries (16):

several retail industries (auto dealers, movie theaters,...) and many professions (doctors,

dentists, plumbers, barbers, ...). The model is estimated for each industry separately.

Let S(N) be the minimum market size to sustain N firms in the market. S(N) are called

"entry thresholds" and they can be obtained (estimated) using the estimated parameters.
They do not depend on the normalization σ = 1. The main empirical results are: (a) For

most industries, both α(N) and δ(N) increase with n. (b) There are very significant cross-

industry differences in entry thresholds S(N). (c) For most of the industries, entry thresholds

S(N)/N become constant for values of N greater than 4 or 5. Contestable markets?

3.5.3. Entry with endogenous product choice. Mazzeo (2002) studies market entry in the

motel industry using local markets along US interstate highways.20 A local market is defined

as a narrow region around a highway exit. Mazzeo’s model maintains most of the assumptions

in Bresnahan and Reiss (1991a), such as no spatial competition (that is, L=1), ex ante

homogeneous firms, complete information, no multi-store firms, and no dynamics. However,

he extends the Bresnahan—Reiss model in an interesting dimension: it introduces endogenous

product differentiation. More specifically, firms not only decide whether to enter in a market

but they also choose the type of product: low-quality product E (that is, economy hotel), or

high-quality product H (that is, upscale hotel).21 Product differentiation makes competition

less intense, and it can increase firms’profits. However, firms have also an incentive to offer

the type of product for which demand is stronger.
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The profit of an active hotel of type T ∈ {E,H} is:

πT (nE, nH) = s ∗ vT (x, nE, nH)− ECT (x)− εT

where nE and nH represent the number of active hotels with low and high quality, respec-

tively, in the local market. Similarly to the Bresnahan—Reiss model, vT is the variable profit

per capita and ECT (x) + εT is the entry cost for type T hotels, where εT is unobservable

to the researcher. Mazzeo solves and estimates her model under two different equilibrium

concepts: Stackelberg and what he terms a ‘two-stage game’. A computational advantage

of the two-stage game is that under the assumptions of the model the equilibrium is unique.

In the first stage, the total number of active hotels, n ≡ nE + nH , is determined in a similar

way as in the Bresnahan—Reiss model. Hotels enter the market as long as there is some

configuration (nE, nH) where both low-quality and high-quality hotels make positive profits.

Define the first-stage profit function as:

Π(n) ≡ max
nE ,nH :nE+nH=n

min[πE(nE, nH) , πH(nE, nH)]

Then, the equilibrium number of hotels in the first stage is the value n∗ that satisfies two

conditions: (1) every active firm wants to be in the market, that is, Π(n∗) ≥ 0; and (2) every

inactive firm prefers to be out of the market, that is, Π(n∗ + 1) < 0. If the profit functions

πE and πH are strictly decreasing functions in the number of active firms (nE, nH), then

Π(n) is also a strictly decreasing function, and the equilibrium number of stores in the first

stage, n∗, is unique. In the second stage, active hotels choose simultaneously their type or

quality level. In this second stage, an equilibrium is a pair (n∗E, n
∗
H) such that every firm

chooses the type that maximizes its profit given the choices of the other firms: low quality

firms are not better off by switching to high quality, and vice versa,

πE(n∗E, n
∗
H) ≥ πH(n∗E − 1, n∗H + 1)

πH(n∗E, n
∗
E) ≥ πE(n∗E + 1, n∗E − 1)

Mazzeo shows that the equilibrium pair (n∗E, n
∗
H) in this second stage is also unique.

Using these equilibrium conditions, it is possible to obtain a closed form expression for

the (quadrangle) region in the space of the unobservables (εE, εH) that generate a particular

value of the equilibrium pair (n∗E, n
∗
H). Let Rε(nE, nH ; s, x) be the quadrangle region in

R2 associated with the pair (nE, nH) given exogenous market characteristics (s, x) , and let

F (εE, εH) be the CDF of the unobservable variables. Then, we have that:

Pr(n∗E = nE, n
∗
H = nH |s, x) =

∫
1{(εE, εH) ∈ Rε(nE, nH ; s, x) dF (εE, εH)

In the empirical application, Mazzeo finds that hotels have strong incentives to differen-

tiate from their rivals to avoid nose-to-nose competition.
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Ellickson and Misra (2008) estimate a game of incomplete information for the US su-

permarket industry where supermarkets choose the type of ‘pricing strategy’: ‘everyday low

price’(EDLP) versus ‘high-low’pricing.24 The choice of pricing strategy can be seen as a

form of horizontal product differentiation. The authors find evidence of strategic comple-

mentarity between supermarkets pricing strategies: firms competing in the same market tend

to adopt the same pricing strategy not only because they face the same type of consumers

but also because there are positive synergies in the adoption of the same strategy. From

an empirical point of view, this result is more controversial than Mazzeo’s finding of firms’

incentive to differentiate from each other. In particular, the existence of unobservables that

are positively correlated across firms but are not fully accounted in the econometric model,

may generate a spurious estimate of positive spillovers in the adoption of the same strat-

egy. Vitorino (2012) estimates a game of store entry in shopping centers that allows for

incomplete information, positive spillover effects among stores, and also unobserved market

heterogeneity for the researcher that is common knowledge to firms. Her empirical results

show that, after controlling for unobserved market heterogeneity, firms face business stealing

effects but also significant incentives to collocate, and that the relative magnitude of these

two effects varies substantially across store types.

3.5.4. Firm heterogeneity. The assumption that all potential entrants and incumbents

are homogeneous in their variable profits and entry costs is very convenient and facilitates the

estimation, but it is also very unrealistic in many applications. A potentially very important

factor in the determination of market structure is that firms, potential entrants, are ex-

ante heterogeneous. In many applications we want to take into account this heterogeneity.

Allowing for firm heterogeneity introduces two important issues in these models: endogenous

explanatory variables, and multiple equilibria. We will comment on different approaches that

have been used to deal with these issues.

Consider an industry with N potential entrants. For instance, the airline industry. These

potential entrants decide whether to be active or not in a market. We observe M different

realizations of this entry game. These realizations can be different geographic markets (dif-

ferent routes of or city pairs, for instance, Toronto-New York, Montreal-Washington, etc)

or different time periods of time. For the sake of concreteness, we refer to these different

realizations of the entry game as "local markets" or "submarkets". We index firms with

i ∈ {1, 2, ..., N} and submarkets with m ∈ {1, 2, ...,M}.
Let aim ∈ {0, 1} be a the binary indicator of the event "firm i is active in market m".

For a given market m, the N firms choose simultaneously whether to be active or not in the

market. When making her decision, a firm wants to maximize its profit.
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Once firms have decided to be active or not in the market, active firms compete in

prices or in quantities and firms’profits are realized. For the moment, we do not make it

explicit the specific form of competition in this second part of the game, or the structure

of demand and variable costs. We take as given an "indirect profit function" that depends

on exogenous market and firm characteristics and one the number and the identity of the

active firms in the market. This indirect profit function comes from a model of price or

quantity competition, but at this point we do not make that model explicit here. Also, we

consider that the researcher does not have access to data on firms’prices and quantities such

that demand and variable cost parameters in the profit function cannot be estimated from

demand, and/or Bertrand/Cournot best response functions.

The (indirect) profit function of an incumbent firm depends on market and firm char-

acteristics affecting demand and costs, and on the entry decisions of the other potential

entrants:

Πim =

 Πi (xim, εim, a−im) if aim = 1

0 if aim = 0

where xim and εim are vectors of exogenous market and firm characteristics, and a−im ≡
{ajm : j 6= i}. The vector xim is observable to the researcher while εim is unobserved to the
researcher. For the moment we assume that xm ≡ {x1m, x2m, ..., xNm} and εm ≡ {ε1m, ε2m,

..., εNm} are common knowledge for all players.
For instance, in the example of the airline industry, the vector xim may include market

characteristics such as population and socioeconomic characteristics in the two cities that

affect demand, characteristics of the airports such as measures of congestion (that affect

costs), and firm characteristics such as the number of other connections that the airline has

in the two airports (that affect operating costs due to economies of scale and scope).

The N firms chose simultaneously {a1m, a2m, ..., aNm} and the assumptions of Nash
equilibrium hold. A Nash equilibrium in this the entry game is an N -tuple a∗m = (a∗1m,

a∗2m, ..., a
∗
Nm) such that for any player i:

a∗im = 1
{

Πi

(
xim, εim, a∗−im

)
≥ 0

}
where 1 {.} is the indicator.
Given a dataset with information on {aim, xim} for every firm in theM markets, we want

to use this model to learn about the structure of the profit function Πi. In these applications,

we are particularly interested in the effect of other firms’entry decisions on a firm’s profit.

For instance, how Southwest entry in the Chicago-Boston submarket affects the profit of

American Airlines.
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For the sake of concreteness, consider the following specification of the profit function:

Πim = xim βi −
∑

j 6=i ajm δij + εim

where xim is a 1×K vector of observable market and firm characteristics; βi is a K×1 vector

of parameters; δi = {δij : j 6= i} is a (N − 1) × 1 vector of parameters, with δij being the

effect of firm j′s entry on firm i′s profit; εim is zero mean random variable that is observable

to the players but unobservable to the econometrician.

We assume that εim is independent of xm, and it is i.i.d. over m, and independent across

i. If xim includes a constant term, then without loss of generality E(εim) = 0. Define

σ2
i ≡ V ar(εim). Then, we also assume that the probability distribution of εim/σi is known

to the researcher. For instance, εim/σi has a standard normal distribution.

The econometric model can be described as system of N simultaneous equations where

the endogenous variables are the entry dummy variables:

aim = 1
{
xim βi −

∑
j 6=i ajm δij + εim ≥ 0

}
We want to estimate the vector of parameters θ =

{
βi
σi
,
δi
σi

: i = 1, 2, ..., N

}
.

There are two main econometric issues in the estimation of this model: (1) endogenous

explanatory variables, ajm; and (2) multiple equilibria.

Endogeneity of other players’actions. In the structural (best response) equation

aim = 1
{
xim βi −

∑
j 6=i ajm δij + εim ≥ 0

}
the actions of the other players, {ajm : j 6= i} are endogenous in an econometric sense. That
is, ajm is correlated with the unobserved term εim, and ignoring this correlation can lead to

serious biases in our estimates of the parameters βi and δi.

There two sources of endogeneity or correlation between ajm and εim: simultaneity and

common unobservables between εim and εjm. It is interesting to distinguish between these

two sources of endogeneity because they bias the parameter δij in opposite directions.

Simultaneity. An equilibrium of the model is a reduced form equation where we repre-
sent the action of each player as a function of only exogenous variables in xm and εm. In this

reduced form, ajm depends on εim. It is possible to show that this dependence is negative:

keeping all the other exogenous variables constant if εim is small enough then ajm = 0, and if

εim is large enough then ajm = 1. Suppose that our estimator of δij ignores this dependence.

Then, the negative dependence between ajm and εim contributes to generate a upward bias

in the estimator of δij.

That is, we will spuriously over-estimate the negative effect of Southwest on the profit

of American Airlines because Southwest tends to enter in those markets where AA has low

values of εim.
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Positively correlated unobservables. It is reasonable to expect that εim and εjm
are positively correlated. This is because both εim and εjm contain unobserved market

characteristics that affect in a similar way, or at least in the same direction, to all the firms

in the same market. Some markets are more profitable than others for every firm, and part

of this market heterogeneity is observable to firms but unobservables to us as researchers.

The positive correlation between εim and εjm generates also a positive dependence between

ajm and εim.

For instance, suppose that εim = ωm + uim, where ωm represents the common market

effect, and uim is independent across firms. Then, keeping xm and the unobserved u variables

constant, if ωm is small enough then εim and ajm = 0, and if ωm is large enough then εim
is large and ajm = 1. Suppose that our estimator of δij ignores this dependence. Then, the

negative positive dependence between ajm and εim contributes to generate a downward bias

in the estimator of δij. In fact, the estimate of δij could have the wrong sign, that is, being

negative instead of positive.

That is, we can spuriously find that American Airlines benefits for the operation of

Continental in the same market because we tend to observe that these firms are always active

in the same markets. This positive correlation between aim and ajm can be completely driven

by the positive correlation between εim and εjm.

These two sources of endogeneity generate biases of opposite sign in δij. There is evidence

from different empirical applications that the biased due to unobserved market effects is

much more important than the simultaneity bias. Examples: Collard-Wexler (WP, 2007) US

cement industry; Aguirregabiria and Mira (Econometrica, 2007) different retail industries in

Chile; Aguirregabiria and Ho (WP, 2007) US airline industry; Ellickson andMisra (Marketing

Science, 2008) US supermarket industry.

How do we deal with this endogeneity problem? The intuition for the identifica-
tion in this model is similar to the identification using standard Instrumental Variables (IV)

and Control Function (CF) approaches.

"IV approach": There are exogenous firm characteristics in xjm that affect the action of

firm j but do not have a direct effect on the action of firm i: that is, observable characteristics

with βj 6= 0 but βi = 0.

"CF approach": There is an observable variable Cit that "proxies" or "controls for" the

endogenous part of εim such that if we include Cit in the equation for firm i then the new

error term in that equation and ajm become independent (conditional on Cit).

The method of instrumental variables is the most common approach to deal with en-

dogeneity in linear models. However, IV or GMM cannot be applied to estimate discrete

choice models with endogenous variables. Control function approaches: Rivers and Vuong
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(1988), Vytlacil and Yilditz (2006). These approaches have not been extended yet to deal

with models with multiple equilibria or "multiple reduced forms".

An alternative approach is Maximum likelihood: If we derive the probability distribution

of the dummy endogenous variables conditional on the exogenous variables (that is, the

reduced form of the model), we can use these probabilities to estimate the model by maximum

likelihood.

`(θ) =
∑M

m=1
ln Pr(a1m, a2m, ..., aNm | xm, θ)

This is the approach that has been most commonly used in this literature. However, we will

have to deal with the problem of multiple equilibria.

Multiple equilibria. Consider the model with two players and assume that δ1 ≥ 0 and

δ2 ≥ 0.
a1 = 1 { x1β1 − δ1 a2 + ε1 ≥ 0 }

a2 = 1 { x2β2 − δ2 a1 + ε2 ≥ 0 }
The reduced form of the model is a representation of the endogenous variables (a1, a2) only

in terms of exogenous variables and parameters. This is the reduced for of this model:

{x1β1 + ε1 < 0} & {x2β2 + ε2 < 0} ⇒ (a1, a2) = (0, 0)

{x1β1 − δ1 + ε1 ≥ 0}& {x2β2 − δ2 + ε2 ≥ 0} ⇒ (a1, a2) = (1, 1)

{x1β1 − δ1 + ε1 < 0} & {x2β2 + ε2 ≥ 0} ⇒ (a1, a2) = (0, 1)

{x1β1 + ε1 ≥ 0} & {x2β2 − δ2 + ε2 < 0} ⇒ (a1, a2) = (1, 0)

The graphical representation in the space (ε1, ε2) is:

*************************************

FIGURE ON MULTIPLE EQUILIBRIA: 5 regions

(Tamer, RESTUD 2003)

*************************************

Note that when:

{0 ≤ x1β1 + ε1 < δ1} and {0 ≤ x2β2 + ε2 < δ2}

we have two Nash equilibria: (a1, a2) = (0, 1) and (a1, a2) = (1, 0). For this range of values

of (ε1.ε2), the reduced form (that is, the equilibrium) is not uniquely determined. Therefore,

we can not uniquely determine the probability Pr(a1m, a2m|xm; θ) that we need to estimate

the model by ML. We know Pr(1, 1|θ), and Pr(0, 0|θ), but we only have lower and upper
bounds for Pr(0, 1|θ) and Pr(1, 0|θ).
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The problem of indeterminacy of the probabilities of different outcomes becomes even

more serious in empirical games with more than 2 players or/and more than two choice

alternatives.

There have been different approaches to deal with this problem of multiple equilibria.

Some authors have imposed additional structure in the model to guarantee equilib-
rium uniqueness or at least uniqueness of some observable outcome (for instance, number
of entrants). A second group of studies do not impose additional structure and use methods

such that moment inequalities or pseudo maximum likelihood to estimate structural
parameters. The main motivation of this second group of studies is that identification and

multiple equilibria are different problems and we do not need equilibrium uniqueness to

identify parameters.

3.5.5. Entry games with incomplete information.

Model and basic assumptions. Consider a market with N potential entrants. If firm i

does not operate in market m (aim = 0), its profit is zero. If the firm is active in the market

(aim = 1), the profit is:

Πim = Πi(xm, a−im)− εim (3.1)

For instance,

Πim = xim βi − εim −
∑

j 6=i δij ajm (3.2)

where βi and δi are parameters. These parameters and the vector sm = (s1m, s2m, ..., sNm)

contain the variables which are common knowledge for all players. Now εim is private in-

formation of firm i. For the moment, we assume that private information variables are

independent of sm, independently distributed over firms with distribution functions Gi(εim).

The distribution function Gi is strictly increasing in R. The information of player i is

(sm, εim).

A player’s strategy depends on the variables in her information set. Let α ≡ {αi(sm, εim) :

i = 1, 2, ..., N} be a set of strategy functions, one for each player, such that αi : S × R →
{0, 1}. The actual payoff/profit Πim is unknown to player i because the private information

of the other players is unknown to player i. Players maximize expected profits:

πi(sm, εim, α−i) = sim βi − εim −
∑

j 6=i δij

[∫
I {αj(sm, εjm) = 1} dGj(εjm)

]
(3.3)

or:
πi(sm, εim, α−i) = sim βi − εim −

∑
j 6=i δij P

α
j (sm)

= sim βi − εim − Pα
−i(sm)′δi

(3.4)

where Pα
j (sm) ≡

∫
I {αj(sm, εjm) = 1} dGj(εjm) is player j’s probability of entry if she be-

haves according to her strategy in α.
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Suppose that players other than i play their respective strategies in α. What is player

i’s best response? Let bi(sm, εim, α−i) be player i’s best response function. This function is:

bi(sm, εim, α−i) = I{ πi(sm, εim, α−i) ≥ 0 }

= I
{
εim ≤ sim βi − Pα

−i(sm)′δi
} (3.5)

Associated with the best response function bi (in the space of strategies), we can define a

best response probability function in the space of probabilities as:

Ψi(sm, P
α
−i) =

∫
I { bi(sm, εim, α−i) = 1 } dGi(εim)

=

∫
I
{
εim ≤ sim βi − Pα

−i(sm)′δi
}
dGi(εim)

Gi

(
sim βi − Pα

−i(sm)′δi
)

(3.6)

A Bayesian Nash equilibrium (BNE) in this model is a set of strategy functions α∗ such

that, for any player i and any value of (sm, εim), we have that:

α∗i (sm, εim) = bi(sm, εim, α
∗
−i) (3.7)

Associated with the set of strategies α∗ we can define a set of choice probability functions

P ∗ = {P ∗i (sm) : i = 1, 2, ..., N} such that P ∗i (sm) ≡
∫
I {α∗i (sm, εim) = 1} dGi(εim). Note

that these equilibrium choice probabilities are such that, for any player i and any value of

sm:
P ∗i (sm) = Ψi(sm, P

∗
−i)

= Gi

(
sim βi − P ∗−i(sm)′δi

) (3.8)

Therefore, we can define a BNE in terms of strategy functions α∗ or in terms of choice prob-

abilties P ∗. There is a one-to-one relationship between α∗ and P ∗. Given α∗, it is clear that

there is only one set of choice probabilities P ∗ defines as P ∗i (sm) ≡
∫
I {α∗i (sm, εim) = 1} dGi(εim).

And given P ∗, there is only one set of strategies α∗ that is a BNE and it is consistent with

P ∗. These strategy functions are:

α∗i (sm, εim) = I
{
εim ≤ sim βi − P ∗−i(sm)′δi

}
(3.9)

Suppose that the distribution of εim is known up to some scale parameter σi. For instance,

suppose that εim ∼ iid N(0, 1). Then, we have that equilibrium choice probabilities in

market m solve the fixed point mapping in probability space:

P ∗i (sm) = Φ

(
sim

βi
σi
− Pα

−i(sm)′
δi
σi

)
For notational simplicity we will use βi and δi to represent

βi
σi
and

δi
σi
, respectively.
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We use θ to represent the vector of structural parameters {βi, δi : i = 1, 2, ..., N}. To
emphasize that equilibrium probabilities deped on θ we use P (sm, θ) = {Pi(sm, θ) : i =

1, 2, ..., N} to represent a vector of equilibrium probabilities associated with the exogenous

conditions (sm, θ). In general, there are values of (sm; θ) for which the model has multiple

equilibria. This is very common in models where players are heterogeneous, but we can find

also multiple symmetric equilibria in models with homogeneous players, specially if there is

strategic complementarity (that is, δi < 0) as in coordination games.

Data and identification. Suppose that we observe this game played at M independent

markets. We observe players’actions and a subset of the common knowledge state variables,

xim ⊆ sim. That is,

Data = {xim, aim : m = 1, 2, ...,M ; i = 1, 2, ..., N} (3.10)

The researcher does not observe private information variables. It is important to distinguish

two cases:

Case I: No common knowledge unobservables, that is, xim = sim.

Case II: Common knowledge unobservables, that is, sim = (xim, ωim),

where ωim is unobservable.

Case I: No common knowledge unobservables
(A) Data with global players. Suppose that we have a random sample of markets and

we observe:

{xim, aim : m = 1, 2, ...,M ; i = 1, 2, ..., N} (3.11)

Let P 0 = {P 0
i (x) : i = 1, 2, .., N ;x ∈ X} be players’entry probabilities in the the population

under study. The population is an equilibrium of the model. That is, there is a θ0 such that,

for any i and any x ∈ X:
P 0
i (x) = Φ

(
xi β

0
i − P 0

−i(x)′δ0
i

)
(3.12)

From our sample, we can nonparametrically identify the population P 0, that is, P 0
i (x) =

E(aim|xm = x). Given P 0 and the equilibrium conditions in (3.12), can we uniquely identify

θ0? Notice that we can write these equations as:

Φ−1
(
P 0
i (xm)

)
= xim β0

i − P 0
−i(xm)′δ0

i = Zim θ0
i

Define Yim ≡ Φ−1 (P 0
i (xm)); Zim ≡ (xim, P

0
−i(xm)); and θ0

i ≡ (β0
i , δ

0
i ). Then,

Yim = Zim θ0
i

And we can also write this system as:

E(Z ′imYim) = E(Z ′imZim) θ0
i
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It is clear θ0
i is uniquely identified if E(Z ′imZim) is a nonsigular matrix. Note that if xim

contains variables that variate both over markets and over players then we have exclusion

restrictions that imply that E(Z ′imZim) is a nonsigular matrix.

(B) Data with only local players. Suppose that we have a random sample of markets

and we observe:

{xm, nm : m = 1, 2, ...,M} (3.13)

Let P 0 = {P 0(x) : x ∈ X} be the entry probabilities in the the population under study.
The population is an equilibrium of the model, and therefore there is a θ0 such that for any

x ∈ X:
P 0(x) = Φ

(
x β − δ H(P 0[x])

)
(3.14)

From our sample, we can nonparametrically identify the population P 0. To see this, notice

that: (1) we can identify the distribution for the number of firms: Pr(nm = n|xm = x);

(2) the model implies that conditional on xm = x the number of firms follows a Binomial

distribution with arguments N and P 0(x), therefore

Pr(nm = n|xm = x) =

(
n

N

)
P 0(x)n

(
1− P 0(x)

)N−n
;

and (3) given the previous expression, we can obtain the P 0(x) associated with Pr(nm =

n|xm = x). Given P 0 and the equilibrium condition P 0(x) = Φ (x β − δ H(P 0[x])), can we

uniquely identify θ0? Notice that we can write these equations as:

Ym = xm β0 − δ0 H(P 0[xm]) = Zm θ0

where Ym ≡ Φ−1 (P 0(xm)); θ0 ≡ (β0, δ0); and Zm ≡ (xm, H(P 0[xm])). And we can also write

this system as:

E(Z ′mYm) = E(Z ′mZm) θ0

It is clear θ0 is uniquely identified if E(Z ′mZm) is a nonsingular matrix.

Case II: Common knowledge unobservables
Intuition: conditional on xm, players actions are still correlated across markets. This is

evidence that ....

In applications where we do not observe the identity of the potential entrants, we consider

a model without firm heterogeneity:

Πim = xm β − δ h
(

1 +
∑

j 6=i ajm

)
+ εim (3.15)

A symmetric Bayesian Nash equilibrium in this model is a probability of entry P ∗(xm; θ)

that solves the fixed point problem:

P ∗(xm; θ) = Φ (xm β − δ H(P [xt, θ])) (3.16)
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where H(P ) is the expected value of h
(

1 +
∑

j 6=i aj

)
conditional on the information of firm

i, and under the condition that the other firms behave according to their entry probabilities

in P . That is,

H(P ) =
∑

a−i

(∏
j 6=i

P
aj
j [1− Pj]1−aj

)
h
(

1 +
∑

j 6=i
aj

)
(3.17)

and
∑

a−i
represents the sum over all the possible actions of firms other than i.

Pseudo ML estimation. The problem is to estimate the vector of structural parameters θ0

given a random sample {xim, aim}. Equilibrium probabilities are not uniquely determined for
some values of the primitives. However, for any vector of probabilities P , the best response

probability functions Φ
(
xim βi −

∑
j 6=i δij Pj(xm)

)
are always well-defined. We define a

pseudo likelihood function based on best responses to the population probabilities.

QM(θ, P 0) =
∑M

m=1

∑N
i=1 aim ln Φ

(
xim βi −

∑
j 6=i δij P

0
j (xm)

)
+ (1− aim) ln Φ

(
−xim βi +

∑
j 6=i δij P

0
j (xm)

) (3.18)

It is possible to show that θ0 uniquely maximizes Q∞(θ, P 0). The PML estimator of θ0 max-

imizes QM(θ, P̂ 0), where P̂ 0 is a consistent nonparametric estimator of P 0. This estimator

is consistent and asymptotically normal. Iterating in this procedure can provide effi ciency

gains both in finite samples and asymptotically (Aguirregabiria, Economics Letters, 2004).

3.5.6. Entry and spatial competition. How do market power and profits of a retail firm

depend on the location of its store(s) relative to the location of competitors? How important

is spatial differentiation to explain market power? These are important questions in the

study of competition in retail markets. Seim (2006) studies these questions in the context

of the video rental industry. Seim’s work is the first study that endogenizes store locations

and introduces spatial competition in a game of market entry. Her model has important

similarities with the static game with single-store firms and incomplete information that

we have presented above in section 2.1.1. The main difference is that Seim’s model does

not include an explicit model of spatial consumer demand and price competition. Instead,

she considers a ‘semi-structural’specification of a store’s profit that captures the idea that

the profit of a store declines when competing stores get closer in geographic space. The

specification seems consistent with the idea that consumers face transportation costs and

therefore spatial differentiation between stores can increase profits.

From a geographical point of view, a market in this model is a compact set in the two-

dimension Euclidean space. There are L locations in the market where firms can operate

stores. These locations are exogenously given and they could be chosen as the set grid points

where the grid can be as fine as we want. We index locations by ` that belongs to the set

{1, 2, ..., L}.
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There are N potential entrants in the market. Each firm takes two decisions: (1) whether

to be active or not in the market; and (2) if it decides to be active, it chooses the location

of its store. Note that Seim does not model multi-store firms. Aguirregabiria and Vicentini

(2007) present an extension of Seim’s model with multi-store firms, endogenous consumer

behavior, and dynamics.

Let ai represent the decisions of firm i, such that ai ∈ {0, 1, ..., L} and ai = 0 represents

"no entry", and ai = ` > 0 represents entry in location `.

The profit of not being active in the market is normalized to zero. Let Πi` be the profit

of firm i if it has a store in location `. These profits depend on the store location decisions

of the other firms. In particular, Πi` declines with the number of other stores "close to"

location `.

Of course, the specific meaning of being close to location ` is key for the implications

of this model. This should depend on how consumers perceive as close substitutes stores in

different locations. In principle, if we have data on quantities and prices for the different

stores active in this city, we could estimate a demand system that would provide a measures

of consumers’ transportation costs and of the degree of substitution in demand between

stores at different locations. That is what Jackie Wang did in his job market paper for the

banking industry (Wang, 2010). However, for this industry we do not have information on

prices and quantities at the store level, and even if we had, stores location decisions may

contain useful (and even better) information to identify the degree of competition between

stores at different locations.

Seim’s specification of the profit function is "semi-structural" in the sense that it does

not model explicitly consumer behavior,but it is consistent with the idea that consumers

face transportation costs and therefore spatial differentiation (ceteris paribus) can increase

profits.

*************************************

FIGURE on definition of local markets

(Seim, RAND 2006)

*************************************

For every location ` in the city, Seim defines B rings around the location. A first ring

of radius d1 (say half a mile); a second ring of radius d2 > d1 (say one mile), and so on.

The profit of a store depends on the number of other stores located within each of the B

rings. We expect that closer stores should have stronger negative effects on profits. The

profit function of an active store at location ` is:

Πi` = x` β +
∑B

b=1 γb Nb` + ξ` + εi`
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where β, γ1, γ2, ..., and γB are parameters; x` is a vector of observable exogenous character-

istics that affect profits in location `; Nb` is the number of stores in ring b around location `

excluding ; ξ` represents exogenous characteristics of location ` that are unobserved to the

researcher but common and observable to firms; and εi` is component of the profit of firm i

in location ` that is private information to this firm. For the no entry choice, Πi0 = εi0.

ASSUMPTION: Let εi = {εi` : ` = 0, 1, ..., L} be the vector with the private information
variables of firm i at every possible location. εi is i.i.d. over firms and locations with a

extreme value type 1 distribution.

The information of firm i is (x, ξ,εi), where x and ξ represent the vectors with x` and

ξ`, respectively, at every location in the city. Firm i does not know the ε′s of other firms.

Therefore, Nb` is unknown to a firm. Firms only know the probability distribution of Nb`.

Therefore, firms maximize expected profits. The expected profit of firm i is:

Πe
i` = x` β +

∑B
b=1 γb N

e
b` + ξ` + εi`

where N e
b` represents E(Nb`|x, ξ).

A firm’s strategy depends on the variables in her information set. Let αi(x, ξ,εi) be a

strategy function for firm i such that αi : X × R2 → {0, 1, ..., L}. Given expectations N e
b`,

the best response strategy of player i is:

αi(x, ξ, εi) = arg max
`∈{0,1,...,L}

{
x` β +

∑B
b=1 γb N

e
b` + ξ` + εi`

}
Or similarly, αi(x, ξ, εi) = ` if and only if x` β +

∑B
b=1 γb N

e
b` + ξ` + εi` is greater that x`′

β +
∑B

b=1 γb N
e
b`′ + ξ`′ + εi`′ for any other location `.

From the point of view of other firms that do not know the private information of firm

i but know the strategy function αi(x, ξ, εi), the strategy of firm i can be described as a

probability distribution: Pi ≡ {Pi` : ` = 0, 1, ..., L} where Pi` is the probability that firm i

chooses location ` when following her strategy αi(x, ξ, εi). That is,

Pi` ≡
∫

1{αi(x, ξ, εi) = `} dF (εi)

where F (εi) is the CDF of εi. By construction,
∑L

`=0 Pi` = 1.

Given expectations N e
b`, we can also represent the best response strategy of firm i as a

choice probability. A best response probability Pi` is:

Pi` =

∫
1
[
` = arg max

`′

{
x`′ β +

∑B
b=1 γb N

e
b`′ + ξ`′ + εi`′

}]
dF (εi)
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And given the extreme value assumption on εi:

Pi` =
exp

{
x`β +

∑B
b=1 γb N

e
b` + ξ`

}
1 + exp

{
x`′β +

∑B
b=1 γb N

e
b`′ + ξ`′

}

In this application, there is not information on firm exogenous characteristics, and Seim

assumes that the equilibrium is symmetric: αi(x, ξ, εi) = α(x, ξ, εi) and Pi` = P` for every

firm i.

The expected number of firms in ring b around location `, N e
b`, is determined by the

vector of entry probabilities P ≡ {P`′ : `′ = 1, 2, ..., L}. That is:

N e
b` =

∑L
`′=1 1{`′ belongs to ring b around `} P`′ N

To emphasize this dependence we use the notation N e
b`(P ).

Therefore, we can define a (symmetric) equilibrium in this game as a vector of probabil-

ities P ≡ {P` : ` = 1, 2, ..., L} that solve the following system of equilibrium conditions: for

every ` = 1, 2, ..., L:

P` =
exp

{
x`β +

∑B
b=1 γb N

e
b`(P ) + ξ`

}
1 + exp

{
x`′β +

∑B
b=1 γb N

e
b`′(P ) + ξ`′

}
By Brower’s Theorem an equilibrium exist. The equilibrium may not be unique. Seim

shows that if the γ parameters are not large and they decline fast enough with b, then the

equilibrium is unique.

Let θ = {N, β, γ1, γ2, ..., γB} be the vector of parameters of the model. These parameters
can be estimated even if we have data only from one city. Suppose that the data set is

{x`, n` : ` = 1, 2, ..., L} for L different locations in a city, where L is large, and n` represents
the number of stores in location `. We want to use these data to estimate θ. I describe the

estimation with data from only one city. Later, we will see that the extension to data from

more than one city is trivial.

Let x be the vector{x` : ` = 1, 2, ..., L}. All the analysis is conditional on x, that is a
description of the "landscape" of observable socioeconomic characteristics in the city. Given

x, we can think in {n` : ` = 1, 2, ..., L} as one realization of a spatial stochastic process.
In terms of the econometric analysis, this has similarities with time series econometrics in

the sense that a time series is a single realization from a stochastic process. Despite having

just one realization of a stochastic process, we can estimate consistently the parameters of

that process as long as we make some stationarity assumptions.
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This is the model considered by Seim (2006): there is city unobserved heterogeneity

(her dataset includes multiple cities) but within a city there is not unobserved location

heterogeneity.

Conditional on x, spatial correlation/dependence in the unobservable variables ξ` can

generate dependence between the number of firms at different locations {n`}. We start with
the simpler case where there is not the unobserved location heterogeneity: that is, ξ` = 0

for every location `.

Without unobserved location heterogeneity, and conditional on x, the variables n` are

independently distributed, and n` is a random draw from Binomial random variable with

arguments (N,P`(x, θ)), where P`(x, θ) are the equilibrium probabilities defined above where

now I explicitly include (x, θ) as arguments.

n` ∼ i.i.d. over ` Binomial(N,P`(x, θ))

Therefore,

Pr (n1, n2, ..., nL | x, θ) =
∏L

`=1 Pr (n` | x, θ)

=
∏L

`=1

N !

n`(N − n`)!
P`(x, θ)

n`(1− P`(x, θ))N−n`

The log-likelihood function is:

`(θ) =
L∑̀
=1

ln

(
N !

(N − n`)!

)
+ n` lnP`(x, θ) + (N − n`) ln(1− P`(x, θ))

And the maximum likelihood estimator, θ̂, is the value of θ that maximizes this likelihood.

Later, I will present and describe in detail several algorithms to obtain this MLE. The part

of this estimation that is computationally more demanding is that the probabilities are the

solution of a fixed point/equilibrium problem.

The parameters of the model, including the number of potential entrantsN , are identified.

Partly, the identification comes form functional form assumptions. However, there also

exclusion restrictions that can provide identification even if some of these assumptions are

relaxed. In particular, for the identification of β and γb, the model implies that N
e
b` depends

on socioeconomic characteristics at locations other than ` (that is, x`′ for `′ 6= `). Therefore,

N e
b` has sample variability that is independent of x` and this implies that the effects of x`

and N e
b` on a firm’s profit can be identified even if we relax the linearity assumption.

Haiqing Xu’s job market paper (2010) (titled "Parametric and Semiparametric Structural

Estimation of Hotelling-type Discrete Choice Games in A Single Market with An Increasing

Number of Players") studies the asymptotics of this type of estimator. His model is a bit

different to Seim’s model because players and locations are the same thing.
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Now, let’s consider the model where ξ` 6= 0. A simple (but restrictive approach) is to

assume that there is a number R of "regions" or districts in the city, where the number

of regions R is small relative to the number of locations L, such that all the unobserved

heterogeneity is between regions but there is no unobserved heterogeneity within regions.

Under this assumption, we can control for unobserved heterogeneity by including region

dummies. In fact, this case is equivalent to the previous case without unobserved location

heterogeneity with the only difference is that the vector of observables x` now includes region

dummies.

A more interesting case is when the unobserved heterogeneity is at the location level.

We assume that ξ = {ξ` : ` = 1, 2, ..., L} is independent of x and it is a random draw

from a spatial stochastic process. The simplest process is when ξ` is i.i.d. with a known

distribution, say N(0, σ2
ξ) where the zero mean is without loss of generality. However, we

can allow for spatial dependence in this unobservable. For instance, we may consider a

Spatial autorregressive process (SAR):

ξ` = ρ ξ̄
C
` + u`

where u` is i.i.d. N(0, σ2
u), ρ is a parameter, and ξ̄

C
` is the mean value of ξ at the C locations

closest to location `, excluding location ` itself. To obtain, a random draw of the vector ξ

from this stochastic process it is convenient to write the process in vector form:

ξ = ρ WC ξ + u

where ξ and u are L × 1 vectors, and WC is a L × L weighting matrix such that every

row, say row `, has values 1/C at positions that correspond to locations close to location `,

and zeroes otherwise. Then, we can write ξ = (I − ρ WC)−1u. First, we take independent

draws from N(0, σ2
u) to generate the vector u, and then we pre-multiple that vector by (I−ρ

WC)−1 to obtain ξ.

Note that now the vector of structural parameters includes the parameters in the sto-

chastic process of ξ, that is, σu and ρ.

Now, conditional on x AND ξ, the variables n` are independently distributed, and n`
is a random draw from Binomial random variable with arguments (N,P`(x, ξ, θ)), where

P`(x, ξ, θ) are the equilibrium probabilities. Importantly, for different values of ξ we have
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different equilibrium probabilities. Then,

Pr (n1, n2, ..., nL | x, θ) =
∫

Pr (n1, n2, ..., nL | x, ξ, θ) dG(ξ)

=
∫ [∏L

`=1 Pr (n` | x, ξ, θ)
]
dG(ξ)

=
∏L

`=1

N !

n`(N − n`)!∫ [∏L
`=1 P`(x, ξ, θ)

n`(1− P`(x, ξ, θ))N−n`
]
dG(ξ)

And the log-likelihood function is:

`(θ) =
L∑̀
=1

ln

(
N !

(N − n`)!

)

+ ln

(∫ [∏L
`=1 P`(x, ξ, θ)

n`(1− P`(x, ξ, θ))N−n`
]
dG(ξ)

)
And the maximum likelihood estimator is defined as usual.

In their empirical study on competition between big-box discount stores in US (that is,

Kmart, Target and Walmart), Zhu and Singh (2009) extend Seim’s entry model by introduc-

ing firm heterogeneity. The model allows competition effects to be asymmetric across three

different chains. The model can incorporate a situation where, for example, the impact on

the profit of Target of a Walmart store 10 miles away is stronger than the impact of a Kmart

store located 5 miles away. The specification of the profit function of a store of chain i at

location l is:

πi` = x` βi +
∑
j 6=i

B∑
b=1

γbij nb`j + ξ` + εi`

where nb`j represents the number of stores that chain j has within the b − ring around

location `. Despite the paper studies competition between retail chains, it still makes similar

simplifying assumptions as in Seim’s model that ignores important aspects of competition

between retail chains. In particular, the model ignores economies of density, and firms’

concerns on cannibalization between stores of the same chain. It assumes that the entry

decisions of a retail chain are made independently at each location. Under these assumptions,

the equilibrium of the model can be described as a vector of N ∗ L entry probabilities, one
for each firm and location, that solves the following fixed point problem:

Pi` =
exp

{
x`βi +

∑
j 6=i
∑B

b=1 γbij N
[∑L

`′=1D
b
``′ Pj`′

]
+ ξ`

}
1 +

∑L
`′=1 exp

{
x`′βi +

∑
j 6=i
∑B

b=1 γbij N
[∑L

`′′=1D
b
`′`′′ Pj`′′

]
+ ξ`′

}
The authors find substantial heterogeneity in the competition effects between these three

big-box discount chains, and in the pattern of how these effects decline with distance. For

instance, Walmart’s supercenters have a very substantial impact even at large distance.
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Datta and Sudhir (2013) estimate an entry model of grocery stores that endogenizes both

location and product type decisions. Their main interests are the consequence of zoning

on market structure. Zoning often reduces firms’ability to avoid competition by locating

remotely each other. Theory suggests that in such a market firms have a stronger incentive

to differentiate their products. Their estimation results support this theoretical prediction.

The authors also investigate different impacts of various types of zoning (‘centralized zoning’,

‘neighborhood zoning’, and ‘outskirt zoning’) on equilibrium market structure.25

3.5.7. Multi-store firms. As we have mentioned above, economies of density and canni-

balization are potentially important factors in store location decisions of retail chains. A

realistic model of competition between retail chains should incorporate this type of spillover

effects. Taking into account these effects requires a model of competition between multi-store

firms similar to the one in section 2.1.2. The model takes into account the joint determina-

tion of a firm’s entry decisions at different locations. A firm’s entry decision is represented

by the L-dimension vector ai ≡ {ai` : ` = 1, 2, . . . , L}, with ai` ∈ {0, 1}, such that the set of
possible actions contains 2ˆL elements. For instance, Jia (2008) studies competition between

two chains (Walmart and Kmart) over 2065 locations (US counties). The number of possible

decisions of a retail chain is 2^2065, which is larger than 10^621. It is obvious that, without

further restrictions, computing firms’best responses is intractable.

Jia (2008) proposes and estimates a game of entry between Kmart and Walmart over

more than 2000 locations (counties). Her model imposes restrictions on the specification of

firms’profits that imply the supermodularity of the game and facilitate substantially the

computation of an equilibrium. Suppose that we index the two firms as i and j. The profit

function of a firm, say i, is Πi = V Pi(ai, aj)−ECi(ai), where V Pi(ai, aj) is the variable profit
function such that:

V Pi(ai, aj) =
L∑
`=1

ai`
[
x` βi + γij aj`

]
x` is a vector of market/location characteristics. γij is a parameter that represents the effect

on the profit of firm i of competition from a store of chain j. ECi(ai) is the entry cost

function such that:

ECi(ai) =

L∑
`=1

ai`

[
θECi` −

θED

2

L∑
`′=1

ai`′

d``′

]
θECi` is the entry cost that firm i would have in location l in the absence of economies of density

(that is, if it were a single-store firm); θED is a parameter that represents the magnitude

of the economies of density and is assumed to be positive; and d``′ is the distance between

locations ` and `′. Jia further assumes that the entry cost θECi` consists of three parts:

θECi` = θECi + (1− ρ) ξ` + εi`, where θ
EC
i is chain-fixed effects, ρ is a scale parameter, ξ` is a
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location random effect, and εi` is a firm-location error term. Both ξ` and εi` are i.i.d. draws

from the standard normal distribution and known to all the players when making decisions.

To capture economies of density, the presence of the stores of the same firm at other locations

is weighted by the inverse of the distance between locations, 1/d``′ . This term is multiplied

by one-half to avoid double counting in the total entry cost of the retail chain.

The specification of the profit function in equations (9.29) and (9.30) imposes some

important restrictions. Under this specification, locations are interdependent only through

economies of density. In particular, there are no cannibalization effects between stores of the

same chain at different locations. Similarly, there is no spatial competition between stores

of different chains at different locations. In particular, this specification ignores the spatial

competition effects between Kmart, Target, and Walmart that Zhu and Singh (2009) find

in their study. The specification also rules out cost savings that do not depend on store

density such as lower wholesale prices owing to strong bargaining power of chain stores. The

main motivation for these restrictions is to have a supermodular game that facilitates very

substantially the computation of an equilibrium, even when the model has a large number

of locations.

In a Nash equilibrium of this model, the entry decisions of a firm, say i, should satisfy

the following L optimality conditions:

ai` = 1

{
x` βi + γij aj` − θECi` +

θED

2

L∑
`′=1

ai`′

d``′
≥ 0

}

These conditions can be interpreted as the best response of firm i in location l given the

other firm’s entry decisions, and given also firm i’s entry decisions at locations other than

l. We can write this system of conditions in a vector form as ai = bri(ai, aj). Given aj, a

fixed point of the mapping bri(., aj) is a (full) best response of firm i to the choice aj by

firm j. With θED > 0 (that is, economies of density), it is clear from equation (9.31) that

the mapping br_i is increasing in ai. By Topkis’s theorem, this increasing property implies

that: (1) the mapping has at least one fixed point solution; (2) if it has multiple fixed points

they are ordered from the lowest to the largest; and (3) the smallest (largest) fixed point

can be obtained by successive iterations in the mapping br_i using as starting value ai = 0

(ai = 1). Given these properties, Jia shows that the following algorithm provides the Nash

equilibrium that is most profitable for firm i:

Step [i]: Given the lowest possible value for aj = 0, that is, ai = (0, 0, . . . 0), we apply

successive iterations with respect to ai in the fixed point mapping bri(., aj = 0) starting at

ai = (1, 1, . . . 1). These iterations converge to the largest best response of firm i, that we

denote by a(1)
i = BR

(High)
i (0).
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Step [j]: Given a(1)
i , we apply successive iterations with respect to aj in the fixed point

mapping brj(., a
(1)
i ) starting at aj = 0. These iterations converge to the lowest best response

of firm j, that we denote by a(1)
j = BR

(Low)
j (a

(1)
i ).

We keep iterating in (Step [i]) and (Step [j]) until convergence.

At any iteration, say k, given a(k−1)
j we first apply (Step [i]) to obtain a(k)

i = BR
(High)
i (a

(k−1)
j ),

and then we apply (Step [j) to obtain a(k)
j = BR

(Low)
j (a

(k)
i ). The supermodularity of the game

assures the convergence of this process and the resulting fixed point is the Nash equilibrium

that most favors firm i. Jia combines this solution algorithm with a simulation of unob-

servables to estimate the parameters of the model using the method of simulated moments

(MSM).

In his empirical study of convenience stores in Okinawa Island of Japan, Nishida (2015)

extends Jia’s model in two directions. First, a firm is allowed to open multiple stores (up to

four) in the same location. Second, the model explicitly incorporates some form of spatial

competition: a store’s revenue is affected not only by other stores in the same location but

also by those in adjacent locations.

Although the approach used in these two studies is elegant and useful, its use in other

applications is somewhat limited. First, supermodularity requires that the own network

effect on profits is monotonic, that is, the effect of *** is either always positive ( ED > 0)

or always negative ( ED < 0). This condition rules out situations where the net effect

of cannibalization and economies of density varies across markets. Second, the number of

(strategic) players must be equal to two. For a game to be supermodular, players’strategies

must be strategic complements. In a model of market entry, players’strategies are strategic

substitutes. However, when the number of players is equal to two, any game of strategic

substitutes can be transformed into one of strategic complements by changing the order of

strategies of one player (for example, use zero for entry and one for no entry). This trick no

longer works when we have more than two players.26

Ellickson et al. (2013, hereafter EHT) propose an alternative estimation strategy and

apply it to data of US discount store chains. Their estimation method is based on a set of

inequalities that arise from the best response condition of a Nash equilibrium. Taking its

opponents’decisions as given, a chain’s profit associated with its observed entry decision

must be larger than the profit of any alternative entry decision. Ellickson et al. (2013)

consider particular deviations that relocate one of the observed stores to another location.

Let a∗i be the observed vector of entry decisions of firm i, and suppose that in this observed

vector the firm has a store in location ` but not in location `′. Consider the alternative

(hypothetical) choice a`→`
′

i that is equal to a∗i except that the store in location ` is closed

and relocated to location `′. Revealed preference implies that πi(a∗i ) ≥ πi(a
`→`′
i ). Ellickson
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et al. (2013) further simplify this inequality by assuming that there are no economies of

scope or density (for example, θED = 0), and that there are no firm-location-specific factors

unobservable to the researcher, that is, εi` = 0. Under these two assumptions, the inequality

above can be written as the profit difference between two locations:

[x` − x`′ ]βi +
∑
j 6=i

γij
[
a∗j` − a∗j`′

]
+ [ξ` − ξ`′ ] ≥ 0

Now, consider another chain, say k, that has an observed choice a∗k with a store in location

`′ but not in location `. For this chain, we consider the opposite (hypothetical) relocation

decision that for firm i above: the store in location `′ is closed and a new store is open in

location `. For this chain, revealed preference implies that

[x`′ − x`]βk +
∑
j 6=k

γkj
[
a∗j` − a∗j`′

]
+ [ξ`′ − ξ`] ≥ 0

Summing up the inequalities for firms i and k, we generate an inequality that is free from

location fixed effects ξ.

[x`′ − x`] [βi − βk] +
∑
j 6=i

γij
[
a∗j` − a∗j`′

]
+
∑
j 6=k

γkj
[
a∗j` − a∗j`′

]
≥ 0

Ellickson et al. (2013) construct a number of inequalities of this type and obtain estimates

of the parameters of the model by using a smooth maximum score estimator (Manski 1975;

Horowitz, 1992; Fox, 2010).

Unlike the lattice theory approach of Jia and Nishida, the approach applied by EHT

can accommodate more than two players, allows the researcher to be agnostic about equi-

librium selections, and is robust to the presence of unobserved market heterogeneity. Their

model, however, rules out any explicit interdependence between stores in different locations,

including spatial competition, cannibalization and economies of density. Although incor-

porating such inter-locational interdependencies does not seem to cause any fundamental

estimation issue, doing so can be diffi cult in practice as it considerably increases the amount

of computation. Another possible downside of this approach is the restriction it imposes on

unobservables. The only type of structural errors that this model includes are the variables

ξ` that are common for all firms. Therefore, to accommodate observations that are incom-

patible with inequalities in (9.33) above, the model requires non-structural errors, which may

be interpreted as firms’optimization errors.

3.5.8. Dynamics with single-store firms. When the entry cost is partially sunk, firms’

entry decisions depend on their incumbency status, and dynamic models become more rel-

evant. The role of sunk entry costs in shaping market structure in an oligopoly industry

was first empirically studied by Bresnahan and Reiss (1993). They estimate a two-period

model using panel data of the number of dentists. Following recent developments in the
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econometrics of dynamic games of oligopoly competition,27 several studies have estimated

dynamic games of market entry-exit in different retail industries.

Aguirregabiria and Mira (2007) estimate dynamic games of market entry and exit for five

different retail industries: restaurants, bookstores, gas stations, shoe shops, and fish shops.

They use annual data from a census of Chilean firms created for tax purposes by the Chilean

Internal Revenue Service during the period 1994—99. The estimated models show significant

differences in fixed costs, entry costs, and competition effects across the five industries, and

these three parameters provide a precise description of the observed differences in market

structure and entry-exit rates between the five industries. Fixed operating costs are a very

important component of total profits of a store in the five industries, and they range between

59 percent (in restaurants) to 85 percent (in bookstores) of the variable profit of a monopolist

in a median market. Sunk entry costs are also significant in the five industries, and they range

between 31 percent (in shoe shops) and 58 percent (in gas stations) of a monopolist variable

profit in a median market. The estimates of the parameter that measures competition effect

show that restaurants are the retailers with the smallest competition effects, that might

explained by a higher degree of horizontal product differentiation in this industry.

Suzuki (2013) examines the consequence of tight land use regulation on market structure

of hotels through its impacts on entry costs and fixed costs. He estimates a dynamic game

of entry-exit of mid-scale hotels in Texas that incorporates detailed measures of land use

regulation into cost functions of hotels. The estimated model shows that imposing stringent

regulation increases costs considerably and has substantial effects on market structure and

hotel profits. Consumers also incur a substantial part of the costs of regulation in the form

of higher prices.

Dunne et al. (2013) estimate a dynamic game of entry and exit in the retail industries

of dentists and chiropractors in the US, and use the estimated model to evaluate the effects

on market structure of subsidies for entry in small geographic markets, that is, markets that

were designated by the government as Health Professional Shortage Areas (HPSA). The

authors compare the effects of this subsidy with those of a counterfactual subsidy on fixed

costs, and they find that subsidies on entry costs are cheaper, or more effective for the same

present value of the subsidy.

Yang (2014) extends the standard dynamic game of market entry-exit in a retail mar-

ket by incorporating information spillovers from incumbent firms to potential entrants.28 In

his model, a potential entrant does not know a market-specific component in the level of

profitability of a market (for example, a component of demand or operating costs). Firms

learn about this profitability only when they actually enter that market. In this context,

observing incumbents stay in this market is a positive signal for potential entrants about the
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quality of this market. Potential entrants use these signals to update their beliefs about the

profitability of the market (that is, Bayesian updating). These information spillovers from

incumbents may contribute to explain why we observe retail clusters in some geographic

markets. Yang estimates his model using data from the fast food restaurant industry in

Canada, which goes back to the initial conditions of this industry in Canada. He finds sig-

nificant evidence supporting the hypothesis that learning from incumbents induces retailers

to herd into markets where others have previously done well in, and to avoid markets where

others have previously failed in.

3.5.9. Dynamics and spatial competition between multi-store firms. A structural empir-

ical analysis of economies of density, cannibalization, or spatial entry deterrence in retail

chains requires the specification and estimation of models that incorporate dynamics, multi-

store firms, and spatial competition. Some recent papers present contributions on this re-

search topic.

Holmes (2011) studies the temporal and spatial pattern of store expansion by Walmart

during the period 1971—2005. He proposes and estimates a dynamic model of entry and store

location by a multi-store firm similar to the one that we have described in section 2.1.3 above.

The model incorporates economies of density and cannibalization between Walmart stores,

though it does not model explicitly competition from other retailers or chains (for example,

Kmart or Target), and therefore it abstracts from dynamic strategic considerations such as

spatial entry deterrence. The model also abstracts from price variation and assumes that

Walmart sets constant prices across all stores and over time. However, Holmes takes into

account three different types of stores and plants in Walmart retail network: regular stores

that sell only general merchandise; supercenters, that sell both general merchandise and

food; and distribution centers, which are the warehouses in the network, and that have also

two different types, that is, general and food distribution centers. The distinction between

these types of stores and warehouses is particularly important to explain the evolution of

Walmart retail network over time and space. In the model, every year Walmart decides

the number and the geographic location of new regular stores, supercenters, and general

and food distribution centers. Economies of density are channeled through the benefits

of stores being close to distribution centers. The structural parameters of the model are

estimated using the Moment Inequalities estimation method in Pakes et al. (forthcoming).

More specifically, moment inequalities are constructed by comparing the present value of

profits from Walmart’s actual expansion decision with the present value from counterfactual

expansion decisions which are slight deviations from the observed ones. Holmes finds that

Walmart obtains large savings in distribution costs by having a dense store network.



212 5. EMPIRICAL MODELS OF MARKET ENTRY

Igami and Yang (forthcoming) study the trade-off between cannibalization and spatial

pre-emption in the fast-food restaurant industry, for example, McDonalds, Burger King,

and so on. Consider a chain store that has already opened its first store in a local market.

Opening an additional store increases this chain’s current and future variable profits by, first,

attracting more consumers and, second, preventing its rivals’future entries (pre-emption).

However, the magnitude of this increase could be marginal when the new store steals cus-

tomers from its existing store (cannibalization). Whether opening a new store economically

makes sense or not depends on the size of the entry cost. Igami and Yang estimate a dynamic

structural model and find the quantitative importance of preemptive motives. However, they

do not model explicitly spatial competition, or allow for multiple geographic locations within

their broad definition of geographic market.

Schiraldi et al. (2013) study store location and spatial competition between UK super-

market chains. They propose and estimate a dynamic game similar to the one in Aguirre-

gabiria and Vicentini (forthcoming) that we have described in section 2.1.3. A novel and

interesting aspect of this application is that the authors incorporate the regulator’s decision

to approve or reject supermarkets’applications for opening a new store in a specific location.

The estimation of the model exploits a very rich dataset from the U.K. supermarket indus-

try on exact locations and dates of store openings/closings, applications for store opening,

approval/rejection decisions by the regulator, as well as rich data of consumer choices and

consumer locations. The estimated model is used to evaluate the welfare effects of factual

and counterfactual decision rules by the regulator.

4. Estimation

The estimation of games of entry and spatial competition in retail markets should deal

with some common issues in the econometrics of games and dynamic structural models.

Here we do not try to present a detailed discussion of this econometric literature. Instead,

we provide a brief description of the main issues, with an emphasis on aspects that are

particularly relevant for empirical applications in retail industries.31

4.1. Multiple Equilibria. Entry models with heterogeneous firms often generate more
than one equilibria for a given set of parameters. Multiple equilibria pose challenges to the

researcher for two main reasons. First, standard maximum likelihood estimation no longer

works because the likelihood of certain outcomes is not well defined without knowing the

equilibrium selection mechanism. Second, without further assumptions, some predictions or

counterfactual experiments using the estimated model are subject to an identification prob-

lem. These predictions depend on the type of equilibrium that is selected in a hypothetical

scenario not included in the data.
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Several approaches have been proposed to estimate an entry game with multiple equilib-

ria. Which method works the best depends on assumptions imposed in the model, especially

its information structure. In a game of complete information, there are at least four ap-

proaches. The simplest approach is to impose some particular equilibrium selection rule

beforehand and estimate the model parameters under this rule. For instance, Jia (2008)

estimates the model of competition between big-box chains using the equilibrium that is

most preferable to K-mart. She also estimates the same model under alternative equilibrium

selection rules to check for the robustness of some of her results. The second approach is to

construct a likelihood function for some endogenous outcomes of the game that are common

across all the equilibria. Bresnahan and Reiss (1991b) estimate their model by exploiting

the fact that, in their model, the total number of entrants is unique in all the equilibria.

A third approach is to make use of inequalities that are robust to multiple equilibria.

One example is the profit inequality approach of EHT, which we described in section 2.2.5.

Another example is the method of moment inequality estimators proposed by Ciliberto and

Tamer (2009). They characterize the lower and upper bounds of the probability of a certain

outcome that are robust to any equilibrium selection rule. Estimation of structural parame-

ters relies on the set of probability inequalities constructed from these bounds. In the first

step, the researcher nonparametrically estimates the probabilities of equilibrium outcomes

conditional on observables. The second step is to find a set of structural parameters such

that the resulting probability inequalities are most consistent with the data. The application

of Ciliberto and Tamer’s approach to a spatial entry model may not be straightforward. In

models of this class, the number of possible outcomes (that is, market structures) is often

very large. For example, consider a local market consisting of ten sub-blocks. When two

chains decide whether they enter into each of these sub-blocks, the total number of possible

market structures is 1024 (=2^10). Such a large number of possible outcomes makes it diffi -

cult to implement this approach for two reasons. The first stage estimate is likely to be very

imprecise even when a sample size is reasonably large. The second stage estimation can be

computationally intensive because one needs to check, for a given set of parameters, whether

each possible outcome meets the equilibrium conditions or not.

A fourth approach proposed by Bajari et al. (2010b) consists in the specification of a

flexible equilibrium selection mechanism and in the joint estimation of the parameters in this

mechanism and the structural parameters in firms’profit functions. Together with standard

exclusion restrictions for the identification of games, the key specification and identification

assumption in this paper is that the equilibrium selection function depends only on firms’

profits.
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In empirical games of incomplete information, the standard way to deal with multiple

equilibria is to use a two-step estimation method (Aguirregabiria and Mira 2007; Bajari

et al. 2010a).32 In the first step, the researcher estimates the probabilities of firms’entry

conditional on market observables (called policy functions) in a nonparametric way, for

example, a sieves estimator. The second step is to find a set of structural parameters that

are most consistent with the observed data and these estimated policy functions. A key

assumption for the consistency of this approach is that, in the data, two markets with

the same observable characteristics do not select different types of equilibria, that is, same

equilibria conditional on observables. Without this assumption, the recovered policy function

in the first stage would be a weighted sum of firms’policies under different equilibria, making

the second-stage estimates inconsistent. Several authors have recently proposed extensions

of this method to allow for multiplicity of equilibria in the data for markets with the same

observable characteristics.

4.1.1. Identification and multiple equilibria. Tamer (2003) showed that all the parame-

ters of the previous entry model with N = 2 is (point) identified under standard exclusion

restrictions, and that multiple equilibria do not play any role in this identification result.

Tamer’s result can be extended to any number N of players, as long as we have the appro-

priate exclusion restrictions.

More generally, equilibrium uniqueness is neither a necessary nor a suffi cient condition

for the identification of a model (Jovanovic, 1989). To see this, consider a model with vector

of structural parameters θ ∈ Θ, and define the mapping C(θ) from the set of parameters Θ

to the set of measurable predictions of the model. For instance, C(θ) may contain the proba-

bility distribution of players actions conditional on exogenous variables Pr(a1, a2, ..., aN |x, θ).
Multiple equilibria implies that the mapping Cis a correspondence. A model is not point-

identified if at the observed data (say P 0 = Pr(a1, a2, ..., aN |x, θ) for any vector of actions
and x′s) the inverse mapping C−1 is a correspondence. In general, C being a function (that

is, equilibrium uniqueness) is neither a necessary nor a suffi cient condition for C−1 being a

function (that is, for point identification).

*************************************

FIGURE ON MULTIPLE EQUILIBRIA AND IDENTIFICATION

Mapping and inverse mapping. four cases.

(Cooper, 2002)

*************************************
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To illustrate the identification of a game with multiple equilibria, we start with a simple

binary choice game with identical players and where the equilibrium probability P is im-

plicitly defined as the solution of the condition P = Φ (−1.8 + θ P ), where θ is a structural

parameter, and Φ (.) is the CDF of the standard normal. Suppose that the true value θ0

is 3.5. It is possible to verify that the set of equilibria associated with θ0 is C(θ0) = {
P (A)(θ0) = 0.054, P (B)(θ0) = 0.551, and P (C)(θ0) = 0.924}. The game has been played M
times and we observe players’actions for each realization of the game {aim : i,m}. Let P0

be the population probability Pr(aim = 1). Without further assumptions the probability

P0 can be estimated consistently from the data. For instance, a simple frequency estimator

P̂0 = (NM)−1
∑

i,m aim is a consistent estimator of P0. Without further assumption, we do

not know the relationship between population probability P0 and the equilibrium probabili-

ties in C(θ0). If all the sample observations come from the same equilibrium, then P0 should

be one of the points in C(θ0). However, if the observations come from different equilibria in

C(θ0), then P0 is a mixture of the elements in C(θ0). To obtain identification, we can assume

that every observation in the sample comes from the same equilibrium. Under this condition,

since P0 is an equilibrium associated with θ0, we know that P0 = Φ (−1.8 + θ0 P0). Given

that Φis an invertible function, we have that θ0 = (Φ−1 (P0) + 1.8)/P0. Provided that P0 is

not zero, it is clear that θ0 is point identified regardless the existence of multiple equilibria

in the model.

4.2. UnobservedMarket Heterogeneity. Somemarket characteristics affecting firms’
profits may not be observable to the researcher. For example, consider local attractions that

spur the demand for hotels in a particular geographic location. Observing and controlling

for all the relevant attractions are often impossible to the researcher. This demand effect

implies that markets with such attractions should have more hotels than those without such

attractions but with equivalent observable characteristics. Therefore, without accounting

for this type of unobservables, researchers may wrongly conclude that competition boosts

profits, or underestimate the negative effect of competition on profits.

Unobserved market heterogeneity usually appears as an additive term (ω`) in the firm’s

profit function (πi`) where ω` is a random effect from a distribution known up to some

parameters.34 The most common assumption (for example, Seim 2006; Zhu and Singh 2009;

Datta and Sudhir 2013) is that these unobservables are common across locations in the same

local market (that is, ω` = ω for all `). Under this assumption the magnitude of unobserved

market heterogeneity matters whether the firm enters some location in this market but not

which location. Orhun (2013) relaxes this assumption by allowing unobserved heterogeneity

to vary across locations in the same market.
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In a game of complete information, accommodating unobserved market heterogeneity

does not require a fundamental change in the estimation process. In a game of incomplete

information, however, unobserved market heterogeneity introduces an additional challenge.

Consistency of the two-step method requires that the initial nonparametric estimator of

firms’ entry probabilities in the first step should account for the presence of unobserved

market heterogeneity. A possible solution is to use a finite mixture model. In this model,

every market’s ω` is drawn from a distribution with finite support. Aguirregabiria and

Mira (2007) show how to accommodate such market-specific unobservables into their nested

pseudo likelihood (NPL) algorithm. Arcidiacono and Miller (2011) propose an expectation-

maximization (EM) algorithm in a more general environment. An alternative way to deal

with this problem is to use panel data with a reasonably long time horizon. In that way,

we can incorporate market fixed effects as parameters to be estimated. This approach is

popular when estimating a dynamic game (for example, Ryan 2012; Suzuki 2013).35 A

necessary condition to implement this approach is that every market at least observes some

entries during the sample period.36 Dropping markets with no entries from the sample may

generate a selection bias.

4.3. Computation. The number of geographic locations, L, introduces two dimension-
ality problems in the computation of firms’best responses in games of entry with spatial

competition. First, in a static game, a multi-store firm’s set of possible actions includes all

the possible spatial configurations of its store network. The number of alternatives in this

set is equal to 2^L, and this number is extremely large even with modest values of L, such as

a few hundred geographic locations. Without further assumptions, the computation of best

responses becomes impractical. This is an important computational issue that has deterred

some authors to account for multi-store retailers in their spatial competition models, for

example, Seim (2006), or Zhu and Singh (2009), among many others. As we have described

in section 2.2.5, two approaches that have been applied to deal with this issue are (1) to

impose restrictions that guarantee supermodularity of the game (that is, only two players,

no cannibalization effects), and (2) to avoid the exact computation of best responses and use

instead inequality restrictions implied by these best responses.

Looking at the firms’decision problem as a sequential or dynamic problem helps also

to deal with the dimensionality in the space of possible choices. In a given period of time

(for example, year, quarter, or month), we typically observe that a retail chain makes small

changes in its network of stores, that is, it opens a few new stores, or closes a few existing

stores. Imposing these small changes as a restriction on the model implies a very dramatic

reduction in the dimension of the action space such that the computation of best responses

becomes practical, at least in a ‘myopic’version of the sequential decision problem.
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However, to fully take into account the sequential or dynamic nature of a firm’s decision

problem, we also need to acknowledge that firms are forward looking. In the firm’s dynamic

programming problem, the set of possible states is equal to all the possible spatial configu-

rations of a store network, and it has 2^L elements. Therefore, by going from a static model

to a dynamic forward-looking model, we have just ‘moved’the dimensionality problem from

the action space into the state space. Recent papers propose different approaches to deal

with this dimensionality problem in the state space. Arcidiacono et al. (2013) present a

continuous-time dynamic game of spatial competition in a retail industry and propose an

estimation method of this model. The continuous-time assumption eliminates the curse of

dimensionality associated to integration over the state space. Aguirregabiria and Vicen-

tini (forthcoming) propose a method of spatial interpolation that exploits the information

provided by the (indirect) variable profit function.

5. Further topics

Spillovers between different retail sectors. Existing applications of games of entry and spa-

tial competition in retail markets concentrate on a single retail industry. However, there are

also interesting spillover effects between different retail industries. Some of these spillovers

are positive, for example, good restaurants can make a certain neighborhood more attractive

for shopping. There are also negative spillovers effects through land prices, that is, retail sec-

tors with high value per unit of space (for example, jewelry stores) are willing to pay higher

land prices than supermarkets that have low markups and are intensive in the use of land.

The consideration and measurement of these spillover effects are interesting in themselves,

and they can help to explain the turnover and reallocation of industries in different parts

of a city. Relatedly, endogenizing land prices would also open the possibility of using these

models for the evaluation of specific public policies at the city level.

Richer datasets with store level information on prices, quantities, inventories. The iden-

tification and estimation of competition effects based mainly on data of store locations have

been the rule more than the exception in this literature. This approach typically requires

strong restrictions in the specification of demand and variable costs. The increasing avail-

ability of datasets with rich information on prices and quantities at product and store level

should create a new generation of empirical games of entry and spatial competition that

relax these restrictions. Also, data on store characteristics such as product assortments or

inventories will enable the introduction of these important decisions as endogenous variables

in empirical models of competition between retail stores.

Measuring spatial pre-emption. So far, all the empirical approaches to measure the effects

of spatial pre-emption are based on the comparison of firms’actual entry with firms’behavior
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in a counterfactual scenario characterized by a change in either (1) a structural parameter

(for example, a store exit value), or (2) firms’ beliefs (for example, a firm believes that

other firms’entry decisions do not respond to this firm’s entry behavior). These approaches

suffer the serious limitation that they do not capture only the effect of pre-emption and are

contaminated by other effects. The development of new approaches to measure the pure

effect of pre-emption would be a methodological contribution with relevant implications in

this literature.

Geography. Every local market is different in its shape and its road network. These

differences may have important impacts on the resulting market structure. For example, the

center of a local market may be a quite attractive location for retailers when all highways

go through there. However, it may not be the case anymore when highways encircle the

city center (for example, Beltway in Washington DC). These differences may affect retailers’

location choices and the degree of competition in an equilibrium. The development of em-

pirical models of competition in retail markets that incorporate, in a systematic way, these

idiosyncratic geographic features will be an important contribution in this literature.
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CHAPTER 6

Dynamic Structural Models of Industrial Organization

1. Introduction

Dynamics in demand and/or supply can be important aspects of competition in oligopoly

markets. In many markets demand is dynamic in the sense that (a) consumers current deci-

sions affect their future utility, and (b) consumers’current decisions depend on expectations

about the evolution of future prices (states). Some sources of dynamics in demand are

consumer switching costs, habit formation, brand loyalty, learning, and storable or durable

products. On the supply side, most firm investment decisions have implications on future

profits. Some examples are market entry, investment in capacity, inventories, or equipment,

or choice of product characteristics. Firms’production decisions have also dynamic implica-

tions if there is learning by doing. Similarly, the existence of menu costs, or other forms of

price adjustment costs, imply that pricing decisions have dynamic effects.

Identifying the factors governing the dynamics is important to understanding competition

and the evolution of market structure, and for the evaluation of public policy. To identify

and understand these factors, we specify and estimate dynamic structural models of demand

and supply in oligopoly industries. A dynamic structural model is a model of individual

behavior where agents are forward looking and maximize expected intertemporal payoffs.

The parameters are structural in the sense that they describe preferences and technological

and institutional constraints. Under the principle of revealed preference, these parameters

are estimated using longitudinal micro data on individuals’choices and outcomes over time.

I start with some examples and a brief discussion of applications of dynamic struc-

tural models of Industrial Organization. These examples illustrate why taking into account

forward-looking behavior and dynamics in demand and supply is important for the empirical

analysis of competition in oligopoly industries.

1.1. Example 1: Demand of storable goods. For a storable product, purchases
in a given period (week, month) are not equal to consumption. When the price is low,

consumers have incentives to buy a large amount to store the product and consume it in

the future. When the price is high, or the household has a large inventory of the product,

consumers do not buy an consume from her inventory. Dynamics arise because consumers’

past purchases and consumption decisions impact their current inventory and therefore the
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benefits of purchasing today. Furthermore, consumers expectations about future prices also

impact the perceived trade-offs of buying today versus in the future.

What are the implications of ignoring consumer dynamic behavior when we estimate the

demand of differentiated storable products? An important implication is that we can get

serious biases in the estimates of price demand elasticities. In particular, we can interpret a

short-run intertemporal substitution as a long-run substitution between brands (or stores).

To illustrate this issue, it is useful to consider an specific example. The following figure

presents weekly times series data of prices and sales of canned tuna in a supermarket store.

The time series of prices is characterized by "High-Low" pricing, what is quite common in

many supermarkets. The price fluctuates between a high regular price and a low promotion

price. The promotion price is infrequent and last only few days, after which the price returns

to its "regular" level. Sales of this storable product respond to this type of dynamics in prices.

As we can see in figure 6.1, most sales are concentrated at the very few days with low prices.

Apparently, the short-run response of sales to these temporary price reductions is very large:

the typical discount of a sales promotion is between 10% and 20%, and the increase in sales

are around 300%.

Figure 6.1: Price promotions and sales of a storable good

In a static demand model, this type of respond would suggest that the price elasticity of

demand of the product is very large. In particular, with these data the estimation of a static

demand model provides estimates of own-price elasticities greater than 8. The static model

interprets the large response of sales to a price reduction in terms of consumers substitution

between brands (and to some extend between supermarkets too). Based on this estimates

of demand elasticities, our model of competition would imply that price-cost margins are

very small and firms (both supermarkets and brand manufacturers) have very little market

power. A large degree of substitution between brands implies that product differentiation is

small and market power is low.

This interpretation that ignores dynamics in consumer purchasing decision can be se-

riously wrong. Most of the short-run response of sales to a temporary price reduction is

not substitution between brands or stores but intertemporal substitution in households’pur-

chases. The temporary price reduction induces consumers to buy for storage today and

to buy less in the future. The long-run substitution effect is much smaller, and it is this

long-run effect what is relevant to measure firms’market power.

In order to distinguish between short-run and long-run responses to price changes, we

have to specify and estimate a dynamic model of demand of differentiated products. In this
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type of models consumers are forward looking and take into account their expectations about

future prices as well as storage costs.

1.2. Example 2: Demand of a new durable product. Melnikov (2000), Esteban
and Shum (RAND, 2007), Carranza (2006), Gowrisankaran and Rysman (2009).

The price of new durable products typically declines over time during the months after

the introduction of the product. Figure 6.2 illustrates this point for the case of *****. Dif-

ferent factors may explain this price decline, for instance, intertemporal price discrimination,

increasing competition, exogenous cost decline, or endogenous cost decline due to learning

by doing. As in the case of the "high-low" pricing of storable goods, explaining this pricing

dynamics also requires one to take into account dynamics in supply. For the moment, we

concentrate here in the demand. If consumers are forward looking, they expect the price

will be lower in the future and this generates an incentive to wait and buying the good in

the future.

Figure 6.2: Price decline of new durable products

A static model that ignores dynamics in demand of durable goods can introduce two

different type of biases in the estimates of the distribution consumers willingness to pay

and therefore of demand. The first source of bias comes from the failure to recognize that

each period the potential market size is changing. Each period the demand curve is changing

because some high willingness-to-pay consumers have already bought the product and left the

market. A second source of bias comes from ignoring consumer forward-looking behavior. In

the static model, consumers willingness-to-pay can is contaminated by consumers’willingness

to wait because the expectation of future lower prices.

To illustrate the first source of bias, consider a market with an initial mass of 100 con-

sumers and a uniform distribution of willingness to pay over the the unit interval. To

concentrate on the first source of bias, consider that consumers are myopic and buy the

product if the price is below their willingness to pay. Once consumers buy the product they

are out of the market forever. Time is discrete and indexed by t ∈ {1, 2, ...}. Every period
t, the aggregate demand is Qt = Ht Pr(vt ≥ Pt) = Ht [1− Ft (Pt)], where Qt and Pt are

quantity and price, respectively, Ht is the mass of consumers who remain in market at period

t, and Ft is the distribution function of willingness to pay for consumers who remain in the

market at period t. Suppose that we observe a sequence of prices equal to P1 = 0.9, P2 = 0.8,

P3 = 0.7, etc. Given this price sequence, it is easy to show that the demand curve at period

t = 1 is Q1 = 100(1 − P1), at period t = 2 the demand is Q2 = 90(0.9−P2
0.9

) = 100(0.9 − P2),

at period t = 3 it is Q3 = 80(0.8−P3
0.8

) = 100(0.8− P3), and so on. Therefore, the sequence of
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quantities is constant over time: Q1 = Q2 = Q3 = ... = 10. A static demand model lead the

researcher to conclude that consumers are not sensitive to price, since the same quantity is

sold as prices decline. The estimate of the price elasticity would be zero. This example but

it illustrates how ignoring dynamics in demand of durable goods can lead to serious biases

in the estimates of the price sensitivity of demand.

1.3. Example 3: Product repositioning in differentiated product markets. A
common assumption in many static (and dynamic) demand models of differentiated prod-

ucts is that product characteristics, other than prices, are exogenous. However, in many

industries, product characteristics are very important strategic variables.

Ignoring the endogeneity of product characteristics has several implications. First, it

can biases in the estimated demand parameters. A dynamic game that acknowledges the

endogeneity of some product characteristics and exploits the dynamic structure of the model

to generate valid moment conditions can deal with this problem.

A second important limitation of a static model of firm behavior is that it cannot recover

the costs of repositioning product characteristics. As a result, the static model cannot address

important empirical questions such as the effect of a merger on product repositioning. That

is, the evaluation of the effects of a merger using a static model should assume that the

product characteristics (other than prices) of the new merging firm would remain the same

as before the merger. This is at odds both with the predictions of theoretical models and with

informal empirical evidence. Theoretical models of horizontal mergers show that product

repositioning is a potentially very important source of value for a merging firm, and informal

empirical evidence shows that soon after a merger firms implement significant changes in

their product portfolio.

Sweeting (2007) and Aguirregabiria and Ho (2009) are two examples of empirical appli-

cations that endogenize product attributes using a dynamic game of competition in a dif-

ferentiated products industry. Sweeting estimates a dynamic game of oligopoly competition

in the US commercial radio industry. The model endogenizes the choice of radio stations

format (genre), and estimates product repositioning costs. Aguirregabiria and Ho (2009)

propose and estimate a dynamic game of airline network competition where the number of

direct connections that an airline has in an airport is an endogenous product characteristic.

1.4. Example 4: Dynamics of market structure. Ryan (2006) and Kasahara (JBES,
2010) provide excellent examples of how ignoring supply-side dynamics and firms’forward

looking behavior can lead to misleading results.

Ryan (2006) studies the effects of the 1990 Amendments to the Clean Air Act on the US

cement industry. This environmental regulation added new categories of regulated emissions,
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and introduced the requirement of an environmental certification that cement plants have to

pass before starting their operation. Ryan estimates a dynamic game of competition where

the sources of dynamics are sunk entry costs and adjustment costs associated with changes

in installed capacity. The estimated model shows that the new regulation had negligible

effects on variable production costs but it increased significantly the sunk cost of opening a

new cement plant. A static analysis, that ignores the effects of the policy on firms’entry-

exit decisions, would conclude that the regulation had negligible effects on firms profits and

consumer welfare. In contrast, the dynamic analysis shows that the increase in sunk-entry

costs caused a reduction in the number of plants that in turn implied higher markups and a

decline in consumer welfare.

Kasahara (2010) proposes and estimates a dynamic model of firm investment in equip-

ment and it uses the model to evaluate the effect of an important increase in import tariffs

in Chile during the 1980s. The increase in tariffs had a substantial effect of the price of

imported equipment and it may have a significant effect on firms’investment. An important

feature of this policy is that the government announced that it was a temporary increase and

that tariffs would go back to their original levels after few years. Kasahara shows that the

temporary aspect of this policy exacerbated its negative effects on firm investment. Given

that firms anticipated the future decline in import tariffs and the price of capital, a signif-

icant fraction of firms decided not invest and waiting until the reduction of tariffs. This

waiting and inaction would not appear if the policy change were perceived as permanent.

Kasahara shows that the Chilean economy would have recovered faster from the economic

crisis of 1982-83 if the increase in tariffs would have been perceived as permanent.

1.5. Example 5: Dynamics of prices in a retail market. The significant cross-
sectional dispersion of prices is a well-known stylized fact in retail markets. Retailing firms

selling the same product, and operating in the same (narrowly defined) geographic mar-

ket and at the same period of time, do charge prices that differ by significant amounts,

for instance, 10% price differentials or even larger. This empirical evidence has been well

established for gas stations and supermarkets, among other retail industries. Interestingly,

the price differentials between firms, and the ranking of firms in terms prices, have very low

persistence over time. A gas station that charges a price 5% below the average in a given

week may be charging a price 5% above the average the next week. Using a more graphical

description we can say that a firm’s price follows a cyclical pattern, and the price cycles of

the different firms in the market are not synchronized. Understanding price dispersion and

the dynamics of price dispersion is very important to understand not only competition and

market power but also for the construction of price indexes.
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Different explanations have been suggested to explain this empirical evidence. Some

explanations have to do with dynamic pricing behavior or "state dependence" in prices.

For instance, an explanation is based on the relationship between firm inventory and

optimal price. In many retail industries with storable products, we observe that firms’

orders to suppliers are infrequent. For instance, for products such as laundry detergent,

a supermarket ordering frequency can be lower than one order per month. A simple and

plausible explanation of this infrequency is that there are fixed or lump-sum costs of making

an order that do not depend on the size of the order, or at least they do not increase

proportionally with the size of the order. Then, inventories follow a so called (S,s) cycle: the

increase by a large amount up to a maximum when a place is order and then they decline

slowly up a minimum value where a new order is placed. Given this dynamics of inventories,

it is simple to show that optimal price of the firm should also follow a cycle. The price drops

to a minimum when a new order is placed and then increases over time up to a maximum

just before the next order when the price drops again. Aguirregabiria (REStud, 1999) shows

this joint pattern of prices and inventories for many products in a supermarket chain. I show

that this type of inventory-depedence price dynamics can explain more than 20% of the time

series variability of prices in the data.



CHAPTER 7

Single-Agent Models of Firm Investment

0.6. Firm Investment at the Extensive Margin. Some important firm investment

decisions are discrete or at the extensive margin, for instance, market entry and exit, machine

replacement, or adoption of a new technology. Starting with the seminal work by Pakes

(1986) on patent renewal and Rust (1987) on machine replacement, models and methods

for dynamic discrete choice structural models have been applied to study these investment

decisions.1

Let ait ∈ A = {0, 1, ..., J} be the discrete variable that represents the investment decision
of firm i at period t. The profit function is:

Πit = pit Y (ait, kit, ωit; θy)− C (ait, rit; θc) + εit(ait) (0.1)

pit represents output price. The term yit = Y (ait, kit, ωit; θy) is a production function that

depends on investment, ait, predetermined installed capital, kit, productivity, ωit, and the

structural parameters θy. The term C (ait, rit; θc) captures the cost of investment, where

rit is the price of the new capital and θc is a vector of structural parameters. The vector

of variables εit = {εit(a) : a ∈ A} represents a component of the investment cost that is
unobservable to the researcher. These unobservables have mean zero and typically they are

assumed i.i.d. across plants and over time. The capital stock kit depreciates exogenously

and increases when new investments are made according to the standard transition rule,

kit+1 = (1−λ) (kit +ait). The state variables ωit and rit follow exogenous first order Markov

processes.

Every period t, the manager observes the state variables xit ≡ (kit,pit, rit), ωit, and εit and

decides its investment in order to maximize expected and discounted profits Et
(∑∞

j=0 δ
j Πi,t+j

)
,

where δ ∈ (0, 1) is the discount factor. The optimal decision rule for investment is:

ait = arg max
a∈A
{ v(a, xit, ωit) + εit(a) } , (0.2)

where v(a, xit, ωit) is the conditional choice value function, that is the unique solution to

a Bellman equation. Given the distribution of the unobservables {ωit,εit}, the observ-
able exogenous state variables, and the vector of structural parameters θ = (θy, θc,δ), this

model implies a probability for the observed path of output and investment of a firm,

1In this section, we review applications that abstract from dynamic oligopoly competition or assume
explicitly that firms operate in either competitive or monopolistic markets.

227
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{yit, ait : t = 1, 2, ..., T}. A standard approach to estimate the parameters of this model

is by (Conditional) Maximum Likelihood. Rust (1987) proposed the Nested Fixed Point

algorithm (NFXP) for the computation of this estimator. Hotz and Miller (1993) propose a

two-step Conditional Choice Probabilities (CCP) estimator that avoids computing a solution

of the dynamic programming problem. Aguirregabiria and Mira (2002) propose the Nested

Pseudo Likelihood algorithm (NPL) that is a recursive extension of the CCP method that

returns the maximum likelihood estimates at a substantially lower computing time than

NFXP.

Das (1992) studies the decision to operate, hold idle, or retire a kiln by plants in the U.S.

cement industry. Kennet (1994) analyzes airlines’replacement decisions of aircraft engines

and identifies significant changes in the decision rule after the deregulation of the US airline

industry in 1978. Roberts and Tybout (1997) investigate why the decision to export by

Colombian manufacturing plants is very persistent over time. The authors disentangle the

effects of sunk costs, prior exporting experience, and serially correlated unobserved hetero-

geneity. Kasahara (2009) studies the effect of import tariffs on capital investment decisions

by Chilean manufacturing plants. He shows that the temporary feature of a tariff increase in

the mid-1980s exacerbated firms’zero-investment response. Rota (2004) and Aguirregabiria

and Alonso-Borrego (2014) estimate dynamic discrete choice models of labor demand and

use them to measure the magnitude of labor adjustment costs for permanent works in Italy

and Spain, respectively, and the effects of labor market reforms.

Holmes (2011) studies the geographic expansion by Wal-Mart stores during the period

1971-2005. He estimates a dynamic model of entry and store location by a multi-store firm

that incorporates economies of density and cannibalization between Wal-Mart stores, though

it abstracts from competition of other retail chains and therefore from preemptive motives.

In the model, every year Wal-Mart decides the number and the geographic location of new

regular stores, supercenters, and general and food distribution centers. Holmes finds that

Wal-Mart obtains large savings in distribution costs by having a dense store network.

1. Model and Assumptions

To present some common features of dynamic structural models, we start with a simple

model of firm investment that we can represent as a machine replacement model.

Suppose that we have panel data of N plants operating in the same industry with infor-

mation on output, investment, and capital stock over T periods of time.

Data = { Yit, Iit, Kit : i = 1, 2, ..., N and t = 1, 2, ..., T }

Suppose that the investment data is characterized by infrequent and lumpy investments.

That is, Iit contains a large proportion of zeroes (no investment), and when investment is
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positive the investment-to-capital ratio Iit/Kit is quite large. For instance, for some industries

and samples we can find that the proportion of zeroes is above 60% (even with annual data!)

and the average investment-to-capital ratio conditional on positive investment is above 50%.

A possible explanation for this type of dynamics in firms’investment is that there are

significant indivisibilities in the purchases of new capital, or/and fixed or lump-sum costs

associated with purchasing and installing new capital. Machine replacement models are

models of investment that emphasize the existence of these indivisibilities and lump-sum

costs of investment.

This type of investment models have been applied before in papers by Rust (Ectca, 1987),

Das (REStud, 1991), Kennet (RAND, 1994), Rust and Rothwell (JAE, 1995), Cooper, Halti-

wanger and Power (AER, 1999), Cooper and Haltiwanger (REStud 2006), and Kasahara

(JBES, 2010), among others. In Rust (1987) the firm is a bus company (in Madison, Wis-

consin), a plant is a bus, and a machine is a bus engine. Das (1991) considers cement firms

and a plant is a cement kiln. In Kennet (1994) studies airline companies and the machine is

an aircraft engine. Rust and Rothwell (1995) consider nuclear power plants. Cooper, Halti-

wanger and Power (1999), Cooper and Haltiwanger (2006), and Kasahara (2010) consider

manufacturing firms and investment in equipment in general.

We index plants by i and time by t. A plant’s profit function is:

Πit = Yit − Ct Iit −RCit

Yit is the revenue of market value of the output produced by plant i at period t. Iit is

the amount of investment at period t. Ct is the price of new capital. And RCit represents

investment costs other than the cost of purchasing the new capital, that is, costs of replacing

the old equipment (machine) by the new equipment.

Let Kit be the capital stock of plant i at the beginning of period t. As usual, capital

depreciates exogenously and it increases when new investments are made. This transition

rule of the capital stock is:

Kit+1 = (1− δ) (Kit + Iit)

Following the key feature in models of machine replacement, we assume that there is an

indivisibility in the investment decision. In the standard machine replacement model, the

firm decides between zero investment (Iit = 0) or the replacement of the old capital by a

"new machine" that implies a fixed amount of capital K∗. Therefore,

Iit ∈ {0 , K∗ −Kit }
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Therefore,

Kit+1 =

 (1− δ) Kit if Iit = 0

(1− δ) K∗ if Iit > 0

or

Kit+1 = (1− δ) [(1− ait) Kit + ait K
∗]

where ait is the indicator of positive investment, that is, ait ≡ 1{Iit > 0}.
This implies that the possible values of the capital stock are (1− δ)K∗, (1− δ)2K∗, etc.

Let Tit be the number of periods since the last machine replacement, that is, time duration

since the last time that investment was positive. There is a one-to-one relationship between

capital Kit and the time duration Tit:

Kit = (1− δ)Tit K∗

or in logarithms, kit = k∗ − d Tit, where k∗ ≡ logK∗ and d ≡ − log(1− δ) > 0.

These assumptions on the values of investment and capital seem natural in applications

where the investment decision is actually a machine replacement decision, as in the papers

by Rust (1987), Das (1991), Kennet (1994), or Rust and Rothwell (1995), among others.

However, this framework may be restrictive when we look at less specific investment decisions,

such as investment in equipment as in the papers by Cooper, Haltiwanger and Power (1999),

Cooper and Haltiwanger (2006), and Kasahara (2010). In these other papers, investment

in the data is very lumpy, which is a prediction of a model of machine replacement, but

firms in the sample have very different sizes (average over long periods of time) and their

capital stocks in those periods with positive investment are very different. These papers

consider that investment is either zero or a constant proportion of the installed capital, that

is, Iit ∈ {0 , q Kit} where q is a constant, for instance, q = 25%. Here I maintained the most

standard assumption of machine replacement models.

The production function (actually, revenue function) is:

Yit = exp
{
α0 + ηYi

}
[(1− ait) Kit + ait K

∗]α1

where α0 and α1 are parameters, and ηYi captures productivity differences between firms

that are time-invariant. The specification of the replacement cost function is:

RCit = ait ( r(Kit) + ηCi + εit )

r(K) is a function that is increasing in K, and ηCi and εit are zero mean random variables

that captures firm heterogeneity in replacement costs. Therefore, the profit function is:

Πit =

 exp
{
α0 + ηYi

}
Kα1
it if ait = 0

exp
{
α0 + ηYi

}
K∗α1 − Ct I∗ − r(Kit)− ηCi − εit if ait = 1
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Every period t, the firm observes the state variables Kit, Ct, and εit and then it decides

its investment in order to maximize its expected value:

Et
(∑∞

j=0
βj Πi,t+j

)
where β ∈ (0, 1) is the discount factor. The main trade-off in this machine replacement

decision is simple. On the one hand, the productivity/effi ciency of a machine declines over

time and therefore the firm prefers younger machines. However, using younger machines

requires frequent replacement and replacing a machine is costly.

The firm has uncertainty about future realizations of Ct and εit. To complete the model

we have to specify the stochastic processes of these variables. We assume that Ct follows a

Markov process with transition probability fC(Ct+1|Ct). For the shock in replacement costs
εit we consider that it is i.i.d. with a logistic distribution with dispersion parameter σε. The

individual effects (ηYi , η
C
i ) have a finite mixture distribution, that is, (ηYi , η

C
i ) is a pair of

random variables from a distribution with discrete and finite support Fη.

Let Sit = (Kit, Ct, εit) be the vector of state variables in the decision problem of a plant

and let Vi(Sit) be the value function. This value function is the solution to the Bellman
equation:

Vi(Sit) = max
ait∈{0,1}

{
Πi(ait, Sit) + β

∫
Vi(Sit+1) fS(Sit+1|ait, Sit) dSit+1

}
where fS(Sit+1|ait, Sit) is the (conditional choice) transition probability of the state variables:

fS(Sit+1|ait, Sit) = 1 {Kit+1 = (1− δ) [(1− ait) Kit + ait K
∗]} fC(Ct+1|Ct) fε(εit)

where 1{.} is the indicator function, and fε is the density function of εit.
We can also represent the Bellman equation as:

Vi(Sit) = max { vi(0;Kit, Ct) ; vi(1;Kit, Ct)− εit }

where vi(0;Kit, Ct) and vi(1;Kit, Ct) are the choice-specific value functions:

vi(0;Kit, Ct) ≡ exp
{
α0 + ηYi

}
Kα1
it + β

∫
Vi((1− δ)Kit, Ct+1, εit+1) fC(Ct+1|Ct) dfε(εit)

vi(1;Kit, Ct) ≡
exp

{
α0 + ηYi

}
Kα1
it − Ct I∗ − r(Kit)− ηCi

+β

∫
Vi((1− δ)K∗, Ct+1, εit+1) fC(Ct+1|Ct) dfε(εit)

2. Solving the dynamic programming (DP) problem

For given values of structural parameters and functions, {α0, α1, r, fC , σε}, and of the
individual effects ηYi and η

C
i , we can solve the DP problem of firm i by simply using successive

approximations to the value function, that is, iterations in the Bellman equation.
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In models where some of the state variables are not serially correlated, it is computation-

ally very convenient (and also convenient for the estimation of the model) to define versions

of the value function and the Bellman equation that are integrated over the non-serially

correlated variables. In our model, ε is not serially correlated state variables. The integrated

value function of firm i is:

V̄i(Kit, Ct) ≡
∫
Vi(Kit, Ct, εit) dfε(εit)

And the integrated Bellman equation is:

V̄i(Kit, Ct) =

∫
max { vi(0;Kit, Ct) ; vi(1;Kit, Ct)− εit } dfε(εit)

The main advantage of using the integrated value function is that it has a lower dimen-

sionality than the original value function.

Given the extreme value distribution of εit, the integrated Bellman equation is:

V̄i(Kit, Ct) = σε ln

[
exp

{
vi(0;Kit, Ct)

σε

}
+ exp

{
vi(1;Kit, Ct)

σε

}]
where

vi(0;Kit, Ct) ≡ exp
{
α0 + ηYi

}
Kα1
it + β

∫
V̄i((1− δ)Kit, Ct+1) fC(Ct+1|Ct)

vi(1;Kit, Ct) ≡ exp
{
α0 + ηYi

}
Kα1
it − Ct I∗ − r(Kit)− ηCi + β

∫
V̄i((1− δ)K∗, Ct+1) fC(Ct+1|Ct)

The optimal decision rule of this dynamic programming (DP) problem is:

ait = 1 { εit ≤ vi(1;Kit, Ct)− vi(0;Kit, Ct) }

Suppose that the price of new capital, Ct, has a discrete a finite range of variation: Ct ∈ {c1,

c2, ..., cL}. Then, the value function V̄i can be represented as aM×1 vector in the Euclidean

space, where M = T ∗ L and the T is the number of possible values for the capital stock.
Let Vi be that vector. The integrated Bellman equation in matrix form is:

Vi = σε ln

(
exp

{
Πi(0) + β F(0) Vi

σε

}
+ exp

{
Πi(1) + β F(1) Vi

σε

})
where Πi(0) and Πi(1) are the M × 1 vectors of one-period profits when ait = 0 and ait = 1,

respectively. F(0) and F(0) areM×M transition probability matrices of (Kit, Ct) conditional

on ait = 0 and ait = 1, respectively.

Given this equation, the vector Vi can be obtained by using value function iterations in

the Bellman equation. Let V0
i be an arbitrary initial value for the vector Vi. For instance,

V0
i could be a M × 1 vector of zeroes. Then, at iteration k = 1, 2, ... we obtain:

Vk
i = σε ln

(
exp

{
Πi(0) + β F(0) Vk−1

i

σε

}
+ exp

{
Πi(1) + β F(1) Vk−1

i

σε

})
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Since the (integrated) Bellman equation is a contraction mapping, this algorithm always

converges (regardless the initial V0
i ) and it converges to the unique fixed point. Exact

convergence requires infinite iterations. Therefore, we stop the algorithm when the distance

(for instance, Euclidean distance) betweenVk
i andVk−1

i is smaller than some small constant,

for instance, 10−6.

An alternative algorithm to solve the DP problem is the Policy Iteration algorithm.
Define the Conditional Choice Probability (CCP) function Pi(Kit, Ct) as:

Pi(Kit, Ct) ≡ Pr ( εit ≤ vi(1;Kit, Ct)− vi(0;Kit, Ct) )

=

exp

{
vi(1;Kit, Ct)− vi(0;Kit, Ct)

σε

}
1 + exp

{
vi(1;Kit, Ct)− vi(0;Kit, Ct)

σε

}
Given that (Kit, Ct) are discrete variables, we can describe the CCP function Pias a M × 1

vector of probabilities Pi. The expression for the CCP in vector form is:

Pi =

exp

{
Πi(1)−Πi(0) + β [F(1)− F(0)] Vi

σε

}
1 + exp

{
Πi(1)−Πi(0) + β [F(1)− F(0)] Vi

σε

}

Suppose that the firm behaves according to the probs in Pi. Let VP
i the vector of values

if the firm behaves according to P. That is VP
i is the expected discounted sum of current

and future profits if the firm behaves according to Pi. Ignoring for the moment the expected

future ε′s, we have that:

VP
i = (1−Pi) ∗

[
Πi(0) + β F(0)VP

i

]
+ Pi ∗

[
Πi(1) + β F(1)VP

i

]
And solving for VP

i :

VP
i =

(
I − β FP

i

)−1
((1−Pi) ∗Πi(0) + Pi ∗Πi(1))

where FP
i = (1−Pi) ∗ F(0) + Pi ∗ F(1).

Taking into account this expression for VP
i , we have that the optimal CCP Pi is such

that:

Pi =

exp

{
Π̃i + β F̃

(
I − β FP

i

)−1
((1−Pi) ∗Πi(0) + Pi ∗Πi(1))

σε

}

1 + exp

{
Π̃i + β F̃

(
I − β FP

i

)−1
((1−Pi) ∗Πi(0) + Pi ∗Πi(1))

σε

}
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where Π̃i ≡ Πi(1)−Πi(0), and F̃ ≡ F(1)−F(0). This equation defines a fixed point mapping

in Pi. This fixed point mapping is called the Policy Iteration mapping. This is also a

contraction mapping. Optimal Pi is its unique fixed point.

Therefore we compute Pi by iterating in this mapping. Let P0
i be an arbitrary initial

value for the vector Pi. For instance, P0
i could be a M × 1 vector of zeroes. Then, at each

iteration k = 1, 2, ... we do "two things":

Valuation step:

Vk
i =

(
I − β FPk−1i

)−1 (
(1−Pk−1

i ) ∗Πi(0) + Pk−1
i ∗Πi(1)

)
Policy step:

Pk
i =

exp

{
Π̃i + β F̃ Vk

i

σε

}

1 + exp

{
Π̃i + β F̃ Vk

i

σε

}

Policy iterations are more costly than Value function iterations (especially because the

matrix inversion in the valuation step). However, the policy iteration algorithm requires

a much lower number of iterations, especially with β is close to one. Rust (1987, 1994)

proposes an hybrid algorithm: start with a few value function iterations and then switch to

policy iterations.

3. Estimation

The primitives of the model are: (a) The parameters in the production function; (b) the

replacement costs function r; (c) the probability distribution of firm heterogeneity Fη; (d)

the dispersion parameter σε; and (e) the discount factor β. Let θ represent the vector of

structural parameters. We are interested in the estimation of θ.

Here I describe the Maximum Likelihood estimation of these parameters. Conditional on

the observe history of price of capital and on the initial condition for the capital stock, we

have that:

Pr (Data | C, Ki1, θ) =

N∏
i=1

Pr (ai1,Yi1, ..., aiT ,YiT | C, Ki1, θ)
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The probability Pr (ai1,Yi1, ..., aiT ,YiT | C, Ki1, θ) is the contribution of firm i to the likeli-

hood function. Conditional on the individual heterogeneity, ηi ≡ (ηYi , η
C
i ), we have that:

Pr (ai1,Yi1, ..., aiT ,YiT | C, Ki1, ηi, θ) =

T∏
t=1

Pr (ait,Yit | Ct, Kit, ηi, θ)

=
T∏
t=1

Pr (Yit | ait, Ct, Kit, ηi, θ) Pr (ait | Ct, Kit, ηi, θ)

where Pr (ait | Ct, Kit, ηi, θ) is the CCP function:

Pr (ait | Ct, Kit, ηi, θ) = Pi (Kit, Ct, θ)
ait [1− Pi (Kit, Ct, θ)]

1−ait

and Pr (Yit | ait, Ct, Kit, ηi, θ) comes from the production function, Yit = exp
{
α0 + ηYi

}
[(1− ait) Kit + ait K

∗]α1 . In logarithms, the production function is:

lnYit = α0 + α1 (1− ait) lnKit + κ ait + ηYi + eit

where κ is a parameter that represents α1 lnK∗, and eit is a measurement error in output,

that we assume i.i.d. N(0, σ2
e) and independent of εit. Therefore,

Pr (Yit | ait, Ct, Kit, ηi, θ) = φ

(
lnYit − α0 − α1 (1− ait) lnKit − κ ait − ηYi

σe

)
where φ (.) is the PDF of the standard normal distribution.

Putting all these pieces together, we have that the log-likelihood function of the model

is `(θ) =
∑N

i=1 lnLi(θ) where Li(θ) ≡ Pr (ai1,Yi1, ..., aiT ,YiT | C, Ki1, θ) and:

Li(θ) =
∑
η∈Ω

Fη(η)


T∏
t=1

φ

(
lnYit − α0 − α1 (1− ait) lnKit − κ ait − ηY

σe

)

Pi (Kit, Ct, η, θ)
ait [1− Pi (Kit, Ct, η, θ)]

1−ait


Given this likelihood, we can estimate by Maximum Likelihood (ML)

The NFXP algorithm is a gradient iterative search method to obtain the MLE of the

structural parameters.

This algorithm nests a BHHH method (outer algorithm), that searches for a root of the

likelihood equations, with a value function or policy iteration method (inner algorithm), that

solves the DP problem for each trial value of the structural parameters. The algorithm is

initialized with an arbitrary vector θ̂0.

A BHHH iteration is defined as:

θ̂k+1 = θ̂k +

(
N∑
i=1

O`i(θ̂k)O`i(θ̂k)′
)−1( N∑

i=1

O`i(θ̂k)
)
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where O`i(θ) is the gradient in θ of the log-likelihood function for individual i. In a partial

likelihood context, the score O`i(θ) is:

O`i(θ) =

Ti∑
t=1

O logP (ait|xit,θ)

To obtain this score we have to solve the DP problem.

In our machine replacement model:

`(θ) =
N∑
i=1

Ti∑
t=1

ait logP (xit, θ) + (1− ait) log(1− P (xit, θ))

with:

P(θ) = Fε̃

(
[θY 0 + θY 1X + β Fx(0)V(θ)]

− [θY 0 − θR0 − θY 1X + β Fx(1)V(θ)]

)

The NFXP algorithm works as follows. At each iteration we can distinguish three main

tasks or steps.

Step 1: Inner iteration: DP solution. Given θ̂0, we obtain the vector

V̄(θ̂0) by using either successive iterations or policy iterations.

Step 2: Construction of scores. Then, given θ̂0 and V̄(θ̂0) we construct

the choice probabilities

P(θ̂0) = Fε̃

 [
θY 0 + θY 1X + β Fx(0)V(θ̂0)

]
−
[
θY 0 − θR0 − θY 1X + β Fx(1)V(θ̂0)

] 
the Jacobian

∂V̄(θ̂0)′

∂θ
and the scores O`i(θ̂0)

Step 3: BHHH iteration. We we use the scores O`i(θ̂0) to make a new

BHHH iteration to obtain θ̂1.

θ̂1 = θ̂0 +

(
N∑
i=1

O`i(θ̂0)O`i(θ̂0)′

)(
N∑
i=1

O`i(θ̂0)

)
Then, we replace θ̂0 by θ̂1 and go back to step 1.

* We repeat stesp 1 to 3 until convergence: that is, until the distance between

θ̂1 and θ̂0 is smaller than a pre-specified convergence constant.

The main advantages of the NFXP algorithm are its conceptual simplicity and, more

importantly, that it provides the MLE which is the most effi cient estimator asymptotically

under the assumptions of the model.

The main limitation of this algorithm is its computational cost. In particular, the DP

problem should be solved for each trial value of the structural parameters.
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4. Patent Renewal Models

•What is the value of a patent? How to measure it?
• The valuation of patents is very important for: merger and acquisition decisions; using
patents as collateral for loans; value of innovations; value of patent protection.

• Very few patents are traded, and there is substantial selection. We cannot use an "hedonic"
approach.

• The number of citations of a patent is a very imperfect measure of patent value.
• Multiple patents are used in the production of multiple products, and in generating new
patents. A "production function approach" seems also unfeasible.

4.1. Pakes (1986). • Pakes (1986) proposes using information on patent renewal fees
together with a Reveal Preference approach to estimate the value of a patent.

• Every year, a patent holder should pay a renewal fee to keep her patent.
• If the patent holder decides to renew, it is because her expected value of holding the patent
is greater than the renewal fee (that is publicly known).

• Therefore, observed decisions on patent renewal / non renewal contain information on the
value of a patent.

Model: Basic Framework

• Consider a patent holder who has to decide whether to renew her patent or not. We index
patents by i.

• This decision should be taken at ages t = 1, 2, ..., T where T <∞ is the regulated term of

a patent (for instance, 20 years in US, Europe, or Canada).

• Patent regulation also establishes a sequence of Maintenance Fees {ct : t = 1, 2, ..., T}.
This sequence of renewal fees is deterministic such that a patent owner knows with certainty

future renewal fees.

• The schedule {ct : t = 1, 2, ..., T} is typically increasing in patent age t and it may god
from a few hundred dollars to a few thousand dollars.

• A patent generates a sequence of profits {πit : t = 1, 2, ..., T}.
• At age t, a patent holder knows current profit πit but has uncertainty about future profits
πi,t+1, πi,t+2, ...

• The evolution of profits depends on the following factors:
(1) the initial "quality" of the idea/patent;

(2) innovations (new patents) which are substitutes of the patent and therefore, depreciate

its value or even make it obsolete;
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(3) innovations (new patents) which are complements of the patent and therefore, increase

its value.

Stochastic process of patent profits

• Pakes proposes the following stochastic process for profits, that tries to capture the three
forces mentioned above.

• A patent profit at the first period is a random draw from a log-normal distribution with

parameters µ1 and σ1:

ln(πi1) ∼ N(µ1, σ
2
1)

• After the first year, profit evolves according to the following formula:

πi,t+1 = τ i,t+1 max
{
δ πit ; ξi,t+1

}
• δ ∈ (0, 1) is the depreciation rate. In the absence of unexpected shocks, the value of the

patent depreciates according to the rule: πi,t+1 = δ πit.

• τ i,t+1 ∈ {0, 1} is a binary variable that represents that the patent becomes obsolete (that
is, zero value) due to competing innovations. The probability of this event is a decreasing

function of profit at previous year:

Pr(τ i,t+1 = 0 | πit, t) = exp{−λ πit}

• The largest is the profit of the patent at age t, the smallest is the probability that it
becomes obsolete.

• Variable ξi,t+1 represents innovations which are complements of the patent and increase its

profitability.

• ξi,t+1 has an exponential distribution with mean γ and standard deviation φ
tσ:

p(ξi,t+1 | πit, t) =
1

φtσ
exp

{
−
γ + ξi,t+1

φtσ

}
• If φ < 1, the variance of ξi,t+1 declines over time (and the E(max

{
x ; ξi,t+1

}
) value

declines as well).

• If φ > 1, the variance of ξi,t+1 increases over time (and the E(max
{
x ; ξi,t+1

}
) value

increases as well).

• Under this specification, profits {πit} follow a non-homogeneous Markov process with initial
density πi1 ∼ lnN(µ1, σ

2
1), and transition density function:

fε (πit+1|πit, t) =



exp{−λ πit} if πit+1 = 0

Pr
(
ξit+1 < δπit | πit, t

)
if πit+1 = δπit

1

φtσ
exp

{
−γ + πit+1

φtσ

}
if πit+1 > δπit
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• The vector of structural parameters is θ = (λ, δ, γ, φ, σ, µ1, σ1).

Model: Dynamic Decision Model

• Vt(π) is the value of an active patent of age t and current profit π.

• Let ait ∈ {0, 1} be the decision variable that represents the event "the patent owner decides
to renew the patent at age t".

• The value function is implicitly defined by the Bellman equation:

Vt(πit) = max

{
0 ; πit − ct + β

∫
Vt+1(πi,t+1) fε(dπi,t+1 | πit, t)

}
with Vt(πit) = 0 for any t ≥ T + 1.

• The value of not renewal (ait = 0) is zero. The value of renewal (ait = 1) is the current

profit πit − ct plus the expected and discounted future value.

Model: Solution (Backwards induction)

• We can use backwards induction to solve for the sequence of value functions {Vt} and
optimal decision rules {αt}:
• Starting at age t = T , for any profit π:

VT (π) = max { 0 ; π − cT}

and

αT (π) = 1 { π − cT ≥ 0 }
• Then, for age t < T , and for any profit π:

Vt(π) = max

{
0 ; π − ct + β

∫
Vt+1(π′) fε(dπ

′|π, t)
}

and

αt(π) = 1

{
π − ct + β

∫
Vt+1(π′) fε(dπ

′|π, t) ≥ 0

}
Solution - A useful result

• Given the form of fε(π′|π, t), the future and discounted expected value, β
∫
Vt+1(π′)

fε(dπ
′|π, t), is increasing in current π.

• This implies that the solution of the DP problem can be described as a sequence of
threshold values for profits {π∗t : t = 1, 2, ..., T} such that the optimal decision rule is:

αt(π) = 1 { π ≥ π∗t }

• π∗t is the level of current profits that leaves the owner indifferent between renewing the
patent or not: Vt(π∗t ) = 0.

• These threshold values are obtained using backwards induction:
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• At period t = T :

π∗T = cT

• At period t < T , π∗t is the unique solution to the equation:

π∗t − ct + E

(
T∑

s=t+1

βs−t max{ 0 ; πt+1 − π∗t+1 } | πt = π∗t

)
= 0

• Solving for a sequence of threshold values is much simpler that solving for a sequence of
value functions.

Data

• Sample of N patents with complete (uncensored) durations {di : i = 1, 2, ...N}, where
di ∈ {1, 2, ..., T + 1} is patent i’s duration or age at its last renewal period.
• The information in this sample can be summarized by the empirical distribution of {di}:

p̂(t) =
1

N

N∑
i=1

1{di = t}

Estimation: Likelihood

• The log-likelihood function of this model and data is:

`(θ) =

N∑
i=1

T+1∑
t=1

1{di = t} ln Pr(di = t|θ)

= N

T+1∑
t=1

p̂(t) lnP (t|θ)
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where:
P (t|θ) = Pr (πs ≥ π∗s for s ≤ t− 1,and πt < π∗t | θ)

=

∞∫
π∗1

...

∞∫
π∗t−1

π∗t∫
0

dF (π1, ..., πt−1, πt)

• Computing P (t|θ) involves solving an integral of dimension t. For t greater than 4 or 5, it

is computationally very costly to obtain the exact value of these probabilities. Instead, we

approximate these probabilities using Monte Carlo simulation.

Estimation: Simulation of Probabilities

• For a given value of θ, let {πsimt (θ) : t = 1, 2, ..., T} be a simulated history of profits for
patent i.

• Suppose that, for a given value of θ, we simulate R independent profit histories. Let
{πsimrt (θ) : t = 1, 2, ..., T ; r = 1, 2, ..., R} be these histories.
• Then, we can approximate the probability P (t|θ) using the following simulator:

P̃R(t|θ) =
1

R

R∑
r=1

1{πsimrs (θ) ≥ π∗s for s ≤ t− 1,and πsimrt < π∗t}

• P̃R(t|θ) is a raw frequency simulator. It has the following properties (Note that these are
properties of a simulator, not of an estimator. P̃R(t|θ) does not depend on the data).
(1) Unbiased: E

(
P̃R(t|θ)

)
= P (t|θ)

(2) V ar(P̃R(t|θ)) = P (t|θ)(1− P (t|θ))/R
(3) Consistent as R→∞.
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• It is possible to obtain better simulators (with lower variance) by using importance-
sampling simulation. This is relevant because the bias and variance of simulated-based

estimators depend on the variance (and bias) of the simulator.

• Furthermore, when P (t|θ) is small, the simulator P̃R(t|θ) can be zero even when R is large,
and this creates problems for ML estimation.

• A simple solution to this problem is to consider the following simulator which is based on

the raw-frequency simulated probabilities P̃R(1|θ), P̃R(2|θ), .... P̃R(T + 1|θ):

P ∗R(t|θ) =

exp

{
P̃R(t|θ)

η

}
∑T+1

s=1
exp

{
P̃R(s|θ)

η

}
where η > 0 is an smoothing parameter.

• The simulator P ∗R is biased. However, if η → 0 as R → ∞, then P ∗R is consistent, it has
lower variance than P̃R, and it is always strictly positive.

Simulation-Based Estimation

• The estimator of θ (Simulated Method of Moments estimator) is the value that solves the
system of T equations: for t = 1, 2, ...T :

1

N

N∑
i=1

[
1{di = t} − P̃R,i(t|θ)

]
= 0

where the subindex i in the simulator P̃R,i(t|θ) indicates that for each patent i in the sample
we draw R independent histories and compute independent simulators.

• Effect of simulation error. Note that P̃R,i(t|θ) is unbiased such that P̃R,i(t|θ) = P (t|θ)+

ei(t, θ), where ei(t, θ) is the simulation error. Since the simulation errors are independent

random draws:

1

N

N∑
i=1

ei(t, θ)→p 0 and
1√
N

N∑
i=1

ei(t, θ)→d N(0, VR)

The estimator is consistent an asymptotically normal for any R. The variance of the esti-

mator declines with R.

Identification

• Since there are only 20 different values for the renewal fees {ct} we can at most identify
20 different points in the probability distribution of patent values.

• The estimated distribution at other points is the result of interpolation or extrapolation
based on the functional form assumptions on the stochastic process for profits.
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• It is important to note that the identification of the distribution of patent values is NOT
up to scale but in dollar values.

• For a given patent of with age t, all what we can say is that: if ait = 0 , then Vit < V (π∗t );

and if ait = 1 , then Vit ≥ V (π∗t ).

Empirical Questions

• The estimated model can be used to address important empirical questions.
• Valuation of the stock of patents. Pakes uses the estimated model to obtain the value
of the stock of patents in a country.

• According to the estimated model, the value of the stock of patents in 1963 was $315
million in France, $385 million in UK, and $511 in Germany.

• Combining these figures with data on R&D investments in these countries, Pakes calculates
rates of return of 15.6%, 11.0% and 13.8%, which look like quite reasonable.

Empirical Questions

• Factual policies. The estimated model shows that a very important part of the observed
between-country differences in patent renewal can be explained by differences in policy pa-

rameters (that is, renewal fees and maximum length).

• Counterfactual policy experiments. The estimated model can be used to evaluate the
effects of policy changes (in renewal fees and/or in maximum length) which are not observed

in the data.

4.2. Lanjow (1999). Estimates the private value of patent protection for four technol-
ogy areas– computers, textiles, combustion engines, and pharmaceuticals - using new patent

data for West Germany, 1953-1988. The model takes into account that patentees must pay

not only renewal fees to keep their patents but also legal expenses to enforce them. The

dynamic structural model takes into account the potential need to prosecute infringement.

Results show that the aggregate value of protection generated per year is on the order of

10% of related R&D expenditure.

4.3. Trade of patents: Serrano (2018). The sale of patents is an incentive to invest
in R&D, especially for small firms. This market can generate social gains by reallocating

patent rights from innovators to firms that may be more effective in using, commercializing,

or enforcing these rights. There are also potential social costs, if the acquiring firms can

exercise more market power. Serrano (IER, 2018) investigates the value of trading patents

by estimating a structural model that includes renewal and trading decisions.

Data. Panel of patents granted to U.S small firms (no more than 500 employees) in the

period 1988-1997 (15% of patents granted to firms). In the U.S. patent system, the patent
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holder needs to pay renewal fees to maintain the patent only at ages 5, 9, and 13 years. Fee

increases with age: c13 > c9 > c5. Serrano (2000) constructs the dataset with renewals and

transfers/sales. Working sample: 54,840 patents from 10 granting cohorts (1988 to 1997)

followed from granting period until 2001 or not renewal.

Renewal and trading frequencies. Probability that a patent is traded (between renewal

dates): - higher if previously untraded. - decreases with age. Probability of patent expiration

(at renewal dates) - lower for previously traded. - increase over time.

Renewal and trading frequencies

Model: Key features. The transfer/sale of a patent involves a transaction cost. This

transaction cost creates a selection effect: patents with higher per period returns are more

likely to be traded. This selection effect explains the observed pattern that previously traded

patents are: - more likely to be traded; - less likely to expire.

Returns. At age t, a patent has: - an internal return for the current patent owner, xt;
- a potential external return for the best alternative user, yt. There is an "improvement
factor", get , that relates external and internal returns: yt = get xt, g

e
t is i.i.d. with a truncated

(at zero) exponential distribution: γe ≡ Pr(get = 0), and σe is the mean of the exponential.

Initial (internal) returns: log(x1) ∼ N(µ, σ2
R). Next period returns:

xt+1 =

{
git xt if not traded at age t
git yt if traded at age t

git is a random variable with a truncated (at zero) exponential distribution: γ
i ≡ Pr(git = 0),

and σit is the mean of this exponential, and σ
i
t = φt σi0, with φ ∈ (0, 1). This implies that

xt+1 follows a first order Markov process.Remember that there is a lump-sum transaction

cost, τ . It is assumed that is paid by the buyer.
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Model: Renewal and Sale decisions. Let Vt(xt, yt) be the value of a patent with age t,

current internal and external returns xt and yt, resp.

Vt(xt, yt) = max
{

0, V K
t (xt, yt), V

S
t (xt, yt)

}
V K
t (xt, yt) = value of keeping; V S

t (xt, yt) = value of selling. And for t ≤ T = 17:

V K
t (xt, yt) = xt − ct + β E [Vt+1(xt+1, yt+1) | xt, yt, at = K]

V S
t (xt, yt) = xt − ct − τ + β E [Vt+1(xt+1, yt+1) | xt, yt, at = S]

with V K
T+1 = V S

T+1 = 0.

Model: Optimal decision rule. Lemma 1: Vt(xt, yt) is weakly increasing in xt and yt, and

weakly decreasing in t. Proposition 1. There are two threshold values: x∗t (θ) that depends

on age and structural parameters, and g∗t (x, θ), that depends on age, internal return, and

parameters, such that the optimal decision rule at is:

at =


S if get ≥ g∗t (xt, θ)

K if get < g∗t (xt, θ) and xt ≥ x∗t (θ)

0 if get < g∗t (xt, θ) and xt < x∗t (θ)

Identification and Estimation. Method: Simulated method of moments. Moments de-

scribing the history of trading and renewal decisions of patent owners. (1) probability that

an active patent is traded at different ages conditional on having been previously traded,

and conditional on not having been previously traded. (2) probability that an active patent

is allowed to expire at different renewal dates conditional on having been previously traded,

and conditional on not having been previously traded. A total of 186 moments.
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Parameter estimates. Transaction cost: $5,850, about one-third of the average return at

age 1 (8% of the average value at age 1). On average, internal growth of returns is greater

than external.

Parameter estimates

Evaluating the value of the market for patents. The possibility of trading patents has

two types of the effects on the value of the pool of patents: - a direct causal effect due to

the reallocation to an owner with higher returns; - a selection effect, through the renewal

decisions (renewal decision is different with and without the possibility of trading).

Serrano measures these two sources of value. Evaluating the value of the market for

patents (1) Total effect on the value of patents: - 50% of the total value of patents. - Only

23% of patents are sold, but the value of a traded patent is 3 times higher than untraded

patent ($173,668 vs. $54,960). (2) Direct gains from trade (from reallocation) - accounts for

10% of the total value of the traded patents. - The distribution of the gains from trade is

very skewed.

Counterfactual: Reducing transaction cost Lowering transaction cost by 50% (from

$5,850 to $2,925). It raises the proportion of patents traded by 6 percentage points: from

23.1% to 29.6%. It boosts the gains from trade (reallocation) by an additional 8.7%. It

increases the total value of the patent market by 3%.

5. Dynamic pricing

Retail firms selling the same product and operating in the same narrowly defined geo-

graphic market can charge prices that differ by significant amounts. Cross-sectional disper-

sion of prices has been well established in different retail markets such as gas stations or

supermarkets, among others. Recent empirical papers show that temporary sales account
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for approximately half of all price changes of retail products in US (see Hosken and Reiffen,

2004, Nakamura and Steinsson, 2008, or Midrigan, 2011). Sales promotions can also account

for a substantial part of cross-sectional price dispersion. Therefore, understanding the de-

terminants of temporary sales is important to understand price stickiness, price dispersion,

and firms’market power and competition.

Varian (1980) presents a model of price competition in an homogeneous product market

with two types of consumers according to their information about prices. Informed customers

always buy in the store with the lowest price. Uninformed consumers choose a store at

random and buy there as long as the price of the store is not above their reservation price. The

model does not have an equilibrium in pure strategies. In mixed strategies, there is a unique

symmetric equilibrium characterized by a U-shape density function on the price interval

between the marginal cost and the reservation price of uninformed consumers. According to

this equilibrium, the price charged by a store changes randomly over time between a "low"

and a "high" price.

Though Varian’s model can explain some important empirical features in the cross-section

and time series of prices in retail markets, it cannot explain the time dependence of sales

promotions that have been reported in many empirical studies (for instance, Slade, 1998,

Aguirregabiria, 1999, or Pesendorfer, 2002, among others). The probability of a sales pro-

motion increases with the duration since the last sale. Several studies have proposed and

estimated dynamic structural models of retail pricing that can explain price dispersion, sales

promotions and their state dependence. These studies provide also estimates of the magni-

tude and structure of firms’price adjustments costs.

Slade (1998) proposes a model where the demand of a product in a store depends on a

stock of goodwill that accumulates over time when the store charges low prices, and erodes

when the price is high. The model incorporates also menu costs of changing prices. The

optimal pricing policy consists of a cycle between a low price (or sales promotion) and a

high price. Slade estimates this model using weekly scanner data of prices and quantities of

saltine crackers in four supermarket chains. The estimated model fits well the join dynamics

of prices and quantities. Her estimates of the cost of adjusting prices are approximately 4%

of revenue.

Aguirregabiria (1999) studies the relationship between inventories and prices in super-

markets. The cost of placing orders to wholesalers has a fixed component. Retailers have

also menu costs of changing prices, face substantial demand uncertainty, and have stockouts.

Aguirregabiria proposes a model of price and inventory decisions that incorporates these fea-

tures. In the optimal decision rule of this model, inventories follow an (S,s) cycle, and prices

have a "high-low" cyclical pattern. When a new order is placed, the probability of stockout
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declines, expected demand becomes more elastic, and the optimal price drops to a minimum.

When inventories decline between two orders, the probability of stockout increases, expected

sales become more inelastic, and the optimal price eventually increases and stays high until

the next order. Aguirregabiria estimates this model using data on inventories, prices, and

sales from the warehouse of a supermarket chain. The estimated model fits well the joint

cyclical pattern of prices and inventories in the data and can explain temporary sales. The

estimated values for the fixed ordering cost and the menu cost are 3.1% and 0.7% of monthly

revenue, respectively. According to the estimated model, almost 50% of sales promotions

are associated to the dynamics of inventories.

Pesendorfer (2002) studies the dynamics of consumer demand as a factor explaining sales

promotions of storable products. He proposes a model of demand of a storable product with

two types of consumers: store-loyal consumers and shoppers. The equilibrium of the model

predicts that the probability that a store has a sale increases with the duration since the

last sale both in that store and in other stores. The implied pattern of prices path consists

of an extended period of high prices followed by a short period of low prices. He tests the

predictions of the model using supermarket scanner data for ketchup products. The effects

of the duration variables are significant and have the predicted sign. Though this evidence

suggests that demand accumulation could be important in the decision to conduct a sale, it

is also consistent with models in Slade (1998) and Aguirregabiria (1999). As far as we know,

there is not an empirical study that has tried to disentangle the relative contribution of

consumer inventories, firm inventories, and goodwill to explain temporary sales promotions.

Kano (2013) makes an interesting point on the estimation menu costs in oligopoly mar-

kets. Dynamic price competition in oligopoly markets implies a positive strategic interaction

between the prices of different firms. This strategic interaction may be an importance source

of price inertia even when menu costs are small. If a firm experiences an idiosyncratic in-

crease in its marginal cost, it may prefer not to increase its price if the competitor maintains

its price constant. A model of monopolistic competition that ignores strategic interactions

among firms may spuriously overestimate menu costs. Kano estimates a dynamic pricing

model that accounts for these strategic interactions and finds that they account for an sub-

stantial part of price rigidity.

5.1. Aguirregabiria (1999). The significant cross-sectional dispersion of prices is a
well-known stylized fact in retail markets. Retailing firms selling the same product, and

operating in the same (narrowly defined) geographic market and at the same period of time,

do charge prices that differ by significant amounts, for instance, 10% price differentials or even

larger. This empirical evidence has been well established for gas stations and supermarkets,

among other retail industries. Interestingly, the price differentials between firms, and the
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ranking of firms in terms prices, have very low persistence over time. A gas station that

charges a price 5% below the average in a given week may be charging a price 5% above

the average the next week. Using a more graphical description we can say that a firm’s

price follows a cyclical pattern, and the price cycles of the different firms in the market

are not synchronized. Understanding price dispersion and the dynamics of price dispersion

is very important to understand not only competition and market power but also for the

construction of price indexes.

Different explanations have been suggested to explain this empirical evidence. Some

explanations have to do with dynamic pricing behavior or "state dependence" in prices.

For instance, an explanation is based on the relationship between firm inventory and

optimal price. In many retail industries with storable products, we observe that firms’

orders to suppliers are infrequent. For instance, for products such as laundry detergent,

a supermarket ordering frequency can be lower than one order per month. A simple and

plausible explanation of this infrequency is that there are fixed or lump-sum costs of making

an order that do not depend on the size of the order, or at least they do not increase

proportionally with the size of the order. Then, inventories follow a so called (S,s) cycle: the

increase by a large amount up to a maximum when a place is order and then they decline

slowly up a minimum value where a new order is placed. Given this dynamics of inventories,

it is simple to show that optimal price of the firm should also follow a cycle. The price drops

to a minimum when a new order is placed and then increases over time up to a maximum

just before the next order when the price drops again. Aguirregabiria (REStud, 1999) shows

this joint pattern of prices and inventories for many products in a supermarket chain. I show

that this type of inventory-depedence price dynamics can explain more than 20% of the time

series variability of prices in the data.

Temporary sales and inventories. Recent empirical papers show that temporary sales ac-

count for approximately half of all price changes of retail products in US: Hosken and Reiffen

(RAND, 2004); Nakamura and Steinsson (QJE, 2008); Midrigan (Econometrica, 2011). Un-

derstanding the determinants of temporary sales is important to understand price stickiness

and price dispersion, and it has important implications on the effects of monetary policy.

It has also important implications in the study of firms’market power and competition.

Different empirical models of sales promotions: Slade (1998) [Endogenous consumer loyalty],

Aguirregabiria (1999) [Inventories], Pesendorfer (2002) [Intertemporal price discrimination],

and Kano (2013).

This paper studies how retail inventories, and in particular (S,s) inventory behavior, can

explain both price dispersion and sales promotions in retail markets. Three factors are key

for the explanation provided in this paper:
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(1) Fixed (lump-sum) ordering costs, that generates (S,s) inventory behavior.

(2) Demand uncertainty.

(3) Sticky prices (Menu costs) that, together with demand uncertainty, creates a

positive probability of excess demand (stockout).

Model: Basic framework

Consider a retail firm selling a product. We index products by i. Every period (month)

t the firm decides the retail price and the quantity of the product to order to manufactur-

ers/wholesalers. Monthly sales are the minimum of supply an demand:

yit = min { dit ; sit + qit }

yit = sales in physical units; dit = demand; sit = inventories at the beginning of month

t; qit = orders (and deliveries) during month t.

Demand and Expected sales. The firm has uncertainty about current demand:

dit = deit exp (ξit)

deit = expected demand; ξit = zero mean demand shock unknown to the firm at t. There-

fore, expected sales are:

yeit =

∫
min {deit exp (ξ) ; sit + qit } dFξ(ξ)

Assume monopolistic competition. Expected Demand depends on the own price, pit, and
a demand shock ωit. The functional form is isoelastic:

deit = exp {γ0 − γ1 ln(pit) + ωit }

where γ0 and γ1 > 0 are parameters.

Price elasticity of expected sales. Demand uncertainty has important implications for
the relationship between prices and inventories. The price elasticity of expected sales is a

function of the supply-to-expected-demand ratio (sit + qit)/d
e
it:

ηye|p ≡
−∂ye
∂p

p

ye
= −

[∫
I {de exp (ξ) ; s+ q } dFξ(ξ)

] ∂de
∂p

p

ye

= γ1 Fξ

(
log

[
s+ q

de

])
de

ye

And we have that:

ηye|p −→

 γ1 as (s+ q)/de −→∞

0 as (s+ q)/de −→ 0

Price elasticity of expected sales

ηye|p = γ1 Fξ

(
log

[
s+ q

de

])
de

ye
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[FIGURE: ηye|p increasing in
s+ q

de
, with asymptote at γ1]

When the supply-to-expected-demand ratio is large, the probability of stockout is very

small and ye ' de, so the elasticity of expected sales is just the elasticity of demand. However,

when the supply-to-expected-demand ratio is small, the probability of stockout is large and

the elasticity of expected sales can be much lower than the elasticity of demand.

Markup and inventories (myopic case). This has potentially important implications for

the optimal price of an oligopolistic firm. To give some intuition, consider the pricing decision

of the monopolistic firm without forward-looking behavior. That optimal price is:

p− c
p

=
1

ηye|p
OR
p− c
c

=
1

ηye|p − 1

Variability over time in the supply-to-expected-demand ratio can generate significant fluc-

tuations in price-cost margins. It can also explain temporary sales promotions. That can be

the case under (S, s) inventory behavior. Evolution of inventories and price without menu

cost; and Evolution of inventories and price with menu cost

**************************************

Figure: Cyclical pattern of inventories and prices

**************************************

Empirical Application

The paper investigates this hypothesis using a data from a supermarket chain, with

rich information on prices, sales, inventories, orders, and wholesale prices for many different

products. Reduced form estimations present evidence that supports the hypothesis:

(1) Prices depend negatively and very significantly on the level of inventories.

(2) Inventories of many products follow (S,s) cycles.

(3) Price cost margins increase at the beginning of an (S,s) cycle, and decline

monotonically during the cycle.

I estimate the parameters in the profit function (demand parameters, ordering costs, inven-

tory holding costs) and use the estimated model to analyze how much of price variation and

temporary sales promotions can be explained by firm inventories.

Profit function. Expected current profits are equal to expected revenue, minus or-
dering costs, inventory holding costs and price adjustment costs:

πit = pit y
e
it −OCit − ICit − PACit
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OCit = ordering costs; ICit = inventory holding costs; PACit = price adjustment (menu)

costs. Ordering costs:

OCit =

 0 if qit = 0

Foc + εocit − cit qit if qit > 0

Foc = fixed (lump-sum) ordering cost. Parameter; εocit = zero mean shock in the fixed ordering

cost; cit = wholesale price. Inventory holding costs:

ICit = α sit

Menu costs:

PACit =


0 if pit = pi,t−1

F
(+)
mc + ε

mc(+)
it if pit > pi,t−1

F
(−)
mc + ε

mc(−)
it if pit < pi,t−1

F
(+)
mc and F

(−)
mc are price adjustment cost parameters; ε

mc(+)
it and εmc(−)

it are zero mean shocks

in menu costs

State variables. The state variables of this DP problem are:sit, cit, pi,t−1, ωit︸ ︷︷ ︸
xit

, εocit , ε
mc(+)
it , εmc(+)

it︸ ︷︷ ︸
εit


The decision variables are qit and ∆pit ≡ pit − pi,t−1. We use ait to denote (qit,∆pit). Let

V (xit, εit) be the value of the firm associated with product i. This value function solves the

Bellman equation:

V (xit, εit) = max
ait

 π(ait, xit, εit)

+β
∫
V (xi,t+1, εi,t+1) dF (xi,t+1, εi,t+1|ait, xit, εit)


Discrete Decision variables. Most of the variability of qit and ∆pit in the data is discrete.

For simplicity, we assume that these variables have a discrete support.

qit ∈ {0 , κi}

∆pit ∈ {0 , δ(+)
i , δ

(−)
i }

where κi > 0, δ(+)
i > 0, and δ(−)

i < 0 are parameters. Therefore, the set of choice alternatives

at every period t is:

ait ∈ A =
{

(0, 0), (0, δ
(+)
i ), (0, δ

(−)
i ), (κi, 0), (κi, δ

(+)
i ), (κi, δ

(−)
i )

}
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The transition rules for the state variables are:
si,t+1 = sit + qit − yit
pit = pi,t−1 + ∆pit
ci,t+1 ∼ AR(1)
ωi,t+1 ∼ AR(1)
εit ∼ i.i.d.

(Integrated) Bellman Equation. The components of εit are independently and extreme

value distributed with dispersion parameter σε. Therefore, as in Rust (1987), the integrated

value function V̄ (xit) is the unique fixed point of the integrated Bellman equation:

V̄ (xit) = σε ln

(∑
a∈A

exp

{
v(a, xit)

σε

})
where:

v(a, xit) = π̄(a, xit) + β
∑
xi,t+1

V̄ (xi,t+1) fx(xi,t+1|a, xit)

Discrete choice profit function

• π̄(a, xit) is the part of current profit which does not depend on εit:

π̄(a, xit) =



Rit(0, 0)− α sit if a = (0, 0)

Rit(0, δ
(+)
i )− α sit − F (+)

mc if a = (0, δ
(+)
i )

Rit(0, δ
(−)
i )− α sit − F (−)

mc if a = (0, δ
(−)
i )

Rit(κi, 0)− α sit − Foc − citκi if a = (κi, 0)

Rit(κi, δ
(+)
i )− α sit − Foc − citκi − F (+)

mc if a = (κi, δ
(+)
i )

Rit(κi, δ
(−)
i )− α sit − Foc − citκi − F (−)

mc if a = (κi, δ
(−)
i )

where Rit(., .) is the expected revenue function.

Some predictions of the model. Fixed ordering cost Foc generate infrequent orders: (S, s)

inventory policy. (S, s) inventory behavior, together demand uncertainty (that is, optimal

prices depend on the supply-to-expected demand ratio) generate a cyclical pattern in the

price elasticity of sales. Prices decline significantly when an order is placed (sales promotion).

This price decline and the consequently inventory reduction generate a price increase. Then,

as inventories decline between two orders, prices tend to increase.

Data. Data from the central warehouse of a supermarket chain in the Basque Coun-

try (Spain). Monthly data: period January 1990 to May 1992. Estimation of Structural

Parameters. Counterfactual Experiments
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CHAPTER 8

Structural Models of Dynamic Demand of Differentiated Products

1. Introduction

Consumers can stockpile a storable good when prices are low and use the stock for future

consumption. This stockpiling behavior can introduce significant differences between short-

run and long-run responses of demand to price changes. Also, the response of demand to

a price change depends on consumers’expectations/beliefs about how permanent the price

change is. For instance, if a price reduction is perceived by consumers as very transitory

(for instance, a sales promotion), then a significant proportion of consumers may choose to

increase purchases today, stockpile the product and reduce their purchases during future

periods when the price will be higher. If the price reduction is perceived as permanent, this

intertemporal substitution of consumer purchases will be much lower or even zero.

Ignoring consumers’stockpiling and forward-looking behavior can introduce serious biases

in estimated own- and cross- price demand elasticities. These biases can be particularly

serious when the time series of prices is characterized by "High-Low" pricing. The price

fluctuates between a (high) regular price and a (low) promotion price. The promotion price

is infrequent and last only few days, after which the price returns to its "regular" level. Most

sales are concentrated in the very few days of promotion prices.

*********************************************

Figure. Hi-Lo pricing

Pesendorfer (Journal of Business, 2002)

*********************************************

Static demand models assume that all the substitution is either between brands or prod-

uct expansion. They rule out intertemporal substitution. This can imply serious biases in

the estimated demand elasticities. With High-Low pricing, we expect the static model to

over-estimate the own-price elasticity. The bias in the estimated elasticities implies also

a biased in the estimated Price Cost Margins (PCM). We expect PCMs to be underesti-

mated. These biases have serious implications on policy analysis, such as merger analysis

and antitrust cases.

259
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Here we discuss two papers that have estimated dynamic structural models of demand of

differentiated products using consumer level data (scanner data): Hendel and Nevo (Econo-

metrica, 2006) and Erdem, Keane and Imai (QME, 2003). These papers extend microecono-

metric discrete choice models of product differentiation to a dynamic setting, and contains

useful methodological contributions. Their empirical results show that ignoring the dynam-

ics of demand can lead to serious biases. Also the papers illustrate how the use of micro
level data on household choices (in contrast to only aggregate data on market shares)
is key for credible identification of the dynamics of differentiated product demand.

2. Data and descriptive evidence

We assume that the researcher has access to consumer level data. Such data is widely

available from several data collection companies and recently researchers in several countries

have been able to gain access to such data for academic use. The data include the history

of shopping behavior of a consumer over a period of one to three years. The researcher

knows whether a store was visited, if a store was visited then which one, and what product

(brand and size) was purchased and at what price. From the view point of the model, the

key information that is not observed is consumer inventory and consumption decisions.

Hendel and Nevo use consumer-level scanner data from Dominicks, a supermarket chain

that operates in the Chicago area. The dataset comes from 9 supermarket stores and it set

covers the period June 1991 to June 1993. Purchases and price information is available in

real (continuous) time but for the analysis in the paper it is aggregated at weekly frequency.

The dataset has two components: store-level and household-level data. Store level
data: For each detailed product (brand—size) in each store in each week we observe the
(average) price charged, (aggregate) quantity sold, and promotional activities. Household
level data: For a sample of households, we observe the purchases of households at the 9
supermarket stores: supermarket visits and total expenditure in each visit; purchases (units

and value) of detailed products (brand-size) in 24 different product categories (for instance,

laundry detergent, milk, etc). The paper studies demand of laundry detergent products.

Table I in the paper presents summary statistics on household demographics, purchases,

and store visits.

Table II in the paper presents the market shares of the main brands of laundry detergent

in the data. The market is significantly concentrated, especially the market for Powder laun-

dry detergent where the concentration ratios are CR1 = 40%, CR2 = 55%, and CR3 = 65%.

For most brands, the proportion of sales under a promotion price is important. However, this

proportion varies importantly between brands, showing that different brands have different

patterns of prices.
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Descriptive evidence. H&N present descriptive evidence which is consistent with

household inventory holding. See also Hendel and Nevo (RAND, 2006). Though household

purchase histories are observable, household inventories and consumption are unobservable.

Therefore, empirical evidence on the importance of household inventory holding is indirect.

(a) Time duration since previous sale promotion has a positive effect on the aggregate

quantity purchased.

(b) Indirect measures of storage costs (for instance, house size) are negatively correlated

with households’propensity to buy on sale.

3. Model

3.1. Basic Assumptions. Consider a differentiated product, laundry detergent, with
J different brands. Every week a household has some level of inventories of the product

(that may be zero) and chooses (a) how much to consume from its inventory; and (b) how

much to purchase (if any) of the product, and the brand to purchase.

An important simplifying assumption in Hendel-Nevo model is that consumers care about

brand choice when they purchase the product, but not when they consume or store it. I

explain below the computational advantages of this assumption. Of course, the assump-

tion imposes some restrictions on the intertemporal substitution between brands, and I will

discuss this point too. Erdem, Imai, and Keane (2003) do not impose that restriction.

The subindex t represents time, the subindex j represents a brand, and the subindex h

represents a consumer or household. A household current utility function is:

uh(cht, vht)− Ch(ih,t+1) +mht

uh(cht, vht) is the utility from consumption of the storable product, with cht being consump-

tion and vht is a shock in the utility of consumption:

uh(cht, vht) = γh ln (cht + vht)

Ch(ih,t+1) is the inventory holding cost, where ih,t+1 is the level of inventory at the end of

period t, after consumption and new purchases:

Ch(ih,t+1) = δ1h ih,t+1 + δ2h i
2
h,t+1

mht is the indirect utility function from consumption of the composite good (outside good)

plus the utility from brand choice (that is, the utility function in a static discrete model of

differentiated product):

mht =

J∑
j=1

X∑
x=0

dhjxt
(
βh ajxt − αh pjxt + ξjxt + εhjxt

)
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j ∈ {1, 2, ...., J} is the brand index. x ∈ {0, 1, 2, ..., X} is the index of quantity choice,
where the maximum possible size is X units. In this application X = 4. Brands with

different sizes are standardized such that the same measurement unit is used in x. The

variable dhjxt ∈ {0, 1} is a binary indicator for the event "household purchases x units of
brand j at week t". pjxt is the price of x units of brand j at period t. Note that the

models allows for nonlinear pricing, that is, for some brands and weeks pjxt and x ∗ pj1t can
take different values. This is potentially important because the price data shows significant

degree of nonlinear pricing. ajxt is a vector of product characteristics other than price that

is observable to the researcher. In this application, the most important variables in ajxt are

those that represent store-level advertising, for instance, display of the product in the store,

etc. The variable ξjxt is a random variable that is unobservable to the researcher and that

represents all the product characteristics which are known to consumers but not in the set

of observable variables in the data.

αh and βh represent the marginal utility of income and the marginal utility of product

attributes in ajxt, respectively. As it is well-known in the empirical literature of demand of

differentiated products, it is important to allow for heterogeneity in these marginal utilities

in order to have demand systems with flexible and realistic own and cross elasticities or

substitution patterns. Allowing for this heterogeneity is much simpler with consumer level

data on product choices than with aggregate level data on product market shares. In partic-

ular, micro level datasets can include information on a rich set of household socioeconomic

characteristics such as income, family size, age, education, gender, occupation, house-type,

etc, that can be included as observable variables that determine the marginal utilities αh
and βh. That is the approach in Hendel and Nevo’s paper.

Finally, εhjxt is a consumer idiosyncratic shock that is independently and identically

distributed over (h, j, x, t) with an extreme value type 1 distribution. This is the typical

logit error that is included in most discrete models of demand of differentiated products.

Note that while εhjxt vary over individuals, ξjxt do not.

Let pt be the vector of product characteristics, observable or unobservable, for all the

brands and sizes at period t:

pt ≡
{
pjxt, ajxt, ξjxt : j = 1, 2, ..., J and x = 1, 2, ..., X

}
Every week t, the household knows her level of inventories, iht, observes product attributes

pt, and its idiosyncratic shocks in preferences, vht and εht. Given this information, the

household decides her consumption of the storable product, cht, and how much to purchase

and which product, dht = {dhjxt}. The household makes this decision to maximize her
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expected and discounted stream of current and future utilities,

Et (
∑∞

s=0 δ
s [uh(cht+s, vht+s)− Ch(ih,t+s+1) +mht+s])

where δ is the discount factor.

The vector of state variables of this DP problem is {iht, vht, εht, pt}. The decision vari-
ables are cht and dht. To complete the model we need to make some assumptions on the

stochastic processes of the state variables. The idiosyncratic shocks vht and εht are assumed

iid over time. The vector of product attributes pt follows a Markov processes. Finally,

consumer inventories iht has the obvious transition rule:

ih,t+1 = ih,t+1 − cht +
(∑J

j=1

∑X
x=0 dhjxt x

)
where

∑J
j=1

∑X
x=0 dhjxt x represents the units of the product purchased by household h at

period t.

Let Vh(sht) be the value function of a household, where sht is the vector of state variables

(iht, vht, εht, pt). A household decision problem can be represented using the Bellman

equation:

Vh (sht) = max
{cht,dht}

[uh(cht, vht)− Ch(ih,t+1) +mht + δ E (Vh (sht+1) | sht, cht, dht)]

where the expectation E (. | sht, cht, dht) is over the distribution of sht+1 conditional on (sht,

cht, dht). The solution of this DP problem implies optimal decision rules for consumption

and purchasing decisions: cht = c∗h (sht) and dht = d∗h (sht) where c∗h (.) and d∗hare the deci-

sion rules. Note that they are household specific because there is time-invariant household

heterogeneity in the marginal utility of product attributes (αh and βh), in the utility of

consumption of the storable good uh, and in inventory holding costs, Ch.

The optimal decision rules c∗h (.) and d∗hdepend also on the structural parameters of the

model: the parameters in the utility function, and in the transition probabilities of the state

variables. In principle, we could use the equations cht = c∗h (sht) and dht = d∗h (sht) and our

data on (some) decision and state variables to estimate the parameters of the model. To

apply this revealed preference approach, there are three main issues we have to deal with.

First, the dimension of the state space of sht is extremely large. In most applications of

demand of differentiated products, there are dozens (or even more than a hundred) products.

Therefore, the vector of product attributes pt contains more than a hundred continuous

state variables. Solving a DP problem with this state space, or even approximating the

solution with enough accuracy using Monte Carlo simulation methods, is computationally

very demanding even with the most sophisticated computer equipment. We will see how

Hendel and Nevo propose and implement a method to reduce the dimension of the state

space. The method is based on some assumptions that we discuss below.
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Second, though we have good data on households purchasing histories, information on

households’consumption and inventories of storable goods is very rare. In this application,

consumption and inventories, cht and iht, are unobservable to the researchers. Not observing

inventories is particularly challenging. This is the key state variable in a dynamic demand

model of demand of a storable good. We will discuss below the approach used by Hendel

and Nevo to deal with this issue, and also the approach used by Erdem, Imai, and Keane

(2003).

And third, as usual in the estimation of a model of demand, we should deal with the

endogeneity of prices. Of course, this problem is not specific of a dynamic demand model.

However, dealing with this problem may not be independent of the other issues mentioned

above.

3.2. Reducing the dimension of the state space. Given that the state variables
(vht, εht) are independently distributed over time, it is convenient to reduce the dimension of

this DP problem by using a value function that is integrated over these iid random variables.

The integrated value function is defined as:

V̄h(iht,pt) ≡
∫
Vh(sht) dFε(εht) dFv(vht)

where Fε and Fv are the CDFs of εht and vht, respectively. Associated with this integrated

value function there is an integrated Bellman equation. Given the distributional assumptions

on the shocks εht and vht, the integrated Bellman equation is:

V̄h(iht,pt) = max
cht,dht

∫
ln

 J∑
j=1

exp

 uh(ch, vht)− Ci(iht+1) +mht

+δ E
[
V̄h(iht+1,pt+1) | iht,pt, cht, dht

]

 dFv(vht).

This Bellman equation is also a contraction mapping in the value function. The main

computational cost in the computation of the functions V̄h comes from the dimension of the

vector of product attributes pt. We now explore ways to reduce this cost.

First, note that the assumption that there is only one inventory, the aggregate inven-

tory of all the products, and not one inventory for each brand, {ihjt}, has already reduced
importantly the dimension of the state space. This assumption not only reduces the state

space but, as we see below, it also allows us to modify the dynamic problem, which can

significantly aid in the estimation of the model.

Taken literally, this assumption implies that there is no differentiation in consumption:

the product is homogenous in use. Note, that through ξjxt and εijxt the model allows

differentiation in purchase, as is standard in the IO literature. It is well known that this

differentiation is needed to explain purchasing behavior. This seemingly creates a tension in

the model: products are differentiated at purchase but not in consumption. Before explaining
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how this tension is resolved we note that the tension is not only in the model but potentially

in reality as well. Many products seem to be highly differentiated at the time of purchase but

its hard to imagine that they are differentiated in consumption. For example, households

tend to be extremely loyal to the laundry detergent brand they purchase —a typical household

buys only 2-3 brands of detergent over a very long horizon —yet its hard to imagine that the

usage and consumption are very different for different brands.

A possible interpretation of the model that is consistent with product differentiation in

consumption is that the variables ξjxt not only captures instantaneous utility at period t but

also the discounted value of consuming the x units of brand j. This is a valid interpretation

if brand-specific utility in consumption is additive such that it does not affect the marginal

utility of consumption.

This assumption has some implications that simplify importantly the structure of the

model. It implies that the optimal consumption does not depend on which brand is pur-

chased, only on the size. And relatedly, it implies that the brand choice can be treated as a

static decision problem.

We can distinguish two components in the choice dht: the quantity choice, xht, and the

brand choice jht. Given xht = x, the optimal brand choice is:

jht = arg max
j∈{1,2,...,J}

{
βh ajxt − αh pjxt + ξjxt + εhjxt

}
Then, given our assumption about the distribution of εhjxt, the component mht of the utility

function can be written as mht =
∑X

x=0 ωh(x,pt)+eht where ωht(x,pt) is the inclusive value:

ωh(x,pt) ≡ E
(

max
j∈{1,2,...,J}

{
βh ajxt − αh pjxt + ξjxt + εhjxt

}
| xht = x, pt

)

= ln

(
J∑
j=1

exp
{
βh ajxt − αh pjxt + ξjxt

})
and eht does not depend on size x (or on inventories and consumption), and therefore we can

ignore this variable for the dynamic decisions on size and consumption.

Therefore, the dynamic decision problem becomes:

V̄h(iht,pt) = max
cht,xht

∫ {
uh(cht, vht)− Ci(iht+1) + ωh(x,pt) + δ E

[
V̄h(iht+1,pt+1) | iht+1,pt

]}
dFv(vht)

In words, the problem can now be seen as a choice between sizes, each with a utility given by

the size-specific inclusive value (and extreme value shock). The dimension of the state space

is still large and includes all product attributes, because we need these attributes to compute

the evolution of the inclusive value. However, in combination with additional assumptions

the modified problem is easier to estimate.
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Note also, that expression that describes the optimal brand choice, jht = arg maxj∈{1,2,...,J}

{βh ajxt − αh pjxt + ξjxt + εhjxt} is a "standard" multinomial logit model with the caveat
that prices are endogenous explanatory variables because they depend on the unobserved

attributes in ξjxt. We describe below how to deal with this endogeneity problem. With

household level data, dealing with the endogeneity of prices is much simpler than with

aggregate data on market shares. More specifically, we do not need to use Monte Carlo

simulation techniques, or an iterative algorithm to compute the "average utilities" {δjxt}.
To reduce the dimension of the state space, Hendel and Nevo (2006) introduce the fol-

lowing assumption. Let ωh(pt) be the vector with the inclusive values for every possible size

{ωh(x,pt) : x = 1, 2, ..., X}.

Assumption: The vector ωh(pt) is a suffi cient statistic of the information in pt that

is useful to predict ωh(pt+1):

Pr(ωh(pt+1) | pt) = Pr(ωh(pt+1) | ωh(pt))

In words, the vector ωh(pt) contains all the relevant information in pt to obtain the

probability distribution of ωh(pt+1) conditional on pt. Instead of all the prices and attributes,

we only need a single index for each size. Two vectors of prices that yield the same (vector

of) current inclusive values imply the same distribution of future inclusive values. This

assumption is violated if individual prices have predictive power above and beyond the

predictive power of ωh(pt).

The inclusive values can be estimated outside the dynamic demand model. Therefore,

the assumption can be tested and somewhat relaxed by including additional statistics of

prices in the state space. Note, that ωh(pt) is consumer specific: different consumers value a

given set of products differently and therefore this assumption does not further restrict the

distribution of heterogeneity.

Given this assumption, the integrated value function is V̄h(iht,ωht) that includes only

X + 1 variables, instead of 3 ∗ J ∗X + 1 state variables.

4. Estimation

4.1. Estimation of brand choice. Let jht represent the brand choice of household h
at period t. Under the assumption that there is product differentiation in purchasing but

not in consumption or in the cost of inventory holding, a household brand choice is a static

decision problem. Given xht = x, with x > 0, the optimal brand choice is:

jht = arg max
j∈{1,2,...,J}

{
βh ajxt − αh pjxt + ξjxt + εhjxt

}
The estimation of demand models of differentiated products, either static or dynamic, should

deal with two important issues. First, the endogeneity of prices. The model implies that
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pjxt depends on observed and unobserved products attributes, and therefore pjxt and ξjxt
are not independently distributed. The second issue, is that the model should allow for

rich heterogeneity in consumers marginal utilities of product attributes, βh and αh. Us-

ing consumer-level data (instead of aggregate market share data) facilities significantly the

econometric solution of these issues.

Consumer-level scanner datasets contain rich information on household socioeconomic

characteristics. Let zh be a vector of observable socioeconomic characteristics that have a

potential effect on demand, for instance, income, family size, age distribution of children and

adults, education, occupation, type of housing, etc. We assume that βh and αh depend on

this vector of household characteristics:

βh = β0 + (zh − z̄)σβ

αh = α0 + (zh − z̄)σα

β0 and α0 are scalar parameters that represent the marginal utility of advertising and income,

respectively, for the average household in the sample. z̄ is the vector of household attributes

of the average household in the sample. And σβ and σα are K × 1 vectors of parameters

that represent the effect of household attributes on marginal utilities. Therefore, the utility

of purchasing can be written as:

[β0 + (zh − z̄)σβ] ajxt − [α0 + (zh − z̄)σα] pjxt + ξjxt + εhjxt

=
[
β0 ajxt − α0 pjxt + ξjxt

]
+ (zh − z̄) [ajxt σβ − pjxt σα] + εhjxt

= δjxt + (zh − z̄) σjxt + εhjxt

where δjxt ≡ β0 ajxt − α0 pjxt + ξjxt, and σjxt ≡ ajxt σβ − pjxt σα. δjxt is a scalar that

represents the utility of product (j, x, t) for the average household in the sample. σjxt is a

vector and each element in this vector represents the effect of a household attribute on the

utility of product (j, x, t).

In fact, it is possible to allow also for interactions between the observable household

attributes and the unobservable product attributes, to have a term λhξjxt where λh = 1 +

(zh − z̄)σλ. With this more general specification, we still have that δjxt ≡ β0 ajxt − α0

pjxt + ξjxt, but now σjxt ≡ ajxt σβ − pjxt σα + ξjxtσλ.

4.1.1. Dummy-Variables Maximum Likelihood + IV estimator. Given this representation

of the brand choice model, the probability that a household with attributes zh purchases

brand j at period t given that he buys x units of the product is:

Phjxt =
exp {δjxt + (zh − z̄) σjxt}∑J
k=1 exp {δkxt + (zh − z̄) σkxt}
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Given a sample with a large number of households, we can estimate δjxt and σjxt for every

(j, x, t) in a multinomial logit model with probabilities {Phjxt}. For instance, we can estimate
these "incidental parameters" δjxt and σjxt separately for every value of (x, t). For (t = 1,x =

1) we select the subsample of households in sample who purchase x = 1 unit of the product

at week t = 1. Using this subsample, we estimate the vector of J(K + 1) parameters

{δj11, σj11 : j = 1, 2, ..., J} by maximizing the multinomial log-likelihood function:

H∑
h=1

1{xh1 = 1}
J∑
j=1

1{jh1 = j} lnPhj11

We can proceed in the same way to estimate all the parameters {δjxt, σjxt}.
This estimator is consistent as H goes to infinity for fixed T , X, and J . For a given

(finite) sample, there are some requirements on the number of observations in order to be

able to estimate the incidental parameters. For every value of (x, t), the number of incidental

parameters to estimate is J(K + 1), and the number of observations is equal to the number

of households who purchase x units at week t, that is, H(x, t) =
∑H

h=1 1{xht = x}. We
need that H(x, t) > J(K + 1). For instance, with J = 25 products and K = 4 household

attributes, we needH(x, t) > 125 for every week t and every size x. We may need a very large

number of households H in the sample in order to satisfy these conditions. An assumption

that may eliminate this problem is that the utility from brand choice is proportional to

quantity: x(βh ajt − αh pjt + ξjt + εhjt). Under this assumption, we have that for every

week t, the number of incidental parameters to estimate is J(K + 1), but the number of

observations is now equal to the number of households who purchase any quantity x > 0 at

week t, that is, H(t) =
∑H

h=1 1{xht > 0}. We need that H(t) > J(K + 1) which is a much

weaker condition.

Given estimates of the incidental parameters, {δ̂jxt, σ̂jxt}, now we can estimate the struc-
tural parameters β0, α0, σβ, and σα using an IV (or GMM) method. For the estimation of

β0 and α0, we have that:

δ̂jxt = β0 ajxt − α0 pjxt + ξjxt + ejxt

where ejxt represents the estimation error (δ̂jxt − δjxt). This is a linear regression where

the regressor pjxt is endogenous. We can estimate this equation by IV using the so-called

"BLP instruments", that is, the characteristics other than price of products other than j,

{akxt : k 6= j}. Of course, there are other approaches to deal with the endogeneity of prices
in this equation. For instance, we could consider the following Error-Component structure

in the endogenous part of the error term: ξjxt = ξ
(1)
jx + ξ

(2)
jxt where ξ

(2)
jxt is assumed not serially

correlated. Then, we can control for ξ(1)
jx using product-size dummies, and use lagged values
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of prices and other product attributes to deal with the endogeneity of prices that comes from

the correlation with the transitory shock ξ(2)
jxt.

For the estimation of σβ, and σα, we have the system of equations:

σ̂jxt = ajxtσβ − pjxt σα + ξjxtσλ + ejxt

where ejxt represents the estimation error (σ̂jxt − σjxt). We have one equation for each

household attribute. We can estimate each of these equations using the same IV procedure

as for the estimation of β0 and α0.

Once we have estimated (β0, α0, σβ, σα), we can also obtain estimates of ξjxt as residuals

from the estimated equation. We can get also consistent estimates of the marginal utilities

βh and αh as:

β̂h = β̂0 + (zh − z̄)σ̂β

α̂h = α̂0 + (zh − z̄)σ̂α

Finally, we can get estimates of the inclusive values:

ω̂hxt = ln

(
J∑
j=1

exp
{
β̂h ajxt − α̂h pjxt + ξ̂jxt

})
4.1.2. Control function approach. The previous approach, though simple, has the limita-

tion that we need to have, for every week in the sample, a large enough number of households

making positive purchases. That requirement is not needed for identification of the para-

meters. It is only needed for the implementation of the simple two-step dummy variables

approach to deal with the endogeneity of prices.

When our sample does not satisfy that requirement, there is other simple method that

we can use. This method is a control function approach that is in the spirit of the meth-

ods proposed by Rivers and Vuong (Journal of Econometrics, 1988), Blundell and Powell

(REStud, 2004), and in the specific context of demand of differentiated products, Petrin and

Train (Journal of Marketing Research, 2010).

If firms choose prices to maximize profits, we expect that prices depend on the own prod-

uct characteristics and also on the characteristics of competing products: pjxt = fjxt(at, ξt),

where at = {ajxt :for any j, x}, and ξt = {ξjxt :for any j, x}. Define the conditional mean
function:

gpjx(at) ≡ E(pjxt | at) = E(fjxt(at, ξt) | at)

Then, we can write the regression equation:

pjxt = gpjx(at) + ejxt

where the error term ejxt is by construction mean independent of at.
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The first step of the control function method consists in the estimation of the conditional

mean functions gpjxfor every brand and size (j, x). Though we have a relatively large number

of weeks in our dataset (more than 100 weeks in most scanner datasets), the number of

variables in the vector at is J ∗ X, that is a pretty large number. Therefore, we need to
impose some restrictions on how the exogenous product characteristics in at affect prices.

For instance, we may assume that,

gpjx(at) = gpjx
(
ajxt, āj(−x)t, ā(−j)xt, ā(−jx)t

)
where āj(−x)t is the sample mean of variable a at period t for all the products of brand j but

with different size than x; ā(−j)xt is the sample mean for all the products with size x but with

brand different than j; and ā(−jx)t is the sample mean for all the products with size different

than x and brand different than j. Of course, we can consider more flexible specifications

but still with a number of regressors much smaller than J ∗X.
The second step of the method is based on a decomposition of the error term ξjxt in two

components: an endogenous that is a deterministic function of the error terms in the first

step, et ≡ {ejxt : for any j and x}, and an "exogenous" component that is independent of
the price pjxt once we have controlled for ejxt. Define the conditional mean function:

gξjx(et) ≡ E(ξjxt | et)

Then, we can write ξjxt as the sum of two components, ξjxt = gξjx(et)+vjxt. By construction,

the error term vjxt is mean independent of et. But then, vjxt is mean independent of all the

product prices because prices depend only on the exogenous product characteristics at (that

by assumption are independent of ξjxt) and on the "residuals" et (that by construction are

mean independent of vjxt). Then, we can write the utility of product (j, x) as:

βh ajxt − αh pjxt + gξjx(et) + (vjxt + εhjxt)

The term gξjx(et) is the control function.

Under the assumption that (vjxt + εhjxt) is iid extreme value type 1 distributed, we have

that the brand choice probabilities conditional on xht = x are:

Phjxt =
exp

{
β0ajxt − α0pjxt + ajxt(zh − z̄)σβ − pjxt(zh − z̄)σα + gξjx(et)

}
∑J

k=1 exp
{
β0akxt − α0pkxt + akxt(zh − z̄)σβ − pkxt(zh − z̄)σα + gξkx(et)

}
where the control functions {gξjx(et)} consists of a brand dummies and polynomial in the
residual variables {ejxt : j = 1, 2, ..., J}. Then, we can estimate (β0, α0, σβ, σα) and the

parameters of the control function by using Maximum Likelihood in this multinomial logit
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model. The log-likelihood function is:

`(θ) =

H∑
h=1

T∑
t=1

X∑
x=1

J∑
j=1

1{xht = x , jht = j} lnPhjxt

As in the previous method, once we have estimated these parameters, we can construct

consistent estimates of the inclusive values ωhxt.

4.2. Estimation of quantity choice. As mentioned above, the lack of data on house-
hold inventories is a challenging econometric problem because this is a key state variable

in a dynamic demand model of demand of a storable good. Also, this is not a "standard"

unobservable variable in the sense that it follows a stochastic process that is endogenous.

That is, not only inventories affect purchasing decision, but also purchasing decisions affect

the evolution of inventories.

The approach used by Erdem, Imai, and Keane (2003) to deal with this problem is

to assume that household inventories is a (deterministic) function of "number of weeks

(duration) since last purchase", Tht, and the quantity purchased in the last purchase, x`astht :

iht = fh(x
`ast
ht , Tht)

In general, this assumption holds under two conditions: (1) consumption is deterministic;

and (2) when a new purchase is made, the existing inventory at the beginning of the week is

consumed or scrapped. For instance, suppose that these conditions hold and that the level

of consumption is constant cht = ch. Then,

iht+1 = max
{

0 ; x`astht − ch Tht
}

The constant consumption can be replace by a consumption rate that depends on the level

of inventories. For instance, cht = λhiht. Then:

iht+1 = max
{

0 ; (1− λh)Tht x`astht

}
Using this approach, the state variable iht should be replaced by the state variables

(x`astht , Tht), but the rest of the features of the model remain the same. The parameters ch or

λh can be estimated together with the rest of parameters of the structural model. Also, we

may not need to solve for the optimal consumption decision.

There is no doubt that using observable variables to measure inventories is very useful

for the estimation of the model and for identification. It also provides a more intuitive

interpretation of the identification of the model.

The individual level data provide the probability of purchase conditional on current

prices, and past purchases of the consumer (amounts purchased and duration from previous

purchases): Pr(xht|x`astht , Tht,pt). Suppose that we see that this probability is not a function

of past behavior (x`astht , Tht), we would then conclude that dynamics are not relevant and
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that consumers are purchasing for immediate consumption and not for inventory. On the

other hand, if we observe that the purchase probability is a function of past behavior, and

we assume that preferences are stationary then we conclude that there is dynamic behavior.

Regarding the identification of storage costs, consider the following example. Suppose we

observe two consumers who face the same price process and purchase the same amount over

a relatively long period. However, one of them purchases more frequently than the other.

This variation leads us to conclude that this consumer has higher storage costs. Therefore,

the storage costs are identified from the average duration between purchases.

Hendel and Nevo use a different approach, though the identification of their model is

based on the same intuition.

5. Empirical Results

To Be Completed

6. Dynamic Demand of Differentiated Durable Products

- Gowrisankaran and Rysman (2009). TBW



CHAPTER 9

Empirical Dynamic Games of Oligopoly Competition

1. Introduction

The last three lectures of the course deal with methods and applications of empirical

dynamic games of oligopoly competition. More generally, some of the methods that I will

describe can be applied to estimate dynamic games in other applied fields such as political

economy (for instance, competition between political parties), or international economics

(for instance, ratification of international treaties), among others.

Dynamic games are powerful tools for the analysis of phenomena characterized by dy-
namic strategic interactions between multiple agents. By dynamic strategic interactions
we mean that:

(a) players’current decisions affect their own and other players’payoffs in the
future (that is, multi-agent dynamics);

(b) players’decisions are forward looking in the sense that they take into
account the implications on their own and on their rivals’future behavior and

how this behavior affects future payoffs (that is, strategic behavior).

Typical sources of dynamic strategic interactions are decisions that are partially irre-

versible (costly to reverse) or that involve sunk costs. Some examples in the context of firm

oligopoly competition: (1) entry-exit in markets; (2) introduction of a new product; timing
of the release of a new movie; (3) reposition of product characteristics; (4) investment in ca-
pacity, or equipment, or R&D, or quality, or goodwill, or advertising; (5) pricing of a durable
good; pricing when demand is characterized by consumer switching costs; (6) production
when there is learning-by-doing.

Taking into account dynamic strategic interactions may change substantially our inter-

pretation of some economic phenomena or the implications of some public policies. We have

already discussed some examples from recent applications in IO: (1) Short-run and long-run
responses to changes in industry regulations (Ryan, 2006); (2) Product repositioning in dif-
ferentiated product markets (Sweeting, 2007); (3) Dynamic aspects of network competition
(Aguirregabiria and Ho, 2008).

273
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Road Map: 1. Structure of empirical dynamic games; 2. Identification; 3.

Estimation; 4. Dealing with unobserved heterogeneity; 5. Empirical Applications;

5.1. Dynamic effects of industry regulation (Ryan, 2006); 5.2. Product repositioning

in differentiated product markets (Sweeting, 2007); 5.3. Dynamic aspects of network

competition (Aguirregabiria and Ho, 2008).

2. Dynamic version of Bresnahan-Reiss model

Based on Bresnahan and Reiss (AES, 1994)

Complete information; homogeneous firms

2.1. Motivation. Suppose that we have panel data of M markets over T periods of

time.

Data = { nmt, Xmt : m = 1, 2, ...,M ; t = 1, 2, ..., T }
In these data, we observe how in market the number of firms grow or decline. Suppose that

we do not know the gross changes in the number of firms, that is, we do not observe the

number of new entrants, enmt, and number of exits, exmt. We only observe the net change

nmt − nmt−1 = enmt − exmt.
To explain the observed variation, across markets and over time, in the number of firms,

we could propose and estimate the BR static model that we have considered so far. The

only difference is that now we have multiple realizations of the game both because the game

is played at different locations and because it is played at different periods of time.

However, the static BR model imposes a strong and unrealistic restriction on this type

of panel data. According to the static model, the number of firms at previous period, nmt−1,

does not play any role in the determination of the current number of firms nmt. This is

because the model considers that the profit of an active firm is the same regardless it was

active at previous period or not. That is, the model assumes that either there are not entry

costs, or that entry costs are paid every period the firm is active such that both new entrants

and incumbents should pay these costs. Of course, this assumption is very unrealistic for

most industries.

Bresnahan and Reiss (AES, 1994) propose and estimate a dynamic extension of their

static model of entry. This dynamic model distinguishes between incumbents and potential

entrants and takes into account the existence of sunk entry costs. The model is simple but

interesting and useful because its own simplicity. We could call it a "semi-structural" model.

It is structural in the sense that is fully consistent with dynamic game of entry-exit in an

oligopoly industry. But it is only "semi" in the sense that it does not model explicitly how

the future expected value function of an incumbent firm depends on the sunk-cost. Ignoring

this relationship has clear computational advantages in the estimation of the model, that is
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very simple. It has also limitations in terms of the type of the counterfactuals and empirical

questions that can be studied using this model.

2.2. Model. Let nt be the number of firms active in the market at period t. nt belongs
to the set {0, 1, ..., N} where N is a large but finite number. Let V (nt, Xt)− εt be the value
function of an active firm in a market with exogenous characteristics (Xt, εt) and number of

firms nt. The additive error term εt can be interpreted as an iid shock in the fixed cost of

being active in the market. The function V (n,X) is strictly decreasing in n.

This value function does not include the cost of entry. Let EC be the entry cost that a

new entrant should pay to be active in the market at period t. And let SV be the scrapping

value of a firm that decides to exit from the market. For the moment, we consider that

EC and SV are constant parameters but I will discuss later how this assumption can be

relaxed.

An important and obvious condition is that SV ≤ EC. That is, firms cannot make

profits by constantly entering and exiting in a market. It is an obvious arbitrage condition.

The parameter EC−SV is called the sunk entry cost, that is, it is the part of the entry cost
that is sunk and cannot be recovered upon exit. For instance, administrative costs, costs of

market research, and in general any investment in capital that is firm specific and therefore

will not have market value when the firm exits the market.

The values or payoffs of incumbents and potential entrants are: Incumbent that decides

to stay: V (nt, Xt) − εt; Incumbent that exits: SV ; New entrant: V (nt, Xt) − εt − EC;

Potential entrant stays out: 0.

Now, I describe the entry-exit equilibrium conditions that determine the equilibrium

number of firms nt as a function of (Xt, εt).

Regime 1: Exit. Suppose that nt−1 > 0 and V (nt−1, Xt) − εt < SV . That is, at

the beginning of period t, the values of the exogenous variables Xt and εt are realized, the

incumbent firms at previous period find out that the value of being active in the market is

smaller than the scrapping value of the firm. Therefore, these firms want to exit.

It should be clear that under this regime there is not entry. Since SV ≤ EC, we have

that V (nt−1, Xt)− εt < EC and therefore V (nt−1 + 1, Xt)− εt < EC. The value for a new

entrant is smaller than the entry cost and therefore there is not entry.

Therefore, incumbent firms will start quitting the market up to the point when: either

(a) there are no more firms in the market, that is, nt = 0; or (b) there are still firms in

the market and the value of an active firm is greater or equal the scrapping value. The
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equilibrium number of firms in this regime is given by the conditions: nt = 0 if V (1, Xt)− εt < SV
OR
nt = n > 0 if {V (n,Xt)− εt ≥ SV } AND {V (n+ 1, Xt)− εt < SV }

The condition {V (nt, Xt)− εt ≥ SV } says that an active firm in the market does not want

to exit. Condition {V (nt + 1, Xt) − εt < SV } establishes that if there were any number of
firms in the market greater than nt, firms would prefer to exit.

Summarizing, Regime 1 [Exit] is described by the following condition on exogenous
variables {nt−1 > 0} and {εt > V (nt−1, Xt)− SV }, and this condition implies that:

nt < nt−1

and nt is determined by nt = 0 if V (1, Xt)− εt < SV
OR
nt = n > 0 if V (n+ 1, Xt)− SV < εt ≤ V (n,Xt)− SV

Regime 2: Entry. Suppose that nt−1 < N and V (nt−1 + 1, Xt) − εt ≥ EC. At the

beginning of period t, potential entrants realize that the value of being active in the market

is greater than the entry cost. Therefore, potential entrants want to enter in the market.

It should be clear that under this regime there is not exit. Since SV ≤ EC and V (nt−1 +

1, Xt) < V (nt−1, Xt), we have that the condition {V (nt−1 + 1, Xt)− εt ≥ EC} implies that
{V (nt−1, Xt) − εt > SV }. The value of an incumbent is greater than the scrapping value
and therefore there is not exit.

Therefore, new firms will start entering the market up to the point when: either (a) there

are no more potential entrants to enter in the market, that is, nt = N ; or (b) there are still

potential entrants that may enter the market but the value of an active firm goes down to a

level such that there are not more incentives for additional entry. The equilibrium number

of firms in this regime is given by the conditions: nt = N if V (N,Xt)− εt ≥ EC
OR
nt = n < N if {V (n,Xt)− εt ≥ EC} AND {V (n+ 1, Xt)− εt < EC}

Condition {V (nt, Xt)− εt ≥ EC} says that the last firm that entered the market wanted to

enter. Condition {V (nt + 1, Xt) − εt < EC} establishes that one more firm in the market

would not get enough value to cover the entry cost.

Summarizing, Regime 2 [Entry] is described by the following condition on exogenous
variables {nt−1 < N} and {εt ≤ V (nt−1 + 1, Xt)− EC}, and this condition implies that:

nt > nt−1
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and nt is determined by nt = N if V (N,Xt)− εt ≥ EC
OR
nt = n < N if V (n+ 1, Xt)− EC < εt ≤ V (n,Xt)− EC

Regime 3: Inaction. The third possible regime is given by the complementary condi-
tions to those that define regimes 1 and 2. Under these conditions, incumbent firms do not

want to exit and potential entrants do not want to enter.

{nt = nt−1} iff


{nt−1 = 0} AND {V (1, Xt)− εt < EC}

OR
{nt−1 = N} AND {V (N,Xt)− εt ≥ SV }

OR
{0 < nt−1 < N} AND {V (nt−1 + 1, Xt)− εt < EC} AND {V (nt−1, Xt)− εt ≥ SV }

Putting the three regimes together, we can obtain the probability distribution of the

endogenous nt conditional on (nt−1,Xt). Assume that εt is i.i.d. and independent of Xt with

CDF Fε. Then:

Pr(nt = n | nt−1, Xt) =



Fε

(
V (n,Xt)−SV

σ

)
− Fε

(
V (n+1,Xt)−SV

σ

)
if n < nt−1

Fε

(
V (nt−1,Xt)−SV

σ

)
− Fε

(
V (nt−1+1,Xt)−EC

σ

)
if n = nt−1

Fε

(
V (n,Xt)−EC

σ

)
− Fε

(
V (n+1,Xt)−EC

σ

)
if n > nt−1

It is interesting to compare this probability distribution of the number of firms with the

one from the static BR model. In the static BR model:

Pr(nt = n | nt−1, Xt) = Fε

(
V (n,Xt)

σ

)
− Fε

(
V (n+ 1, Xt)

σ

)
This is exactly the distribution that we get in the dynamic model when EC = SV . Note

that EC = SV the sunk cost EC − SV is zero and firms’entry-exit decisions are static.

When EC > SV (positive sunk cost), the dynamic model delivers different predictions

than the static model. There are two main differences. First, number of firms is more

persistence over time, that is, there is "structural state dependence" in the number of firms.

Pr(nt = nt−1 | nt−1, Xt) =


Fε

(
V (nt−1,Xt)−SV

σ

)
− Fε

(
V (nt−1+1,Xt)−EC

σ

)
if EC > SV

Fε

(
V (nt−1,Xt)

σ

)
− Fε

(
V (nt−1+1,Xt)

σ

)
if EC = SV

In the static model, all the persistent in the number of firms is because this variable

is indivisible, it is an integer. In the dynamic model, sunk entry costs introduce more

persistence. A purely transitory shock (in Xt or in εt) that increases the number of firms at

some period t will have a persistent effect for several periods in the future.
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Second, there the number of firms responses asymmetrically to positive and negative

shocks. Given EC > SV , it is possible to show that the upward response is less elastic than

the downward response.

2.3. Identification. It is interesting to explore the identification of the model. With
this model and data, we cannot identify nonparametrically the distribution of εt. So we

make a parametric assumption on this distribution. For instance, we assume that εt has a

N(0, σ2) distribution.

Define Pentry(nt−1, Xt) and Pexit(nt−1, Xt) as the probabilities of positive (entry) and

negative (exit) changes in the number of firms, respectively. That is, Pentry(nt−1, Xt) ≡
Pr (nt > nt−1 | nt−1, Xt) and Pexit(nt−1, Xt) ≡ Pr (nt < nt−1 | nt−1, Xt). These probability

functions are nonparametrically identified from our panel data on {nt, Xt}.
The model predicts the following structure for the probabilities of entry and exit

Pentry(nt−1, Xt) = Pr (V (nt−1 + 1, Xt)− εt > EC | Xt) =

= Φ

(
V (nt−1 + 1, Xt)− EC

σ

)
and:

Pexit(nt−1, Xt) = Pr (V (nt−1, Xt)− εt < SV | Xt)

= 1− Φ

(
V (nt−1, Xt)− SV

σ

)
Using these expressions, it is simple to obtain that, for any (nt−1, Xt):

EC − SV
σ

= Φ−1 (1− Pexit(nt−1, Xt))− Φ−1 (Pentry(nt−1 − 1, Xt))

where Φ−1 is the inverse function of the CDF of εt.

Therefore, even with a nonparametric specification of the value function V (n,X), we can

identify the sunk cost up to scale. Note that this expression provides a clear intuition about

the source of identification of this parameter. The magnitude of this parameter is identified

by "a distance" between the probability of entry of potential entrants and the probability of

staying of incumbents (1− Pexit). In a model without sunk costs, both probabilities should
be the same. In a model with sunk costs, the probability of staying in the market should be

greater than the probability of entry.

Since we do not know the value of σ, the value of the parameter EC−SV
σ

is not meaningful

from an economic point of view. However, based on the identification of EC−SV
σ

and the

identification up to scale of the value function V (n,X), that we show below, it is possible



2. DYNAMIC VERSION OF BRESNAHAN-REISS MODEL 279

to get an economically meaningful estimate of the importance of sunk cost. Suppose that

V (n,X)/σ is identified. Then, we can identify the ratio:

EC − SV
V (n,X)

=
EC−SV

σ
V (n,X)

σ

For instance, we have EC−SV
V (1,X)

which is the percentage of the sunk cost over the value of a

monopoly in a market with characteristics X.

Following the same argument as for the identification of the constant parameter EC−SV
σ

,

we can show the identification of a sunk cost that depends nonparametrically on the state

variables (nt−1, Xt). That is, we can identify a sunk cost function
EC(nt−1,Xt)−SV (nt−1,Xt)

σ
.

This has economic interest. In particular, the dependence of the sunk cost with respect

to the number of incumbents nt−1 is evidence of endogenous sunk costs (see John Sutton’s

book titled "Sunk Costs and Market Structure," MIT Press, 1991). Therefore, we can test

nonparametrically for the existence of endogenous sunk costs by testing the dependence of

the estimated function EC(nt−1,Xt)−SV (nt−1,Xt)
σ

with respect to nt−1.

We can also use the probabilities of entry and exit to identify the value function V (n,X).

The model implies that:

Φ−1 (Pentry(nt−1 − 1, Xt)) = V (nt−1,Xt)−EC
σ

Φ−1 (1− Pexit(nt−1, Xt)) = V (nt−1,Xt)−SV
σ

The left-hand-side of these equations is identified from the data. From these expressions, it

should be clear that we cannot identify EC/σ separately from a constant term in the value

function (a fixed cost), and we cannot identify SV/σ separately from a constant term in the

value function.

Let −FC be the constant term or fixed cost in the value function. More formally, define
the parameter FC as the expected value:

FC ≡ −E (V (nt−1, Xt))

Also define the function V ∗(nt−1, Xt) as the deviation of the value function with respect to

its mean:

V ∗(nt−1, Xt) ≡ V (nt−1, Xt)−−E (V (nt−1, Xt))

= V (nt−1, Xt) + FC

Also, define also EC∗ ≡ EC + FC, and SV ∗ ≡ SV + FC such that, by definition,

V (nt−1, Xt)− EC = V ∗(nt−1, Xt)− EC∗, and V (nt−1, Xt)− SV = V ∗(nt−1, Xt)− SV ∗.
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Then, EC
∗

σ
, SV

∗

σ
, and V ∗(nt−1, Xt)/σ are identified nonparametrically from the following

expressions:

EC∗

σ
= E (Φ−1 (Pentry(nt−1 − 1, Xt)))

SV ∗

σ
= E (Φ−1 (1− Pexit(nt−1, Xt)))

And

V ∗(nt−1, Xt)

σ
= Φ−1 (Pentry(nt−1 + 1, Xt))− E

(
Φ−1 (Pentry(nt−1 + 1, Xt))

)
and

V ∗(nt−1, Xt)

σ
= Φ−1 (1− Pexit(nt−1, Xt))− E

(
Φ−1 (1− Pexit(nt−1, Xt))

)
In fact, we can see that the function V ∗(., .) is over identified: it can be identified either

from the probability of entry or from the probability of exit. This provides over-identification

restrictions that can be used to test the restrictions or assumptions of the model.

Again, one of the main limitations of this model is the assumption of homogeneous firms.

In fact, as an implication of that assumption, the model predicts that there should not be

simultaneous entry and exit. This prediction is clearly rejected in many panel datasets on

industry dynamics.

2.4. Estimation of the model. Given a parametric assumption about the distribution
of εt, and a parametric specification of the value function V (n,X), we can estimate the model

by conditional maximum likelihood. For instance, suppose that εt is i.i.d. across markets

and over time with a distribution N(0, σ2), and the value function is linear in parameters:

V (nt, Xt) = g(nt, Xt)
′β − FC

where g(., .) is a vector of known functions, and β is a vector of unknown parameters.

Let θ be the vectors of parameters to estimate:

θ = { β/σ, EC∗/σ, SV/σ}

Then, we can estimate θ using the conditional maximum likelihood estimator:

θ̂ = arg max
θ

M∑
m=1

T∑
t=1

N∑
n=0

1{nmt = n} log Pr(n | nmt−1, Xmt; θ)
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where:

Pr(nt = n | nt−1, Xt) =



Φ

(
g(n,Xt)

′β

σ
− SV

σ

)
− Φ

(
g(n+ 1, Xt)

′β

σ
− SV

σ

)
if n < nt−1

Φ

(
g(n,Xt)

′β

σ
− SV

σ

)
− Φ

(
g(n+ 1, Xt)

′β

σ
− EC

σ

)
if n = nt−1

Φ

(
g(n,Xt)

′β

σ
− EC

σ

)
− Φ

(
g(n+ 1, Xt)

′β

σ
− EC

σ

)
if n > nt−1

Based on the previous identification results, we can also construct a simple least squares

estimator of θ. Let P̂ entry
mt and P̂ exit

mt be nonparametric Kernel estimates of Pentry(nmt−1 + 1,

Xmt) and Pexit(nmt−1, Xmt), respectively. The model implies that:

Φ−1
(
P̂ entry
mt

)
=

(
−EC

∗

σ

)
+ g(nmt−1, Xmt)

′β

σ
+ eentrymt

Φ−1
(

1− P̂ exit
mt

)
=

(
−SV

∗

σ

)
+ g(nmt−1, Xmt)

′β

σ
+ eexitmt

where eentrymt and eexitmt are error terms that come from the estimation error in P̂
entry
mt and P̂ exit

mt .

We can put together these regression equations in a single regression as:

Ydmt = Ddmt

(
−EC

∗

σ

)
+ (1−Ddmt)

(
−SV

∗

σ

)
+ g(nmt−1, Xmt)

′β

σ
+ emt

where Ydmt ≡ Ddmt Φ−1
(
P̂ entry
mt

)
+ (1 − Ddmt)Φ

−1
(

1− P̂ exit
mt

)
; the subindex d represents

the "regime", d ∈ {entry, exit}, and Ddmt is a dummy variable that is equal to one when

d = entry and it is equal to zero when d = exit.

OLS estimation of this linear regression equation provides a consistent estimator of θ.

This estimator is not effi cient but we can easily obtain an asymptotically effi cient estimator

by making one Newton-Raphson iteration in the maximization of the likelihood function.

2.5. Structural model and counterfactual experiments. This dynamic model is
fully consistent with a dynamic game of entry-exit. However, the value function V (n,X)

is not a primitive or a structural function. It implicitly depends on the one-period profit

function, on the entry cost EC, on the scrapping value SV , and on the equilibrium of the

model (that is, on equilibrium firms’strategies).

The model and the empirical approach that we have described above does not make

explicit the relationship between the primitives of the model and the value function, or

how this value function depends on the equilibrium transition probability of the number

of firms, P ∗(nt+1|nt, Xt). This "semi-structural" approach has clear advantages in terms of

computational and conceptual simplicity. However, it has also its limitations. We discuss

here its advantages and limitations.
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Similar approaches have been proposed and applied for the estimation of dynamic models

of occupational choice by Geweke and Keane (2001) and Florian Hoffmann (2009). This

type of approach is different to other methods that have been proposed and applied to the

estimation of dynamic structural models and that also try to reduce the computational cost

in estimation, such as Hotz and Miller (1993 and 1994) and Aguirregabiria and Mira (2002

and 2007). We will see these other approaches later in the course.

To understand the advantages and limitations of Bresnahan and Reiss "semi-structural"

model of industry dynamics it is useful to relate the value function V (nt, Xt) with the actual

primitives of the model. Let π(nt, Xt, εt) be the profit function of an incumbent firm that

stays in the market is π(nt, Xt)− εt. Therefore:

V (nt, Xt) = E

( ∞∑
j=0

δj [(1− Exitt+j) π(nt+1, Xt+j, εt+j) + Exitt+jSV ] | nt, Xt

)

where δ is the discount factor; and Exitt+j is a binary variable that indicates if the firm

exits from the market at period t + j (that is, Exitt+j = 1) or stays in the market (that

is, Exitt+j = 0). The expectation is taken over all future paths of the state variables

{nt+1, Xt+j, εt+j}. In particular, this expectation depends on the stochastic process that
follows the number of firms in equilibrium and that is governed by the transition probability

Pr(nt+1|nt, Xt).

The transition probability Pr(nt+1|nt, Xt) is determined in equilibrium and it depends

on all the structural parameters of the model. More specifically, this transition probability

can be obtained as the solution of a fixed point problem. Solving this fixed point problem

is computationally demanding. The "semi-structural" approach avoids this computational

cost by ignoring the relationship between the value function V (nt, Xt) and the structural

parameters of the model. This can provide huge computational advantages, especially when

the dimension of the state space of (nt, Xt) is large and/or when the dynamic game may

have multiple equilibria.

These significant computational gains come with a cost. The range of predictions and

counterfactual experiments that we can make using the estimated "semi-structural" model is

very limited. In particular, we cannot make predictions about how the equilibrium transition

Pr(nt+1|nt, Xt) (or the equilibrium steady-state distribution of nt) changes when we perturb

one the parameters in θ.

There are two types of problems in this model to implement these predictions of counter-

factual experiments. First, the parameters β are not structural such that we cannot change

one of this parameters and assume that the rest will stay constant. Or in other words, we

do not know what that type of experiment means.
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Second, though EC∗ and SV ∗ are structural parameters, the parameters β in the value

function should depend on EC∗ and SV ∗, but we do not know the form of that relationship.

We cannot assume that EC∗ or SV ∗ and β remains constant. Or that type of experiment

does not have a clear interpretation or economic interest.

For instance, suppose that we want to predict how a 20% increase in the entry cost

would affect the transition dynamic and the steady state distribution of the number of

firms. If λ0 = EC∗/σ is our estimate of the value of the parameter in the sample, then its

counterfactual value is λ1 = 1.2λ0. However, we also know that the value function should

change. In particular, the value of an incumbent firm increases when the entry costs increase.

The "semi-structural" model ignores that the value function V will change as the result

of the change in the entry cost. Therefore, it predicts that entry will decline, and that

the exit/stay behavior of incumbent firms will not be affected because V and SV have not

changed.

There are two errors in the prediction of the "semi-structural" model. First, it overesti-

mates the decline in the amount of entry because it does not take into account that being

an incumbent in the market now has more value. And second, it ignores that, for the same

reason, exit of incumbent firms will also decline.

Putting these two errors together we have that this counterfactual experiment using the

"semi-structural" model can lead to a serious under-estimate of the number of firms in the

counterfactual scenario.

Later in the course we will study other methods for the estimation of structural models

of industry dynamics that avoid the computational cost of solving for the equilibrium of the

game but that do not have the important limitations, in terms of counterfactual experiments,

of the semi-structural model here.

Nevertheless, it is diffi cult to overemphasize the computational advantages of Bresnahan-

Reiss empirical model of industry dynamics. It is a useful model to obtain a first cut of

the data, and to answer empirical questions that do not require the implementation of

counterfactual experiments, for instance, testing for endogenous sunk costs, or measuring

the magnitude of sunk costs relative to the value of an incumbent firm.

3. The structure of dynamic games of oligopoly competition

3.1. Basic Framework and Assumptions. Time is discrete and indexed by t. The
game is played by N firms that we index by i. Following the standard structure in the

Ericson-Pakes (1995) framework, firms compete in two different dimensions: a static di-

mension and a dynamic dimension. We denote the dynamic dimension as the "investment

decision". Let ait be the variable that represents the investment decision of firm i at period
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t. This investment decision can be an entry/exit decision, a choice of capacity, investment

in equipment, R&D, product quality, other product characteristics, etc. Every period, given

their capital stocks that can affect demand and/or production costs, firms compete in prices

or quantities in a static Cournot or Bertand model. Let pit be the static decision variables

(for instance, price) of firm i at period t.

For simplicity and concreteness, I start presenting a simple dynamic game of market

entry-exit where every period incumbent firms compete a la Bertrand. In this entry-exit

model, the dynamic investment decision ait is a binary indicator of the event "firm i is active

in the market at period t". The action is taken to maximize the expected and discounted

flow of profits in the market, Et (
∑∞

r=0 δ
r Πit+r) where δ ∈ (0, 1) is the discount factor, and

Πit is firm i’s profit at period t. The profits of firm i at time t are given by

Πit = V Pit − FCit − ECit

where V Pit represents variable profits, FCit is the fixed cost of operating, and ECit is a one

time entry cost. We now describe these different components of the profit function.

(a) Variable Profit Function. The variable profit V Pit is an "indirect" variable profit
function that comes from the equilibrium of a static Bertrand game with differentiated

product. Consider the simplest version of this type of model. Suppose that all firms have

the same marginal cost, c, and product differentiation is symmetric. Consumer utility of

buying product i is uit = ν−αpit+εit, where ν and α are parameters, and εit is a consumer-

specific i.i.d. extreme value type 1 random variable. Under these conditions, the equilibrium

variable profit of an active firm depends only on the number of firms active in the market.

V Pit = (pit − c)qit

where pit and qit represent the price and the quantity sold by firm i at period t, respectively.

According this model, the quantity is:

qit = Ht
ait exp{v − α pit}

1 +
∑N

j=1 ajt exp{v − α pjt}
= Ht sit

where Ht is the number of consumers in the market (market size) and sit is the market

share of firm i. Under the Nash-Bertrand assumption the first order conditions for profit

maximization are:

qit + (pit − c) (−α) qit (1− sit) = 0

or

pit = c+
1

α (1− sit)
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Since all firms are identical, we consider a symmetric equilibrium, p∗t = p∗it for every firm i̇.

Therefore, sit = ait s
∗
t , and:

s∗t =
exp{v − α p∗t}

1 + nt exp{v − α p∗t}
where nt ≡

∑N
j=1 ajt is the number of active firms at period t. Then, it is simple to show

that the equilibrium price p∗t is implicitly defined as the solution to the following fixed point

problem:

p∗t =

(
c+

1

α

)
+

1

α

(
exp{v − α p∗t}

1 + (nt − 1) exp{v − α p∗t}

)
It is simple to show that an equilibrium always exists. The equilibrium price depends on the

number of firms active in the market, but in this model it does not depend on market size:

p∗t = p∗(nt). Similarly, the equilibrium market share s∗t is a function of the number of active

firms: s∗t = s∗(nt). Therefore, the indirect or equilibrium variable profit of an active firm is:

V Pit = ait Ht (p∗(nt)− c) s∗(nt)

= ait Ht θ
V P (nt)

where θV P is a function that represents variable profits per capita.

For most of the analysis below, I will consider that the researcher does not have access to

information on prices and quantities. Therefore, we will treat {θV P (1), θV P (2), ..., θV P (N)}
as parameters to estimate from the structural dynamic game.

Of course, we can extend the previous approach to incorporate richer form of product

differentiation. In fact, product differentiation can be endogenous. Suppose that the quality

parameter v in the utility function can take A possible values: v(1) < v(2) < ... < v(A). And

suppose that the investment decision ait combines an entry/exit decision with a "quality"

choice decision. That is, ait ∈ {0, 1, ..., A} where ait = 0 represents that firm i is not active

in the market, and ait = a > 0 implies that firm i is active in the market with a product of

quality a. It is straightforward to show that, in this model, the equilibrium variable profit

of an active firm is:

V Pit =
A∑
a=1

1{ait = a} Ht θ
V P (a, n

(1)
t , n

(2)
t , ..., n

(A)
t )

where θV P is the variable profit per capita that now depends on the firm’s own quality, and

one the number of competitors at each possible level of quality.

(b) Fixed Cost. The fixed cost is paid every period that the firm is active in the market,

and it has the following structure:

FCit = ait
(
θFCi + εit

)
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θFCi is a parameter that represents the mean value of the fixed operating cost of firm i. εit is

a zero-mean shock that is private information of firm i. There are two main reasons why we

incorporate these private information shocks in the model. First, as shown in Doraszelski

and Satterthwaite (2007) it is way to guarantee that the dynamic game has at least one

equilibrium in pure strategies. And second, they are convenient econometric errors. If

private information shocks are independent over time and over players, and unobserved to the

researcher, they can ’explain’players heterogeneous behavior without generating endogeneity

problems.

We will see later that the assumption that these private information shocks are the only

unobservables for the researcher can be too restrictive. We will study how to incorporate

richer forms of unobserved heterogeneity.

For the model with endogenous quality choice, we can generalize the structure of fixed

costs:

FCit =
A∑
a=1

1{ait = a}
(
θFCi (a) + εit(a)

)
where now the mean value of the fixed cost, θFCi (a), and the private information shock,

εit(a), depend on the level quality.

(c) Entry Cost and Repositioning costs. The entry cost is paid only if the firm was

not active in the market at previous period:

ECit = ait (1− xit) θECi
where xit is a binary indicator that is equal to 1 if firm i was active in the market in period

t−1, that is, xit ≡ ai,t−1, and θ
EC
i is a parameter that represents the entry cost of firm i. For

the model with endogenous quality, we can also generalize this entry cost to incorporate also

costs of adjusting the level of quality, or repositioning product characteristics. For instance,

ECit = 1{xit = 0}
(∑A

a=1 1{ait = a} θECi (a)
)

+ 1{xit > 0}
(
θ
AC(+)
i 1{ait > xit}+ θ

AC(−)
i 1{ait < xit}

)
Now, xit = ai,t−1 also represents the firm’s quality at previous period. θ

EC
i (a) is the cost of

entry with quality a, and θAC(+)
i and θAC(−)

i represents the costs of increasing and reducing

quality, respectively, once the firm is active.

The payoff relevant state variables of this model are: (1) market size Ht; (2) the incum-

bent status (or quality levels) of firms at previous period {xit : i = 1, 2, ..., N}; and (3) the
private information shocks {εit : i = 1, 2, ..., N}. The specification of the model is completed
with the transition rules of these state variables. Market size follows an exogenous Markov

process with transition probability function FH(Ht+1|Ht). The transition of the incumbent
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status is trivial: xit+1 = ait. Finally, the private information shock εit is i.i.d. over time and

independent across firms with CDF Gi.

Note that in this example, I consider that firms’ dynamic decisions are made at the

beginning of period t and they are effective during the same period. An alternative timing

that has been considered in some applications is that there is a one-period time-to-build,

that is, the decision is made at period t, and entry costs are paid at period t, but the firm

is not active in the market until period t+ 1. The latter is in fact the timing of decisions in

Ericson and Pakes (1995). All the results below can be generalized in a straightforward way

to that case, and we will see empirical applications with that timing assumption.

3.2. Markov Perfect Equilibrium. Most of the recent literature in IO studying indus-
try dynamics focuses on studying a Markov Perfect Equilibrium (MPE), as defined by Maskin

and Tirole (Econometrica, 1988). The key assumption in this solution concept is that players’

strategies are functions of only payoff-relevant state variables. We use the vector xt to repre-

sent all the common knowledge state variables at period t, that is, xt ≡ (Ht, x1t, x2t, ..., xNt).

In this model, the payoff-relevant state variables for firm i are (xt, εit).

Note that if private information shocks are serially correlated, the history of previous

decisions contains useful information to predict the value of a player’s private information,

and it should be part of the set of payoff relevant state variables. Therefore, the assumption

that private information is independently distributed over time has implications for the set

of payoff-relevant state variables.

Let α = {αi(xt, εit) : i ∈ {1, 2, ..., N}} be a set of strategy functions, one for each firm. A
MPE is a set of strategy functions α∗ such that every firm is maximizing its value given the

strategies of the other players. For given strategies of the other firms, the decision problem

of a firm is a single-agent dynamic programming (DP) problem. Let V αi (xt, εit) be the value

function of this DP problem. This value function is the unique solution to the Bellman

equation:

V αi (xt, εit) = max
ait

{
Παi (ait,xt)− εit(ait) + δ

∫
V αi (xt+1, εit+1) dGi(εit+1) Fαi (xt+1|ait,xt)

}
(3.1)

where Παi (ait,xt) and Fαi (xt+1|ait,xt) are the expected one-period profit and the expected
transition of the state variables, respectively, for firm i given the strategies of the other firms.

For the simple entry/exit game, the expected one-period profit Παi (ait,xt) is:

Παi (ait,xt) = ait

[
Ht

N−1∑
n=0

Pr
(∑

j 6=i αj(xt, εjt) = n | xt
)
θV P (n+ 1)− θFCi − (1− xit)θECi

]



288 9. EMPIRICAL DYNAMIC GAMES OF OLIGOPOLY COMPETITION

And the expected transition of the state variables is:

Fαi (xt+1|ait,xt) = 1{xit+1 = ait}
[∏
j 6=i

Pr (xj,t+1 = αj(xt, εjt) | xt)
]
FH(Ht+1 | Ht)

A player’s best response function gives her optimal strategy if the other players behave,

now and in the future, according to their respective strategies. In this model, the best

response function of player i is:

α∗i (xt, εit) = arg max
ait
{vαi (ait,xt)− εit(ait)}

where vαi (ait,xt) is the conditional choice value function that represents the value of firm i if:

(1) the firm chooses alternative ait today and then behaves optimally forever in the future;

and (2) the other firms behave according to their strategies in α. By definition,

vαi (ait,xt) ≡ Παi (ait,xt) + δ

∫
V αi (xt+1, εit+1) dGi(εit+1) Fαi (xt+1|ait,xt)

A Markov perfect equilibrium (MPE) in this game is a set of strategy functions α∗ such that

for any player i and for any (xt, εit)we have that:

α∗i (xt, εit) = arg max
ait

{
vα
∗

i (ait,xt)− εit(ait)
}

3.3. Conditional Choice Probabilities. Given a strategy function αi(xt, εit), we can
define the corresponding Conditional Choice Probability (CCP) function as :

Pi(a|x) ≡ Pr (αi(xt, εit) = a | xt = x)

=

∫
1{αi(xt, εit) = a} dGi(εit)

Since choice probabilities are integrated over the continuous variables in εit, they are lower

dimensional objects than the strategies α. For instance, when both ait and xt are discrete,

CCPs can be described as vectors in a finite dimensional Euclidean space. In our entry-

exit model, Pi(1|xt) is the probability that firm i is active in the market given the state

xt. Under standard regularity conditions, it is possible to show that there is a one-to-one

relationship between strategy functions αi(xt, εit) and CCP functions Pi(a|xt). From now

on, we use CCPs to represent players’strategies, and use the terms ’strategy’and ’CCP’as

interchangeable. We also use ΠP
i and F

P
i instead of Παi and F

α
i to represent the expected

profit function and the transition probability function, respectively.

Based on the concept of CCP, we can represent the equilibrium mapping and a MPE

in way that is particularly useful for the econometric analysis. This representation has two

main features:

(1) a MPE is a vector of CCPs;
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(2) a player’s best response is an optimal response not only to the other players’

strategies but also to her own strategy in the future.

A MPE is a vector of CCPs, P ≡ {Pi(a|x) : for any (i, a, x)}, such that for every firm
and any state x the following equilibrium condition is satisfied:

Pi(a|x) = Pr

(
a = arg max

ai

{
vPi (ai,x)− εi(ai)

}
| x
)

The right hand side of this equation is a best response probability function. vPi (ai,x) is a

conditional choice probability function, but it has a slightly different definition that before.

Now, vPi (ai,x) represents the value of firm i if: (1) the firm chooses alternative ai today; and

(2) all the firms, including firm i, behave according to their respective CCPs in P. The

Representation Lemma in Aguirregabiria and Mira (2007) shows that every MPE in this

dynamic game can be represented using this mapping. In fact, this is result is a particular

application of the so called "one-period deviation principle".

The form of this equilibrium mapping depends on the distribution of εi. For instance, in

the entry/exit model, if εi is N(0, σ2
ε):

Pi(1|x) = Φ

(
vPi (1,x)− vPi (0,x)

σε

)
In the model with endogenous quality choice, if εi(a)’s are extreme value type 1 distributed:

Pi(a|x) =
exp

{
vPi (a,x)

σε

}
∑A

a′=0 exp
{
vPi (a′,x)

σε

}
3.4. Computing vPi for arbitrary P. Now, I describe how to obtain the conditional

choice value functions vPi . Since v
P
i is not based on the optimal behavior of firm i in the

future, but just in an arbitrary behavior described by Pi(.|.), calculating vPi does not require
solving a DP problem, and it only implies a valuation exercise.

By definition:

vPi (ai,x) = ΠP
i (ai,x) + δ

∑
x′

V P
i (x′) FPi (x′|ai,x)

ΠP
i (ai,x) is the expected current profit. In the entry/exit example:

ΠP
i (ai,x) = ai

[
H

N−1∑
n=0

Pr (n−i = n | x, P) θV P (n+ 1)− θFCi − (1− xi)θECi
]

= ai
[
zPi (x) θi

]
where θi is the vector of parameters:

θi =
(
θV P (1), θV P (2), ...,θV P (N), θFCi , θECi

)′
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and zPi (x) is the vector that depends only on the state x and on the CCPs at state x, but

not on structural parameters.

zPi (x) = (H Pr (n−i = 1|x,P) , ..., H Pr (n−i = N − 1|x,P) , − 1, − (1− xi))

For the dynamic game with endogenous quality choice, we can also represent the expected

current profit ΠP
i (ai,x) as:

ΠP
i (ai,x) = zPi (ai,x) θi

The value function V P
i represents the value of firm i if all the firms, including firm i,

behave according to their CCPs in P. We can obtain V P
i as the unique solution of the

recursive expression:

V P
i (x) =

A∑
ai=0

Pi(ai|x)

[
zPi (ai,x)θi + δ

∑
x′

V P
i (x′) FP(x′|ai,x)

]
When the space X is discrete and finite, we can obtain V P

i as the solution of a system of

linear equations of dimension |X |. In vector form:

VP
i =

[
A∑

ai=0

Pi(ai) ∗ zPi (ai)

]
θi + δ

[
A∑

ai=0

Pi(ai) ∗ FP
i (ai)

]
VP
i

= z̄Pi θi + δ F̄PVP
i

where z̄Pi =
∑A

ai=0 Pi(ai) ∗ zPi (ai), and F̄P =
∑A

ai=0 Pi(ai) ∗ FP
i (ai). Then, solving for VP

i ,

we have:

VP
i =

(
I− δ F̄P

)−1
z̄Pi θi

= WP
i θi

where WP
i =

(
I− δ F̄P

)−1
z̄Pi is a matrix that only depends on CCPs and transition prob-

abilities but not on θ.

Solving these expressions into the formula for the conditional choice value function, we

have that:

vPi (ai,x) = z̃Pi (ai,x) θi

where:

z̃Pi (ai,x) = zPi (ai,x) + δ
∑
x′

FPi (x′|ai,x) WP
i

Finally, the equilibrium or best response mapping in the space of CCPs becomes:

Pi(a|x) = Pr

(
a = arg max

ai

{
z̃Pi (ai,x) θi − εi(ai)

}
| x
)
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For the entry/exit model with εi ∼ N(0, σ2
ε):

Pi(1|x) = Φ

([
z̃Pi (1,x)− z̃Pi (0,x)

] θi
σε

)
In the model with endogenous quality choice with εi(a)’s extreme value type 1 distributed:

Pi(a|x) =

exp

{
z̃Pi (a,x)

θi
σε

}
∑A

a′=0 exp

{
z̃Pi (a′,x)

θi
σε

}
Identification

First, let’s summarize the structure of the dynamic game of oligopoly competition.

Let θ be the vector of structural parameters of the model, where θ = {θi : i = 1, 2, ..., N}
and θi includes the vector of parameters in the variable profit, fixed cost, and entry cost of

firm i: for instance, in the entry-exit example, θi = (θV P (1), θV P (2), ...,θV P (N), θFCi , θECi )′.

Let P(θ) = {Pi(a|x,θ) : for any (i, a,x)} be a MPE of the model associated with θ. P(θ) is

a solution to the following equilibrium mapping: for any (i, ai,x):

Pi(ai|x,θ) =

exp

{
z̃Pi (ai,x)

θi
σε

}
∑A

a′=0 exp

{
z̃Pi (a′,x)

θi
σε

}
where the vector of values z̃Pi (a,x) are

z̃Pi (ai,x) = zPi (ai,x) + δ
∑
x′

FPi (x′|ai,x) WP
i

and WP
i = WP

i =
(
I− δ F̄P

)−1
z̄Pi , and z

P
i (ai,x) is a vector with the different components

of the current expected profit. For instance, in the entry-exit example:

zPi (0,x) = (0, 0, 0, ...0)

zPi (1,x) = (H Pr (n−i = 1|x,P) , ..., H Pr (n−i = N − 1|x,P) , − 1, − (1− xi))
That is, z̃Pi (ai,x) represents the expected present value of the different components of the

current profit of firm i if he chooses alternative ai today, and then all the firms, including

firm i, behave in the future according to their CCPs in the vector P.

In general, I will use the function Ψi(ai,x; P,θ) to represent the best response or equi-

librium function that in our example is
exp

z̃Pi (ai,x)
θi
σε


∑A
a′=0 exp

z̃Pi (a′,x)
θi
σε


. Then, we can represent in a

compact form a MPE as:

P = Ψ(P,θ)
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where Ψ(P,θ) = {Ψi(ai,x; P,θ) : for any (i, a,x)}.
Our first goal is to use data on firms’investment decisions {ait} and state variables {xit}

to estimate the parameters θ.

Our second goal is to use the estimated model to perform counterfactual analysis/experiments

that will help us to understand competition in this industry and to evaluate the effects of

public policies or/and changes in structural parameters.

Data. In most applications of dynamic games in empirical IO the researcher observes a
random sample of M markets, indexed by m, over T periods of time, where the observed

variables consists of players’ actions and state variables. In the standard application in

IO, the values of N and T are small, but M is large. Two aspects of the data deserve

some comments. For the moment, we consider that the industry and the data are such

that: (a) each firm is observed making decisions in every of the M markets; and (b) the

researcher knows all the payoff relevant market characteristics that are common knowledge

to the firms. We describe condition (a) as a data set with global players. For instance,

this is the case in a retail industry characterized by competition between large retail chains

which are potential entrants in any of the local markets that constitute the industry. With

this type of data we can allow for rich firm heterogeneity that is fixed across markets and

time by estimating firm-specific structural parameters, θi. This ’fixed-effect’approach to

deal with firm heterogeneity is not feasible in data sets where most of the competitors can

be characterized as local players, that is, firms specialized in operating in a few markets.

Condition (b) rules out the existence of unobserved market heterogeneity. Though it is a

convenient assumption, it is also unrealistic for most applications in empirical IO. Later

I present estimation methods that relax conditions (a) and (b) and deal with unobserved

market and firm heterogeneity.

Suppose that we have a random sample ofM local markets, indexed bym, over T periods

of time, where we observe:

Data = {amt, xmt : m = 1, 2, ...,M ; t = 1, 2, ..., T}

We want to use these data to estimate the model parameters in the population that has

generated this data: θ0 = {θ0
i : i ∈ I}.

Identification. A significant part of this literature has considered the following identi-
fication assumptions.

Assumption (ID 1): Single equilibrium in the data. Every observation in the sample comes

from the same Markov Perfect Equilibrium, that is, for any observation (m, t), P0
mt = P0.
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Assumption (ID 2): No unobserved common-knowledge variables. The only unobservables

for the econometrician are the private information shocks εimt and the structural parameters

θ.

Comments on these assumptions: .... The assumption of no unobserved common knowl-

edge variables (for instance, no unobserved market heterogeneity) is particularly strong.

It is possible to relax these assumptions. We will see later identification and estimation

when we relax assumption ID 2. The following is a standard regularity condition.

Assumption (ID 3): For some benchmark choice alternative, say ai = 0, define Zimt ≡
z̃P

0

i (aimt,xmt)− z̃P
0

i (0,xmt). Then, E(Z ′imtZimt) is a non-singular matrix.

Under assumptions ID-1 to ID-3, the proof of identification is straightforward. First,

under assumptions ID-1 and ID-2, the equilibrium that has generated the data, P0, can be

estimated consistently and nonparametrically from the data. For any (i, ai,x):

P 0
i (ai|x) = Pr(aimt = ai | xmt = x)

For instance, we can estimate consistently P 0
i (ai|x) using the following simple kernel esti-

mator:

P 0
i (ai|x) =

∑
m,t 1{aimt = ai} K

(
xmt − x

bn

)
∑

m,tK

(
xmt − x

bn

)
Second, given that P0 is identified, we can identify also the expected present values z̃P

0

i (ai,x)

at the "true" equilibrium in the population. Third, we know that P0 is an equilibrium asso-

ciated to θ0. Therefore, the following equilibrium conditions should hold: for any (i, ai,x),

P 0
i (ai|x) =

exp

{
z̃P

0

i (ai,x)
θ0
i

σ0
ε

}
∑A

a′=0 exp

{
z̃P

0

i (a′,x)
θ0
i

σ0
ε

}
It is straightforward to show that under Assumption ID-3, these equilibrium conditions

identify
θ0
i

σ0
ε

. For instance, in this logit example, we have that for (i, ai,x),

ln

(
P 0
i (ai|x)

P 0
i (0|x)

)
=
[
z̃P

0

i (ai,x)− z̃P0i (0,x)
] θ0

i

σ0
ε

Define Yimt ≡ ln
(
P 0i (aimt|xmt)
P 0i (0|xmt)

)
and Zimt ≡ z̃P

0

i (aimt,xmt)− z̃P
0

i (0,xmt). Then,

Yimt = Zimt
θ0
i

σ0
ε
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And we can also write this system as, E(Z ′imtYimt) = E(Z ′imtZimt)
θ0
i

σ0
ε

. Under assumption

ID-3:
θ0
i

σ0
ε

= E(Z ′imtZimt)
−1E(Z ′imtYimt)

and
θ0
i

σ0
ε

is identified.

Note that under the single-equilibrium-in-the-data assumption, the multiplicity of equi-

libria in the model does not play any role in the identification of the structural parameters.

The single-equilibrium-in-the-data assumption is a suffi cient for identification but it is not

necessary. Sweeting (2009), Aguirregabiria and Mira (2009), and Paula and Tang (2010)

present conditions for the point-identification of games of incomplete information when there

are multiple equilibria in the data.

Estimation

The use of a ’extended’or ’pseudo’likelihood (or alternatively GMM criterion) function

plays an important role in the different estimation methods. For arbitrary values of the

vector of structural parameters θ and firms’strategies P, we define the following likelihood

function of observed players’actions {aimt} conditional on observed state variables {xmt}:

Q(θ,P) =
∑
i,m,t

A∑
ai=0

1{aimt = ai} ln Ψi(ai,xmt; P,θ)

We call Q(θ,P) a ’Pseudo’Likelihood function because players’CCPs in P are arbitrary

and do not represent the equilibrium probabilities associated with θ implied by the model.

An important implication of using arbitrary CCPs, instead of equilibrium CCPs, is that

likelihood Q is a function and not a correspondence. To compute this pseudo likelihood, a

useful construct is the representation of equilibrium in terms of CCPs, which I presented

above.

We could also consider a Pseudo GMM Criterion function:

Q(θ,P) = −r(θ,P)′ Ω r(θ,P)

where Ω is the weighting matrix and r(θ,P) is the vector of moment conditions:

r(θ,P) =
1

MT

∑
m,t

h(xmt)⊗

 1{aimt = ai} −Ψi(ai,xmt; P,θ)
...

for any (i, ai)


and h(xmt) is a vector of functions of xmt (instruments).
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Full Maximum Likelihood. The dynamic game imposes the restriction that the strate-
gies in P should be in equilibrium. The ML estimator is defined as the pair (θ̂MLE, P̂MLE)

that maximizes the pseudo likelihood subject to the constraint that the strategies in P̂MLE

are equilibrium strategies associated with θ̂MLE. That is,

(θ̂MLE, P̂MLE) = arg max
(θ,P)

Q(θ,P)

s.t. Pi(ai|x) = Ψi(ai,x; P,θ) for any (i, ai,x)

This is a constrained ML estimator that satisfies the standard regularity conditions for

consistency, asymptotic normality and effi ciency of ML estimation.

The numerical solution of the constrained optimization problem that defines these esti-

mators requires one to search over an extremely large dimensional space. In the empirical

applications of dynamic oligopoly games, the vector of probabilities P includes thousands

or millions of elements. Searching for an optimum in that kind of space is computation-

ally demanding. Su and Judd (2008) have proposed to use a MPEC algorithm, which is a

general purpose algorithm for the numerical solution of constrained optimization problems.

However, even using the most sophisticated algorithm such as MPEC, the optimization with

respect to (P,θ) can be extremely demanding when P has a high dimension.

Two-step methods. Let P0 be the vector with the population values of the probabili-

ties P 0
i (ai|x) ≡ Pr(aimt = ai|xmt = x). Under the assumptions of "no unobserved common

knowledge variables" and "single equilibrium in the data", the CCPs in P0 represent also

firms’strategies in the only equilibrium that is played in the data. These probabilities can be

estimated consistently using standard nonparametric methods. Let P̂0 be a consistent non-

parametric estimator of P0. Given P̂0, we can construct a consistent estimator of z̃P
0

i (ai,x).

Then, the two-step estimator of θ0 is defined as:

θ̂2S = arg max
θ

Q(θ, P̂
0
)

After the computation of the expected present values z̃P
0

i (ai,x), this second step of the

procedure is computationally very simple. It consists just in the estimation of a standard

discrete choice model, for instance, a binary probit/logit in our entry-exit example, or a

conditional logit in our example with quality choice. Under standard regularity conditions,

this two-step estimator is root-M consistent and asymptotically normal.

This idea was originally exploited, for estimation of single agent problems, by Hotz and

Miller (1993) and Hotz, Miller, Sanders and Smith (1994). It was expanded to the estimation

of dynamic games by Aguirregabiria and Mira (2007), Bajari, Benkard and Levin (2007),

Pakes, Ostrovsky and Berry (2007), and Pesendorfer and Schmidt-Dengler (2008).
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The main advantage of these two-step estimators is their computational simplicity. The

first step is a simple nonparametric regression, and the second step is the estimation of a

standard discrete choice model with a criterion function that in most applications is globally

concave (for instance, such as the likelihood of a standard probit model in our entry-exit

example). The main computational burden comes from the calculation of the present values

W P̂
i (x). Though the computation of these present values may be subject to a curse of dimen-

sionality, the cost of obtaining a two-step estimator is several orders of magnitude smaller

than solving (just once) for an equilibrium of the dynamic game. In most applications, this

makes the difference between being able to estimate the model or not.

However, these two-step estimators have some important limitations. A first limitation is

the restrictions imposed by the assumption of no unobserved common knowledge variables.

Ignoring persistent unobservables, if present, can generate important biases in the estimation

of structural parameters. We deal with this issue later.

A second problem is finite sample bias. The finite sample bias of the two-step estimator of

θ0 depends very importantly on the properties of the first-step estimator of P0. In particular,

it depends on the rate of convergence and on the variance and bias of P̂0. It is well-

known that there is a curse of dimensionality in the nonparametric estimation of a
regression function such as P0. The rate of convergence of the estimator (and its asymptotic

variance) declines (increase) with the number of explanatory variables in the regression.

The initial nonparametric estimator can be very imprecise in the samples available in actual

applications, and this can generate serious finite sample biases in the two-step estimator of

structural parameters.

In dynamic games with heterogeneous players, the number of observable state variables

is proportional to the number of players and therefore the so called curse of dimensionality

in nonparametric estimation (and the associated bias of the two-step estimator) can be

particularly serious. For instance, in our dynamic game of product quality choice, the vector

of state variables contains the qualities of the N firms.

The source of this bias is well understood in two-step methods: P̂ enters nonlinearly

in the sample moment conditions that define the estimator, and the expected value of a

nonlinear function of P̂ is not equal to that function evaluated at the expected value of P̂.

The larger the variance or the bias of P̂, the larger the bias of the two-step estimator of θ0.

To see this, note that the PML or GMM estimators in the second step are based on moment

conditions at the true P0:

E ( h(xmt) [1{aimt = ai} −Ψi(ai,x; P0,θ)] ) = 0
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The same moment conditions evaluated at P̂0 do not hold because of the estimation error:

E
(
h(xmt)

[
1{aimt = ai} −Ψi(ai,x; P̂0,θ0)

] )
6= 0

This generates a finite sample bias. The best response functionΨi(ai,x; P̂0,θ0) is a nonlinear

function of the random vector P̂0, and the expected value of a nonlinear function is not equal

to the function evaluated at the expected value. The largest the finite sample bias or the

variance of P̂0, the largest the bias of the two-step estimation of θ0.

Recursive K-step estimators. To deal with finite sample bias, Aguirregabiria and
Mira (2002, 2007) consider a recursive K-step extension. Given the two-step estimator θ̂2S

and the initial nonparametric estimator of CCPs, P̂0, we can construct a new estimator of

CCPs, P̂1, such that, for any (i, ai,x):

P̂ 1
i (ai|x) = Ψi(ai,x; P̂0, θ̂2S)

or in our example:

P̂ 1
i (ai|x) =

exp
{
z̃P̂

0

i (ai,x) θ̂i,2S

}
∑A

a′=0 exp
{
z̃P̂

0

i (a′,x) θ̂i,2S

}
This new estimator of CCPs exploits the parametric structure of the model, and the structure

of best response functions. It seems intuitive that this new estimator of CCPs has better

statistical properties than the initial nonparametric estimator, that is, smaller asymptotic

variance, and smaller finite sample bias and variance. As we explain below, this intuition is

correct as long as the equilibrium that generated the data is (Lyapunov) stable.

Under this condition, it seems natural to obtain a new two-step estimator by replacing

P̂0 with P̂1 as the estimator of CCPs. Then, we can obtain the new estimator:

θ̂ = arg max
θ

Q(θ, P̂
1
)

The same argument can be applied recursively to generate a sequence of K−step estimators.
Given an initial consistent nonparametric estimator P̂0, the sequence of estimators {θ̂K , P̂K :

K ≥ 1} is defined as:
θ̂
K

= arg max
θ

Q(θ, P̂
K−1

)

and

P̂K = Ψ(P̂K−1, θ̂
K

)

Monte Carlo experiments in Aguirregabiria and Mira (2002, 2007), and Kasahara and

Shimotsu (2008a, 2009) show that iterating in the NPL mapping can reduce significantly the

finite sample bias of the two-step estimator. The Monte Carlo experiments in Pesendorfer

and Schmidt-Dengler (2008) present a different, more mixed, picture. While for some of

their experiments NPL iteration reduces the bias, in other experiments the bias remains
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constant or even increases. A closer look at the Monte Carlo experiments in Pesendorfer and

Schmidt-Dengler shows that the NPL iterations provide poor results in those cases where

the equilibrium that generates the data is not (Lyapunov) stable. As we explain below, this

is not a coincidence. It turns out that the computational and statistical properties of the

sequence of K-step estimators depend critically on the stability of the NPL mapping around

the equilibrium in the data.

Convergence properties of recursive K-step estimators. To study the properties
of these K-step estimators, it is convenient to represent the sequence {P̂K : K ≥ 1} as the
result of iterating in a fixed point mapping. For arbitrary P, define the mapping:

ϕ(P) ≡ Ψ(P, θ̂(P))

where θ̂(P) ≡ arg maxθ Q (θ,P). The mapping ϕ(P) is called the Nested Pseudo Likelihood

(NPL) mapping. The sequence of estimators {P̂K : K ≥ 1} can be obtained by successive
iterations in the mapping ϕ starting with the nonparametric estimator P̂0, that is, forK ≥ 1,

P̂K = ϕ(P̂K−1).

Lyapunov stability. Let P∗ be a fixed point of the NPL mapping such that P∗ =

ϕ (P∗). We say that the mapping ϕ is Lyapunov-stable around the fixed point P∗ if there

is a neighborhood of P∗, N , such that successive iterations in the mapping ϕ starting at
P ∈N converge to P∗. A necessary and suffi cient condition for Lyapunov stability is that the

spectral radius of the Jacobian matrix ∂ϕ (P∗) /∂P′ is smaller than one. The neighboring

set N is denoted the dominion of attraction of the fixed point P∗. The spectral radius

of a matrix is the maximum absolute eigenvalue. If the mapping ϕ is twice continuously

differentiable, then the spectral radius is a continuous function of P. Therefore, if ϕ is

Lyapunov stable at P∗, for any P in the dominion of attraction of P∗ we have that the

spectral radius of ∂ϕ (P) /∂P′ is also smaller than one. Similarly, if P∗ is an equilibrium of

the mapping Ψ (.,θ), we say that this mapping is Lyapunov stable around P∗ if and only if

the spectral radius of the Jacobian matrix ∂Ψ (P∗,θ) /∂P′ is smaller than one.

There is a relationship between the stability of the NPL mapping and of the equilibrium

mappingΨ
(
.,θ0

)
aroundP0 (that is, the equilibrium that generates the data). The Jacobian

matrices of the NPL and equilibrium mapping are related by the following expression (see

Kasahara and Shimotsu, 2009):

∂ϕ (P0)

∂P′
= M(P0)

∂Ψ(P0,θ0)

∂P′

whereM(P0) is an idempotent projection matrix I−Ψθ(Ψ
′
θ diag{P0}−1 Ψθ)

−1Ψ′θ diag{P0}−1,

where Ψθ ≡ ∂Ψ(P0,θ0)/∂θ′. In single-agent dynamic programming models, the Jacobian

matrix ∂Ψ
(
P0,θ0

)
/∂P′ is zero (that is, zero Jacobian matrix property, Aguirregabiria and
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Mira, 2002). Therefore, for that class of models ∂ϕ (P0) /∂P′ = 0 and the NPL mapping

is Lyapunov stable around P0. In dynamic games, ∂Ψ
(
P0,θ0

)
/∂P′ is not zero. However,

given that M(P0) is an idempotent matrix, it is possible to show that the spectral radius of

∂ϕ (P0) /∂P′ is not larger than the spectral radius of ∂Ψ(P0,θ0)/∂P′. Therefore, Lyapunov

stability of P0 in the equilibrium mapping implies stability of the NPL mapping.

Convergence of NPL iterations. Suppose that the true equilibrium in the population,
P0, is Lyapunov stable with respect to the NPL mapping. This implies that with probability

approaching one, as M goes to infinity, the (sample) NPL mapping is stable around a

consistent nonparametric estimator of P0. Therefore, the sequence of K-step estimators

converges to a limit P̂0
lim that is a fixed point of the NPL mapping, that is, P̂0

lim = ϕ(P̂0
lim).

It is possible to show that this limit P̂0
lim is a consistent estimator of P0 (see Kasahara and

Shimotsu, 2009). Therefore, under Lyapunov stability of the NPL mapping, if we start with

a consistent estimator of P0 and iterate in the NPL mapping, we converge to a consistent

estimator that is an equilibrium of the model. It is possible to show that this estimator is

asymptotically more effi cient than the two-step estimator (Aguirregabiria and Mira, 2007).

Pesendorfer and Schmidt-Dengler (2010) present an example where the sequence of K-

step estimators converges to a limit estimator that is not consistent. As implied by the

results presented above, the equilibrium that generates the data in their example is not

Lyapunov stable. The concept of Lyapunov stability of the best response mapping at an

equilibrium means that if we marginally perturb players’strategies, and then allow players

to best respond to the new strategies, then we will converge to the original equilibrium. To

us this seems like a plausible equilibrium selection criterion. Ultimately, whether an unstable

equilibrium is interesting depends on the application and the researchers taste. Nevertheless,

at the end of this section we present simple modified versions of the NPL method that can

deal with data generated from an equilibrium that is not stable.

Reduction of finite sample bias. Kasahara and Shimotsu (2008a, 2009) derive a
second order approximation to the bias of the K-step estimators. They show that the key

component in this bias is the distance between the first step and the second step estimators

of P0, that is,
∥∥∥ϕ(P̂0

)
− P̂0

∥∥∥. An estimator that reduces this distance is an estimator with
lower finite sample bias. Therefore, based on our discussion in point (b) above, the sequence

of K-step estimators are decreasing in their finite sample bias if and only if the NPL mapping

is Lyapunov stable around P0.

The Monte Carlo experiments in Pesendorfer and Schmidt-Dengler (2008) illustrate this

point. They implement experiments using different DGPs: in some of them the data is gen-

erated from a stable equilibrium, and in others the data come from a non-stable equilibrium.

It is simple to verify (see Aguirregabiria and Mira, 2010) that the experiments where NPL
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iterations do not reduce the finite sample bias are those where the equilibrium that generates

the data is not (Lyapunov) stable.

Modified NPL algorithms. Note that Lyapunov stability can be tested after obtaining
the first NPL iteration. Once we have obtained the two-step estimator, we can calculate the

Jacobian matrix ∂ϕ(P̂0)/∂P′ and its eigenvalues, and then check whether Lyapunov stability

holds at P̂0.

If the applied researcher considers that her data may have been generated by an equi-

librium that is not stable, then it will be worthwhile to compute this Jacobian matrix and

its eigenvalues. If Lyapunov stability holds at P̂0, then we know that NPL iterations reduce

the bias of the estimator and converge to a consistent estimator.

When the condition does not hold, then the solution to this problem is not simple.

Though the researcher might choose to use the two-step estimator, the non-stability of

the equilibrium has also important negative implications on the properties of this simple

estimator. Non-stability of the NPL mapping at P0 implies that the asymptotic variance of

the two-step estimator of P0 is larger then asymptotic variance of the nonparametric reduced

form estimator. To see this, note that the two-step estimator of CCPs is P̂1 = ϕ(P̂0), and

applying the delta method we have that V ar(P̂1) = [∂ϕ (P0) /∂P′] V ar(P̂0) [∂ϕ (P0) /∂P′]′.

If the spectral radius of ∂ϕ (P0) /∂P′ is greater than 1, then V ar(P̂1) > V ar(P̂0). This is

a puzzling result because the estimator P̂0 is nonparametric while the estimator P̂1 exploits

most of the structure of the model. Therefore, the non-stability of the equilibrium that

generates the data is an issue for this general class of two-step or sequential estimators.

In this context, Kasahara and Shimotsu (2009) propose alternative recursive estimators

based on fixed-point mappings other than the NPL that, by construction, are stable. Iter-

ating in these alternative mappings is significantly more costly than iterating in the NPL

mapping, but these iterations guarantee reduction of the finite sample bias and convergence

to a consistent estimator.

Aguirregabiria and Mira (2010) propose two modified versions of the NPL algorithm

that are simple to implement and that always converge to a consistent estimator with better

properties than two-step estimators. A first modified-NPL-algorithm applies to dynamic

games. The first NPL iteration is standard but in every successive iteration best response

mappings are used to update guesses of each player’s own future behavior without updating

beliefs about the strategies of the other players. This algorithm always converges to a

consistent estimator even if the equilibrium generating the data is not stable and it reduces

monotonically the asymptotic variance and the finite sample bias of the two-step estimator.

The second modified-NPL-algorithm applies to static games and it consists in the appli-

cation of the standard NPL algorithm both to the best response mapping and to the inverse
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of this mapping. If the equilibrium that generates the data is unstable in the best response

mapping, it should be stable in the inverse mapping. Therefore, the NPL applied to the

inverse mapping should converge to the consistent estimator and should have a largest value

of the pseudo likelihood that the estimator that we converge to when applying the NPL

algorithm to the best response mapping. Aguirregabiria and Mira illustrate the performance

of these estimators using the examples in Pesendorfer and Schmidt-Dengler (2008 and 2010).

Estimation using Moment Inequalities. Bajari, Benkard, and Levin (2007) pro-
posed a two-step estimator in the spirit of the ones described before but with two important

differences:

(a) they used moment inequalities (instead of moment equalities);

(b) they do not calculate exactly the present value WP
i (xt) but they ap-

proximate them using Monte Carlo simulation.

(a) and (b) are two different ideas than can be applied separately. In my opinion, these

two ideas have different merits and therefore I will discuss them separately.

Estimation using Moment Inequalities. Remember that V P
i (xt) is the value of player i

at state xt when all the players behave according to their strategies in P. In a model where

the one-period payoff function is multiplicatively separable in the structural parameters, we

have that

V P
i (xt) = WP

i (xt) θi

and the matrix of present values WP
i ≡ {WP

i (xt) : xt ∈ X} can be obtained exactly as:

WP
i ≡

(
I− β FP

i

)−1
z̄Pi

For notational simplicity, I’ll use WP
it to represent W

P
i (xt).

Let’s split the vector of choice probabilities P into the sub-vectors Pi and P−i,

P ≡ (Pi , P−i)

where Pi are the probabilities associated to player i and P−i contains the probabilities of

players other than i. P0 is an equilibrium associated to θ0. Therefore, P0
i is firm i’s best

response to P0
−i. Therefore, for any Pi 6= P0

i the following inequality should hold:

W
(P0i ,P0−i)
it θ0

i ≥ W
(Pi,P0−i)
it θ0

i

We can define an estimator of θ0 based on these (moment) inequalities. There are infinite

alternative policies Pi, and therefore there are infinite moment inequalities. For estimation,

we should select a finite set of alternative policies. This is a very important decision for this
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class of estimators (more below). Let H be a (finite) set of alternative policies for each
player. Define the following criterion function:

R
(
θ,P0

)
≡
∑
i,m,t

∑
P∈H

(
min

{
0 ;

[
W

(P0i ,P0−i)
imt −W (Pi,P0−i)

imt

]
θi

})2

This criterion function penalizes departures from the inequalities. Then, given an initial

NP estimator of P0, say P̂0, we can define the following estimator of θ0 based on moment

inequalities (MI):

θ̂ = arg min
θ

R
(
θ, P̂0

)
There are several relevant comments to make on this MI estimator: (1) Computational

properties (relative to two-step ME estimators); (2) Point identification / Set identification;
(3) How to choose the set of alternative policies?; (4) Statistical properties; (5) Continuous
decision variables.

Computational Properties. The two-step MI estimator is more computationally
costly than a two-step ME estimator. There at least three factors than contribute to
this larger cost.

(a) In both types of estimators, the main cost comes from calculating the

present values WP
i . In a 2-step ME estimator this evaluation is done once. In

the MI estimator this is done as many times as alternative policies in the set

H;

(b) The ME criterion functions Q
(
θ, P̂

)
is typically globally concave in

θ, but R
(
θ, P̂

)
is not;

(c) Set estimation versus point estimation. The MI estimator needs an
algorithm for set optimization.

MI Estimator: Point / Set identification. This estimator is based on exactly the same

assumptions as the 2-step moment equalities (ME) estimator. We have seen that θ0 is
point identified by the moment equalities of the ME estimators (for instance, by the

pseudo likelihood equations). Therefore, if the set H of alternative policies is large enough,

then θ0 should be point identified as the unique minimizer of R (θ,P0). However, it is very

costly to consider a set H with many alternative policies. For the type of H sets which are

considered in practice, minimizing R (θ,P0) does uniquely identifies θ0. Therefore, θ0 is set
identified.
How to choose the set of alternative policies? The choice of the alternative policies in

the set H plays a key role in the statistical properties (for instance, precision, bias) of this

estimator. However, there is a clear rule on how to select these policies.
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Statistical properties of MI estimator (relative to ME). The MI estimator is not more
’robust’than the ME estimator. Both estimators are based on exactly the same model
and assumptions. Set identification. Asymptotically, the MI estimator is less effi cient
than the ME estimator. The effi cient 2-step Moment Equalities (ME) estimator has lower
asymptotic variance than the MI estimator, even as the set H becomes very large.

Continuous decision variables. BBL show that, when combined with simulation tech-

niques to approximate the values {WP
it }, the MI approach can be easily applied to the

estimation of dynamic games with continuous decision variables. In fact, the BBL
estimator of a model with continuous decision variable is basically the same as with a discrete

decision variable. The ME estimator of models with continuous decision variable may be
more complicated.

A different approach to construct inequalities in dynamic games. In a MPE a
player equilibrium strategy is her best response not only within the class of Markov strategies

but also within the class of non Markov strategies: for instance, strategies that vary over

time. Maskin and Tirole: if all the other players use Markov strategies, a player does not

have any gain from using non Markov strategies.

Suppose that to construct the inequalitiesW
(P0i ,P0−i)
it θ0

i ≥ W
(Pi,P0−i)
it θ0

i we use alternative

strategies which are non-Markov. In a MPE a player equilibrium strategy is her best response

not only within the class of Markov strategies but also within the class of non Markov

strategies: for instance, strategies that vary over time. Maskin and Tirole: if all the other

players use Markov strategies, a player does not have any gain from using non Markov

strategies. More specifically, suppose that the alternative strategy of player i is

Pi = {Pit(xt) : t = 1, 2, 3, ....; xt ∈ X}

with the following features.

(a) Two-periods deviation: Pit 6= P 0
i , Pit+1 6= P 0

i , but Pit+s = P 0
i for any s ≥ 2;

(b) Pit+1is constructed in such a way that it compensates the effects of the

perturbation Piton the distribution of xt+2 conditional on xt, that is,

FP
0(2)

x (xt+2 | xt) = FP
0(2)

x (xt+2 | xt)

Given this type of alternative policies, we have that the value differences

W
(P0i ,P0−i)
it θ0

i ≥ W
(Pi,P0−i)
it θ0

i

only depends on differences between expected payoffs at periods t and t + 1. We do not

have to use simulation, invert huge matrices, etc, and we can consider thousands (or even

millions) of alternative policies.
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Dealing with Unobserved Heterogeneity. So far, we have maintained the assump-
tion that the only unobservables for the researcher are the private information shocks that

are i.i.d. over firms, markets, and time. In most applications in IO, this assumption is not

realistic and it can be easily rejected by the data. Markets and firms are heterogenous in

terms of characteristics that are payoff-relevant for firms but unobserved to the researcher.

Not accounting for this heterogeneity may generate significant biases in parameter estimates

and in our understanding of competition in the industry.

For instance, in the empirical applications in Aguirregabiria and Mira (2007) and Collard-

Wexler (2006), the estimation of a model without unobserved market heterogeneity implies

estimates of strategic interaction between firms (that is, competition effects) that are close

to zero or even have the opposite sign to the one expected under competition. In both

applications, including unobserved heterogeneity in the models results in estimates that

show significant and strong competition effects.

Aguirregabiria and Mira (2007) and Arcidiacono and Miller (2008) have proposed meth-

ods for the estimation of dynamic games that allow for persistent unobserved heterogeneity

in players or markets. Here we concentrate on the case of permanent unobserved market

heterogeneity in the profit function.

Πimt = zPi (ai,xmt) θ
EC
ii − σξi ξm − εimt

σξi is a parameter, and ξm is a time-invariant ’random effect’that is common knowledge to

the players but unobserved to the researcher.

The distribution of this random effect has the following properties: (A.1) it has a discrete

and finite support
{
ξ1, ξ2, . . . , ξL

}
, each value in the support of ξ represents a ’market type’,

and we index market types by ` ∈ {1, 2, ..., L}; (A.2) it is i.i.d. over markets with probability
mass function λ` ≡ Pr(ξm = ξ`); and (A.3) it does not enter into the transition probability

of the observed state variables, that is, Pr(xmt+1 | xmt, amt, ξm) = Fx(xmt+1 | xmt, amt).

Without loss of generality, ξm has mean zero and unit variance because the mean and the

variance of ξm are incorporated in the parameters θ
FC
i and σξi, respectively. Also, without

loss of generality, the researcher knows the points of support
{
ξ` : ` = 1, 2, . . . , L

}
though

the probability mass function {λ`} is unknown.
Assumption (A.1) is common when dealing with permanent unobserved heterogeneity in

dynamic structural models. The discrete support of the unobservable implies that the con-

tribution of a market to the likelihood (or pseudo likelihood) function is a finite mixture of

likelihoods under the different possible best responses that we would have for each possible

market type. With continuous support we would have an infinite mixture of best responses

and this could complicate significantly the computation of the likelihood. Nevertheless, as
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we illustrate before, using a pseudo likelihood approach and a convenient parametric specifi-

cation of the distribution of ξm simplifies this computation such that we can consider many

values in the support of this unobserved variable at a low computational cost. Assumption

(A.2) is also standard when dealing with unobserved heterogeneity. Unobserved spatial cor-

relation across markets does not generate inconsistency of the estimators that we present

here because the likelihood equations that define the estimators are still valid moment con-

ditions under spatial correlation. Incorporating spatial correlation in the model, if present

in the data, would improve the effi ciency of the estimator but at a significant computational

cost. Assumption (A.3) can be relaxed, and in fact the method by Arcidiacono-Miller deals

with unobserved heterogeneity both in payoffs and transition probabilities.

Each market type ` has its own equilibrium mapping (with a different level of profits

given ξ`) and its own equilibrium. Let P` be a vector of strategies (CCPs) in market-

type `: P` ≡ {Pi`(xt) : i = 1, 2, ..., N ; xt ∈ X}. The introduction of unobserved market
heterogeneity also implies that we can relax the assumption of only ‘a single equilibrium in

the data’to allow for different market types to have different equilibria. It is straightforward

to extend the description of an equilibrium mapping in CCPs to this model. A vector of

CCPs P` is a MPE for market type ` if and only if for every firm i and every state xt

we have that: Pi`(xt) = Φ
(
z̃P`i (xt, ξ

`) θi + ẽP`i (xt, ξ
`)
)
, where now the vector of structural

parameters θi is
{
θV Pi,0 , ..., θ

V P
i,N−1, θ

FC
i , θECi , σξi

}
that includes σξi, and the vector z̃P`i (xt, ξ

`)

has a similar definition as before with the only difference that it has one more component

associated with −ξ`. Since the points of support
{
ξ` : ` = 1, 2, . . . , L

}
are known to the

researcher, she can construct the equilibrium mapping for each market type.

Let λ be the vector of parameters in the probability mass function of ξ, that is, λ≡ {λ` :

` = 1, 2, ..., L}, and let P be the set of CCPs for every market type, {P` : ` = 1, 2, ..., L}. The
(conditional) pseudo log likelihood function of this model is Q(θ,λ,P) =

∑M
m=1 log Pr(am1,

am2, ..., amT | xm1, xm2, ..., xmT ; θ,λ,P). We can write this function as
∑M

m=1 log qm(θ,λ,P),

where qm(θ,λ,P) is the contribution of market m to the pseudo likelihood:

qm(θ,λ,P) =
L∑̀
=1

λ`|xm1

[∏
i,t

Φ
(
z̃P`im`t θi + ẽP`im`t

)aimt
Φ
(
−z̃P`im`t θi − ẽ

P`
im`t

)1−aimt
]

where z̃P`im`t ≡ z̃P`i (xmt, ξ
`), ẽP`im`t ≡ ẽP`i (xmt, ξ

`), and λ`|x is the conditional probability

Pr(ξm = ξ`|xm1 = x). The conditional probability distribution λ`|x is different from the

unconditional distribution λ`. In particular, ξm is not independent of the predetermined en-

dogenous state variables that represent market structure. For instance, we expect a negative

correlation between the indicators of incumbent status, simt, and the unobserved component

of the fixed cost ξm, that is, markets where it is more costly to operate tend to have a smaller

number of incumbent firms. This is the so called initial conditions problem (Heckman, 1981).
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In short panels (for T relatively small), not taking into account this dependence between

ξm and xm1 can generate significant biases, similar to the biases associated to ignoring the

existence of unobserved market heterogeneity. There are different ways to deal with the

initial conditions problem in dynamic models (Heckman, 1981). One possible approach is to

derive the joint distribution of xm1 and ξm implied by the equilibrium of the model. That is

the approach proposed and applied in Aguirregabiria and Mira (2007) and Collard-Wexler

(2006). Let pP` ≡ {pP`(xt) : xt ∈ X} be the ergodic or steady-state distribution of xt

induced by the equilibrium P` and the transition Fx. This stationary distribution can be

simply obtained as the solution to the following system of linear equations: for every value

xt ∈ X , pP`(xt) =
∑

xt−1∈X p
P`(xt−1) FP`x (xt | xt−1), or in vector form, pP` = FP`

x pP`

subject to pP`′1 = 1. Given the ergodic distributions for the L market types, we can apply

Bayes’rule to obtain:

λ`|xm1 =
λ` p

P`(xm1)
L∑

`′=1

λ`′ pP`′ (xm1)

(3.2)

Note that given the CCPs {P`}, this conditional distribution does not depend on parame-
ters in the vector θ, only on the distribution λ. Given this expression for the probabilities

{λ`|xm1}, we have that the pseudo likelihood in (??) only depends on the structural parame-
ters θ and λ and the incidental parameters P.

For the estimators that we discuss here, we maximize Q(θ,λ,P) with respect to (θ,λ)

for given P. Therefore, the ergodic distributions pP` are fixed during this optimization.

This implies a significant reduction in the computational cost associated with the initial

conditions problem. Nevertheless, in the literature of finite mixture models, it is well known

that optimization of the likelihood function with respect to the mixture probabilities λ is

a complicated task because the problem is plagued with many local maxima and minima.

To deal with this problem, Aguirregabiria and Mira (2007) introduce an additional para-

metric assumption on the distribution of ξm that simplifies significantly the maximization of

Q(θ,λ,P) for fixed P. They assume that the probability distribution of unobserved market

heterogeneity is such that the only unknown parameters for the researcher are the mean and

the variance which are included in θFCi and σξi, respectively. Therefore, they assume that

the distribution of ξm (that is, the points of support and the probabilities λ`) are known

to the researcher. For instance, we may assume that ξm has a discretized standard normal

distribution with an arbitrary number of points of support L. Under this assumption, the

pseudo likelihood function is maximized only with respect to θ for given P. Avoiding opti-

mization with respect to λ simplifies importantly the computation of the different estimators

that we describe below.
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NPL estimator. As defined above, the NPL mapping ϕis the composition of the equi-
librium mapping and the mapping that provides the maximand in θ to Q(θ,P) for given P.

That is, ϕ(P) ≡ Ψ(θ̂(P),P) where θ̂(P) ≡ arg maxθQ(θ,P). By definition, an NPL fixed

point is a pair (θ̂, P̂) that satisfies two conditions: (a) θ̂ maximizes Q(θ, P̂); and (b) P̂ is an

equilibrium associated to θ̂. The NPL estimator is defined as the NPL fixed point with the

maximum value of the likelihood function. The NPL estimator is consistent under standard

regularity conditions (Aguirregabiria and Mira, 2007, Proposition 2).

When the equilibrium that generates the data is Lyapunov stable, we can compute the

NPL estimator using a procedure that iterates in the NPL mapping, as described in section

3.2 to obtain the sequence of K-step estimators (that is, NPL algorithm). The main difference

is that now we have to calculate the steady-state distributions p(P`) to deal with the initial

conditions problem. However, the pseudo likelihood approach also reduces significantly the

cost of dealing with the initial conditions problem. This NPL algorithm proceeds as follows.

We start with L arbitrary vectors of players’choice probabilities, one for each market type:

{P̂0
` : ` = 1, 2, ..., L}. Then, we perform the following steps. Step 1: For every market type

we obtain the steady-state distributions and the probabilities {λ`|xm1}. Step 2: We obtain
a pseudo maximum likelihood estimator of θ as θ̂

1
= arg maxθ Q(θ, P̂0}). Step 3: Update

the vector of players’choice probabilities using the best response probability mapping. That

is, for market type `, firm i and state x, P̂ 1
i`(x) = Φ(z̃

P̂0`
i (x, ξ`)θ̂

1

i + ẽ
P̂0`
i (x, ξ`)). If, for every

type `, ||P̂1
` − P̂0

` || is smaller than a predetermined small constant, then stop the iterative
procedure and keep θ̂

1
as a candidate estimator. Otherwise, repeat steps 1 to 4 using P̂1

instead of P̂0.

The NPL algorithm, upon convergence, finds an NPL fixed point. To guarantee consis-

tency, the researcher needs to start the NPL algorithm from different CCP’s in case there are

multiple NPL fixed points. This situation is similar to using a gradient algorithm, designed

to find a local root, in order to obtain an estimator which is defined as a global root. Of

course, this global search aspect of the method makes it significantly more costly than the

application of the NPL algorithm in models without unobserved heterogeneity. This is the

additional computational cost that we have to pay for dealing with unobserved heterogene-

ity. Note, however, that this global search can be parallelized in a computer with multiple

processors.

Arcidiacono and Miller (2008) extend this approach in several interesting and useful
ways. First, they consider a more general form of unobserved heterogeneity that may enter

both in the payoff function and in the transition of the state variables. Second, to deal with

the complexity in the optimization of the likelihood function with respect to the distribution

of the finite mixture, they combine the NPL method with an EM algorithm. Third, they
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show that for a class of dynamic decision models, that includes but it is not limited to optimal

stopping problems, the computation of the inclusive values z̃P`im`t and ẽ
P`
im`t is simple and it is

not subject to a ’curse of dimensionality’, that is, the cost of computing these value for given

P` does not increase exponentially with the dimension of the state space. Together, these

results provide a relatively simple approach to estimate dynamic games with unobserved

heterogeneity of finite mixture type. Note that Lyapunov stability of each equilibrium type

that generates the data is a necessary condition for the NPL and the Arcidiacono-Miller

algorithms to converge to a consistent estimator.

Kasahara and Shimotsu (2008). The estimators of finite mixture models in Aguir-
regabiria and Mira (2007) and Arcidiacono and Miller (2008) consider that the researcher

cannot obtain consistent nonparametric estimates of market-type CCPs {P0
`}. Kasahara and

Shimotsu (2008b), based on previous work by Hall and Zhou (2003), have derived suffi cient

conditions for the nonparametric identification of market-type CCPs {P0
`} and the probabil-

ity distribution of market types, {λ0
`}. Given the nonparametric identification of market-type

CCPs, it is possible to estimate structural parameters using a two-step approach similar to

the one described above. However, this two-step estimator has three limitations that do

not appear in two-step estimators without unobserved market heterogeneity. First, the con-

ditions for nonparametric identification of P0 may not hold. Second, the nonparametric

estimator in the first step is a complex estimator from a computational point of view. In

particular, it requires the minimization of a sample criterion function with respect to the large

dimensional object P. This is in fact the type of computational problem that we wanted

to avoid by using two-step methods instead of standard ML or GMM. Finally, the finite

sample bias of the two-step estimator can be significantly more severe when P0 incorporates

unobserved heterogeneity and we estimate it nonparametrically.

4. Reducing the State Space

Although two-step and sequential methods are computationally much cheaper than full

solution-estimation methods, they are still impractical for applications where the dimension

of the state space is large. The cost of computing exactly the matrix of present values

WP
z,i increases cubically with the dimension of the state space. In the context of dynamic

games, the dimension of the state space increases exponentially with the number of hetero-

geneous players. Therefore, the cost of computing the matrix of present values may become

intractable even for a relatively small number of players.

A simple approach to deal with this curse of dimensionality is to assume that players are

homogeneous and the equilibrium is symmetric. For instance, in our dynamic game of market

entry-exit, when firms are heterogeneous, the dimension of the state space is |H| ∗ 2N , where
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|H| is the number of values in the support of market size Ht. To reduce the dimensionality of

the state space, we need to assume that: (a) only the number of competitors (and not their

identities) affects the profit of a firm; (b) firms are homogeneous in their profit function; and

(c) the selected equilibrium is symmetric. Under these conditions, the payoff relevant state

variables for a firm i are {Ht, sit, nt−1} where sit is its own incumbent status, and nt−1 is the

total number of active firms at period t−1. The dimension of the state space is |H|∗2∗(N+1)

that increases only linearly with the number of players.1 It is clear that the assumption of

homogeneous firms and symmetric equilibrium can reduce substantially the dimension of

the state space, and it can be useful in some empirical applications. Nevertheless, there are

many applications where this assumption is too strong. For instance, in applications where

firms produce differentiated products.

To deal with this issue, Hotz, Miller, Sanders and Smith (1994) proposed an estima-

tor that uses Monte Carlo simulation techniques to approximate the values WP
z,i. Bajari,

Benkard, and Levin (2007) have extended this method to dynamic games and to models

with continuous decision variables. This approach has proved useful in some applications.

Nevertheless, it is important to be aware that in those applications with large state spaces,

simulation error can be sizeable and it can induce biases in the estimation of the structural

parameters. In those cases, it is worthwhile to reduce the dimension of the state space by

making additional structural assumptions. That is the general idea in the inclusive-value

approach that we have discussed in section 2 and that can be extended to the estimation of

dynamic games. Different versions of this idea have been proposed and applied by Nevo and

Rossi (2008), Maceria (2007), Rossi (2009), and Aguirregabiria and Ho (2009).

To present the main ideas, we consider here a dynamic game of quality competition

in the spirit of Pakes and McGuire (1994), the differentiated product version of Ericson-

Pakes model. There are N firms in the market, that we index by i, and B brands or

differentiated products, that we index by b. The set of brands sold by firm i is Bi ⊂
{1, 2, ..., B}. Demand is given by a model similar to that of Section 2.1: consumers choose
one of the B products offered in the market, or the outside good. The utility that consumer

h obtains from purchasing product b at time t is Uhbt = xbt − α pbt + uhbt, where xbt is

the quality of the product, pbt is the price, α is a parameter, and uhbt represents consumer

specific taste for product b. These idiosyncratic errors are identically and independently

distributed over (h, b, t) with type I extreme value distribution. If the consumer decides

not to purchase any of the goods, she chooses the outside option that has a mean utility

normalized to zero. Therefore, the aggregate demand for product b is qbt = Ht exp{xbt − α
pbt} [1 +

∑B
b′=1 exp{xb′t−αpb′t}]−1, where Ht represents market size at period t. The market

1This is a particular example of the ’exchangeability assumption’proposed by Pakes and McGuire (2001).
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structure of the industry at time t is characterized by the vector xt = (Ht, x1t, x2t, ..., xBt).

Every period, firms take as given current market structure and decide simultaneously their

current prices and their investment in quality improvement. The one-period profit of firm i

can be written as

Πit =
∑

b∈Bi(pbt −mcb) qbt − FCb − (cb + εbt) abt (4.1)

where abt ∈ {0, 1} is the binary variable that represents the decision to invest in quality
improvement of product b; mcb, FCb, and cb are structural parameters that represent mar-

ginal cost, fixed operating cost, and quality investment cost for product b, respectively; and

εbt is an iid private information shock in the investment cost. Product quality evolves ac-

cording to a transition probability fx(xbt+1|abt, xbt). For instance, in Pakes-McGuire model,
xbt+1 = xbt − ζt + abt vbt where ζt and vbt are two independent and non-negative random

variables that are independently and identically distributed over (b, t).

In this model, price competition is static. The Nash-Bertrand equilibrium determines

prices and quantities as functions of market structure xt, that is, p∗b(xt) and q
∗
b (xt). Firms’

quality choices are the result of a dynamic game. The one-period profit function of firm i in

this dynamic game is Πi(ait,xt) =
∑

b∈Bi(p
∗
i (xt)−mcb) q∗b (xt)− FCb − (cb + εbt) abt, where

ait ≡ {abt : b ∈ Bi}. This dynamic game of quality competition has the same structure as
the game that we have described in Section 3.1 and it can be solved and estimated using the

same methods. However, the dimension of the state space increases exponentially with the

number of products and the solution and estimation of the model becomes impractical even

when B is not too large.

Define the cost adjusted inclusive value of firm i at period t as ωit ≡ log[
∑

b∈Bi exp{xbt−α
mcb}].This value is closely related to the inclusive value that we have discussed in Section 2.
It can be interpreted as the net quality level, or a value added of sort, that the firm is able to

produce in the market. Under the assumptions of the model, the variable profit of firm i in

the Nash-Bertrand equilibrium can be written as a function of the vector of inclusive values

ωt ≡ (ω1t, ω2t, ..., ωNt) ∈ Ω, that is, ,
∑

b∈Bi(p
∗
i (xt) − mcb) q

∗
b (xt) = vpi(ωt). Therefore,

the one-period profit Πit is a function Π̃i(ait,ωt). The following assumption is similar to

Assumption A2 made in Section 2 and it establishes that given vector ωt the rest of the

information contained in the in xt is redundant for the prediction of future values of ω.

Assumption: The transition probability of the vector of inclusive values ωt from the

point of view a firm (that is, conditional on a firm’s choice) is such that Pr(ωt+1 | ait,

xt) = Pr(ωt+1 | ait, ωt).
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Under these assumptions, ωt is the vector of payoffrelevant state variables in the dynamic

game. The dimension of the space Ω increases exponentially with the number of firms but

not with the number of brands. Therefore, the dimension of Ω can be much smaller than

the dimension of the original state space of xt in applications where the number of brands

is large relative to the number of firms.

Of course, the assumption of suffi ciency of ωt in the prediction of next period ωt+1 is not

trivial. In order to justify it we can put quite strong restrictions on the stochastic process

of quality levels. Alternatively, it can be interpreted in terms of limited information, and/or

bounded rationality. For instance, a possible way to justify this assumption is that firms face

the same type of computational burdens that we do. Limiting the information that they use

in their strategies reduces a firm’s computational cost of calculating a best response.

Note that the dimension of the space of ωt still increases exponentially with the number

of firms. To deal with this curse of dimensionality, Aguirregabiria and Ho (2009) consider

a stronger inclusive value / suffi ciency assumption. Let vpit the variable profit of firm i at

period t. Assumption: Pr(ωit+1, vpit+1 | ait, xt) = Pr(ωit+1, vpit+1 | ait, ωit, vpit). Under this
assumption, the vector of payoff relevant state variables in the decision problem of firm i is

(ωit, vpit) and the dimension of the space of (ωit, vpit) does not increase with the number of

firms.

5. Counterfactual experiments with multiple equilibria

One of the attractive features of structural models is that they can be used to predict the

effects of new counterfactual policies. This is a challenging exercise in a model with multiple

equilibria. Under the assumption that our data has been generated by a single equilibrium,

we can use the data to identify which of the multiple equilibria is the one that we observe.

However, even under that assumption, we still do not know which equilibrium will be selected

when the values of the structural parameters are different to the ones that we have estimated

from the data. For some models, a possible approach to deal with this issue is to calculate

all of the equilibria in the counterfactual scenario and then draw conclusions that are robust

to whatever equilibrium is selected. However, this approach is of limited applicability in

dynamic games of oligopoly competition because the different equilibria typically provide

contradictory predictions for the effects we want to measure.

Here we describe a simple homotopy method that has been proposed in Aguirregabiria

(2009) and applied in Aguirregabiria and Ho (2009). Under the assumption that the equilib-

rium selection mechanism, which is unknown to the researcher, is a smooth function of the

structural parameters, we show how to obtain a Taylor approximation to the counterfactual
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equilibrium. Despite the equilibrium selection function is unknown, a Taylor approxima-

tion of that function, evaluated at the estimated equilibrium, depends on objects that the

researcher knows.

Let Ψ(θ,P) be the equilibrium mapping such that an equilibrium associated with θ can

be represented as a fixed point P = Ψ(θ,P). Suppose that there is an equilibrium selection

mechanism in the population under study, but we do not know that mechanism. Let π(θ)

be the selected equilibrium given θ. The approach here is quite agnostic with respect to this

equilibrium selection mechanism: it only assumes that there is such a mechanism, and that

it is a smooth function of θ. Since we do not know the mechanism, we do not know the form

of the mapping π(θ) for every possible θ. However, we know that the equilibrium in the

population, P0, and the vector of the structural parameters in the population, θ0, belong to

the graph of that mapping, that is, P0 = π(θ0).

Let θ∗ be the vector of parameters under the counterfactual experiment that we want

to analyze. We want to know the counterfactual equilibrium π(θ∗) and compare it to the

factual equilibrium π(θ0). Suppose that Ψ is twice continuously differentiable in θ and P .

The following is the key assumption to implement the homotopy method that we describe

here.

Assumption: The equilibrium selection mechanism is such that πis a continuous differen-

tiable function within a convex subset of Θ that includes θ0 and θ∗.

That is, the equilibrium selection mechanism does not "jump" between the possible

equilibria when we move over the parameter space from θ0 to θ∗. This seems a reasonable

condition when the researcher is interested in evaluating the effects of a change in the struc-

tural parameters but "keeping constant" the same equilibrium type as the one that generates

the data.

Under these conditions, we can make a Taylor approximation to π(θ∗) around θ0 to

obtain:

π(θ∗) = π
(
θ0
)

+
∂π
(
θ0
)

∂θ′
(
θ∗ − θ0

)
+O

(∥∥θ∗ − θ0
∥∥2
)

(5.1)

We know that π
(
θ0
)

= P0. Furthermore, by the implicit function theorem, ∂π
(
θ0
)
/∂θ′

= ∂Ψ(θ0,P0)/∂θ′ +∂Ψ(θ0,P0)/∂P′ ∂π
(
θ0
)
/∂θ′. If P0 is not a singular equilibrium then

I − ∂Ψ(θ0,P0)/∂P′ is not a singular matrix and ∂π
(
θ0
)
/∂θ′ = (I − ∂Ψ(θ0,P0)/∂P′)−1

∂Ψ(θ0,P0)/∂θ′. Solving this expression into the Taylor approximation, we have the following

approximation to the counterfactual equilibrium:

P̂∗ = P̂0 +

(
I − ∂Ψ(θ̂

0
, P̂

0
)

∂P′

)−1

∂Ψ(θ̂
0
, P̂

0
)

∂θ′

(
θ∗ − θ̂0

)
(5.2)
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where (θ̂
0
, P̂0) represents our consistent estimator of (θ0,P0). It is clear that P̂∗ can be

computed given the data and θ∗. Under our assumptions, P̂∗ is a consistent estimator of

the linear approximation to π(θ∗).

As in any Taylor approximation, the order of magnitude of the error depends on the

distance between the value of the structural parameters in the factual and counterfactual

scenarios. Therefore, this approach can be inaccurate when the counterfactual experiment

implies a large change in some of the parameters. For these cases, we can combine the Taylor

approximation with iterations in the equilibrium mapping. Suppose that P∗ is a (Lyapunov)

stable equilibrium. And suppose that the Taylor approximation P̂∗ belongs to the dominion

of attraction of P∗. Then, by iterating in the equilibrium mapping Ψ(θ∗, .) starting at P̂∗

we will obtain the counterfactual equilibrium P∗. Note that this approach is substantially

different to iterating in the equilibrium mapping Ψ(θ∗, .) starting with the equilibrium in the

data P̂0. This approach will return the counterfactual equilibrium P∗ if only if P̂0 belongs

to the dominion of attraction of P∗. This condition is stronger than the one establishing

that the Taylor approximation P̂∗ belongs to the domination of attraction of P∗.

Empirical Application: Environmental Regulation in the Cement Industry

Ryan studies the effects in the US cement industry of the 1990 Amendments to Air Clean

Act. I have talked about this paper before in the course, and problem set #1 was inspired

on this empirical application. In the problem set, we considered a static model of Cournot

competition and market entry with homogeneous firms. Ryan’s model extends that simple

framework to dynamic game of oligopoly competition where firms compete in quantities but

they also make investment decisions in capacity and in market entry/exit, and they are

heterogeneous in their different costs, that is,marginal costs, fixed costs, capacity investment

costs, and sunk entry costs.

Here, I will comment the following points of the paper. (a) Motivation and Empirical

Questions; (b) The US Cement Industry; (c) The Regulation (Policy Change); (d) Empirical

Strategy; (e) Data; (f) Model; (g) Estimation and Results.

5.1. Motivation and Empirical Questions. Most previous studies that measure the
welfare effects of environmental regulation (ER) have ignored dynamic effects of these poli-

cies.

ER has potentially important effects on firms’entry and investment decisions, and, in

turn, these can have important welfare effects.

This paper estimates a dynamic game of entry/exit and investment in the US Portland

cement industry.
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The estimated model is used to evaluate the welfare effects of the 1990 Amendments to

the Clean Air Act (CAA).

5.2. The US Cement Industry. For the purpose of this paper, the most important
features of the US cement industry are: (1) Indivisibilities in capacity investment, and

economies of scale; (2) Highly polluting and energy intensive industry; and (3) Local com-

petition, and highly concentrated local markets

Indivisibilities in capacity investment, and economies of scale. Portland cement
is the binding material in concrete, which is a primary construction material. It is produced

by first pulverizing limestone and then heating it at very high temperatures in a rotating

kiln furnace. These kilns are the main piece of equipment. Plants can have one or more kilns

(indivisibilities). Marginal cost increases rapidly when a kiln is close to full capacity.

Highly polluting and energy intensive industry. The industry generates a large
amount of pollutants by-products. High energy requirements and pollution make the cement

industry an important target of environmental policies.

Local competition, and highly concentrated local markets. Cement is a com-
modity diffi cult to store and transport, as it gradually absorbs water out of the air rendering

it useless. This is the main reason why the industry is spatially segregated into regional

markets. These regional markets are very concentrated.

5.3. The Regulation (Policy Change). In 1990, the Amendments to the Clean Air
Act (CAA) added new categories of regulated emissions. Also, cement plants were required

to undergo an environmental certification process. It has been the most important new

environmental regulation affecting this industry in the last three decades. This regulation

may have increased sunk costs, fixed operating costs or even investment costs in this industry.

5.4. Empirical Strategy. Previous evaluations of these policies have ignored effects
on entry/exit and on firms’investment. They have found that the regulation contributed to

reduce marginal costs and therefore prices. Positive effects on consumer welfare and total

welfare. Ignoring effects on entry/exit and on firms’investment could imply an overestimate

of these positive effects.

Specify a model of the cement industry, where oligopolists make optimal decisions over

entry, exit, production, and investment given the strategies of their competitors. Estimate

the model for the cement industry using a 20 year panel and allowing the structural parame-

ters to differ before and after the 1990 regulation. Changes in cost parameters are attributed

to the new regulation. The MPEs before and after the regulation are computed and they

are used for welfare comparisons.
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Comments on this empirical approach and its potential limitations: (a) anticipation of

the policy; (b) technological change; (c) learning about the new policy.

5.5. Data. Period: 1980 to 1999 (20 years); 27 regional markets. Index local markets
by m, plants by i and years by t.

Data = {Smt, Wmt, Pmt, nmt, qimt, iimt, simt}

Smt = Market size; Wmt = Input prices (electricity prices, coal prices, natural gas prices,

and manufacturing wages); Pmt = Output price; nmt = Number of cement plants; qimt =

Quantity produced by plant i; simt = Capacity of plant i (number and capacity of kilns);

iimt = Investment in capacity by plant i.

5.6. Model. Regional homogenous-goods market. Firms compete in quantities in a sta-
tic equilibrium, but they are subject to capacity constraints. Capacity is the most important

strategic variable. Firms invest in future capacity and this decision is partly irreversible (and

therefore dynamic). Incumbent firms also make optimal decisions over whether to exit.

Inverse demand curve (iso-elastic):

logPmt = αmt +
1

ε
logQmt

Production costs:

C(qimt) = (MCOST + ωimt) qimt

+CAPCOST ∗ I
{
qimt
simt

> BINDING

}(
qimt
simt
−BINDING

)2

simt = installed capacity; qimt/simt = degree of capacity utilization; ωimt = private informa-

tion shock; MCOST , CAPCOST and BINDING are parameters.

Investment costs

ICimt = I {iimt > 0}
(
ADJPOS + INVMCPOS ∗ iimt + INVMCPOS2 ∗ i2imt

)
+I {iimt < 0}

(
ADJNEG+ INVMCNEG ∗ iimt + INVMCNEG2 ∗ i2imt

)
Entry costs

ECimt = I {simt = 0 and iimt > 0}
(
SUNK + εECimt

)
In equilibrium, investment is a function:

iimt = i(αmt,Wmt, simt, s−imt)

Similarly, entry and exit probabilities depend on (αmt,Wmt, simt, s−imt, ε
EC
imt).
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5.7. Estimation and Results. Estimation of demand curve. Includes local market
region fixed effects (estimated with 19 observations per market). Instruments: local variation

in input prices. The market specific demand shocks, Amt, are estimated as residuals in this

equation.

Estimation of variable production costs. From the Cournot equilibrium conditions.
Firm specific cost shocks, ωimt, are estimated as residuals in this equation.

Estimation of investment functions. Assumption:

iimt = i(αmt,Wmt, simt, s−imt) = i

(
αmt,Wmt, simt,

∑
j 6=i

sjmt

)

6. Product repositioning in differentiated product markets

(Sweeting, 2007) To Be Completed

7. Dynamic Game of Airlines Network Competition

7.1. Motivation and Empirical Questions. An airline network is a description of
the city-pairs (or airport pairs) that the airline connects with non-stop flights. The first goal

of this paper is to develop a dynamic game of network competition between airlines,
a model that can be estimated using publicly available data.

The model endogenizes airlines’networks, and the dynamics of these networks. Prices and

quantities for each airline-route are also endogenous in the model. It extends previous work

by Hendricks et al (1995, 1999) on airline networks, and previous literature on structural

models of the airline industry: Berry (1990 and 1992), Berry, Carnall and Spiller (2006),

Ciliberto and Tamer (2009).

The second of the paper is to apply this model to study empirically the contribution of

demand, cost, and strategic factors to explain why most companies in the US airline industry

operate using hub-and-spoke networks. The model incorporates different hypotheses
that have been suggested in the literature to explain hub-and-spoke networks. We esti-
mate the model and use counterfactual experiments to obtain the contribution of demand,

costs and strategic factors.

Hub-and-Spoke Networks
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Hypotheses that have been suggested in the literature to explain airlines’adoption of
hub-spoke networks:

- Demand: Travellers may be willing to pay for the services associated with an airline’s
scale of operation in an airport.

- Costs: Economies of scale at the plane level (marginal costs); Economies of scope at
the airport level (fixed costs and entry costs); Contracts with airports (fixed costs and entry

costs).

- Strategic: Entry deterrence (Hendricks, Piccione and Tan, 1997).

The paper has several contributions to the literature on empirical dynamic games of

oligopoly competition: (1) first application of dynamic network competition; (2) first paper

to study empirically the strategic entry-deterrence aspect of hub-and-spoke networks; (3)

first paper to apply the inclusive-values approach to a dynamic game; and (4) it proposes

and implements a new method to make counterfactual experiments in dynamic games.

7.2. Model: Dynamic Game of Network Competition. N airlines and C cities,

exogenously given. In our application, N = 22 and C = 55.

City-Pairs and Routes. Given the C cities, there are M ≡ C(C − 1)/2 non-
directional city-pairs (or markets). For each city-pair, an airline decides whether to

operate non-stop flights. A route (or path) is a directional round-trip between 2
cities. A route may or may not have stops. A route-airline is a product, and there is a

demand for each route-airline product. Airlines choose prices for each route they provide.

Networks. We index city-pairs by m, airlines by i, and time (quarters) by t. ximt ∈
{0, 1} is a binary indicator for the event "airline i operates non-stop flights in city-pair m".
xit ≡ {ximt : m = 1, 2, ...,M} is the network of airline i at period t. The network xit
describes all the routes (products) that the airline provides, and whether they are non-stop

or stop routes. The industry network is xt ≡ {xit : i = 1, 2, ..., N}.
Airlines’Decisions. An airline network xit determines the set of routes (products)

that the airline provides, that we denote by L(xit). Every period, active airlines in a route

compete in prices. Price competition determines variable profits for each airline. Every

period (quarter), each airline decides also its network for next period. There is time-to-build.

We represent this decision as ait ≡ {aimt : m = 1, 2, ...,M}, though aimt ≡ ximt+1.



318 9. EMPIRICAL DYNAMIC GAMES OF OLIGOPOLY COMPETITION

Profit Function. The airline’s total profit function is:

Πit =
∑

r∈L(xit)

(pirt − cirt)qirt

−
M∑
m=1

aimt (FCimt + (1− ximt) ECimt)

(pirt − cirt)qirt is the variable profit in route r. FCimt and ECimt are fixed cost and entry
cost in city-pair m.

Network effects in demand and costs. An important feature of the model is that
demand, variable costs, fixed costs, and entry costs depend on the scale of operation (number

of connections) of the airline in the origin and destination airports of the city-pair. Let

HUBimt be the "hub size" of airline i in market m at period t as measured by the total

number of connections to other cities that airline i has in the origin and destination cities

of market m at the beginning of period t. This is the most important endogeneous state

variable of this model. It is endogenous because, though HUBimt does not depend on the

entry-exit decision of the airline in marketm, aimt−1, it does depend on the airline’s entry-exit

decisions in any other market that has common cities with market m, {aim′t−1 for m′ 6= m

and markets m′ and m have common cities}.
This implies that markets are interconnected through these hub-size effects. Entry-exit

in a market has implications of profits in other markets. An equilibrium of this model is an

equilibrium for the whole airline industry and not only for a single city-pair.

Dynamic Game / Strategy Functions. Airlines maximize intertemporal profits,

are forward-looking, and take into account the implications of their entry-exit decisions on

future profits and on the expected future reaction of competitors. Airlines’strategies depend

only on payoff-relevant state variables, that is, Markov perfect equilibrium assumption. An

airline’s payoff-relevant information at quarter t is {xt, zt, εit}. Let σ ≡ {σi(xt, zt, εit) : i =

1, 2, ..., N} be a set of strategy functions, one for each airline. A MPE is a set of strategy
functions such that each airline’s strategy maximizes the value of the airline for each possible

state and taking as given other airlines’strategies.

7.3. Data. Airline Origin and Destination Survey (DB1B) collected by the Offi ce of
Airline Information of the BTS. Period 2004-Q1 to 2004-Q4. C = 55 largest metropolitan

areas. N = 22 airlines. City Pairs: M = (55 ∗ 54)/2 = 1, 485.
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Airlines: Passengers and Markets

Airline (Code) # Passengers # City-Pairs in 2004-Q4
(in thousands) (maximum = 1,485)

1. Southwest (WN) 25,026 373

2. American (AA)(3) 20,064 233

3. United (UA)(4) 15,851 199

4. Delta (DL)(5) 14,402 198

5. Continental (CO)(6) 10,084 142

6. Northwest (NW)(7) 9,517 183
7. US Airways (US) 7,515 150

8. America West (HP)(8) 6,745 113
9. Alaska (AS) 3,886 32
10. ATA (TZ) 2,608 33
11. JetBlue (B6) 2,458 22

Airlines, their Hubs, and Hub-Spoke Ratios

Airline (Code) 1st largest hub Hub-Spoke 2nd largest hub Hub-Spoke
Ratio (%) Ratio (%)
One Hub Two Hubs

Southwest Las Vegas (35) 9.3 Phoenix (33) 18.2
American Dallas (52) 22.3 Chicago (46) 42.0
United Chicago (50) 25.1 Denver (41) 45.7
Delta Atlanta (53) 26.7 Cincinnati (42) 48.0
Continental Houston (52) 36.6 New York (45) 68.3
Northwest Minneapolis (47) 25.6 Detroit (43) 49.2
US Airways Charlotte (35) 23.3 Philadelphia (33) 45.3
America West Phoenix (40) 35.4 Las Vegas (28) 60.2
Alaska Seattle (18) 56.2 Portland (10) 87.5
ATA Chicago (16) 48.4 Indianapolis (6) 66.6
JetBlue New York (13) 59.0 Long Beach (4) 77.3

Cumulative Hub-and-Spoke Ratios
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Distribution of Markets by Number of Incumbents
Markets with 0 airlines 35.44%
Markets with 1 airline 29.06%
Markets with 2 airlines 17.44%
Markets with 3 airlines 9.84%

Markets with 4 or more airlines 8.22%

Number of Monopoly Markets by Airline

Southwest 157
Northwest 69

Delta 56
American 28

Continental 24
United 17

Entry and Exit
All Quarters

Distribution of Markets by Number of New Entrants

Markets with 0 Entrants 84.66%
Markets with 1 Entrant 13.37%
Markets with 2 Entrants 1.69%
Markets with 3 Entrants 0.27%

Distribution of Markets by Number of Exits

Markets with 0 Exits 86.51%
Markets with 1 Exit 11.82%
Markets with 2 Exits 1.35%

Markets with more 3 or 4 Exits 0.32%

7.4. Specification and Estimation of Demand. Demand. Let d ∈ {0, 1} be the
indicator of "direct" or non-stop flight. Let qirdt be the number of tickets sold by airline i for

route r, type of flight d, at quarter t. For a given route r and quarter t, the quantities {qirdt :

for every airline i and d = 0, 1} come from a system of demand of differentiated product.

More specifically, we consider Nested Logit of demand. For notational simplicity, I omit here

the subindexes (r, t), but the demand system refers to a specific route and quarter.
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Let H be the number of travelers in the route. Each traveler in the route demands only

one trip (per quarter) and chooses which product to purchase. The indirect utility of a

traveler who purchases product (i, d) is Uid = bid− pid + vid, where pid is the price of product

(i, d), bid is the "quality" or willingness to pay for the product of the average consumer in the

market, and vid is a consumer-specific component that captures consumer heterogeneity in

preferences. Product quality bird depends on exogenous characteristics of the airline and the

route, and on the endogenous "hub-size" of the airline in the origin and destination airports.

bid = α1 d+ α2 HUBi + α3 DIST + ξ
(1)
i + ξ(2) + ξ

(3)
id

α1 to α3 are parameters. DIST is the flown distance between the origin and destination

cities of the route. ξ(1)
i is an airline fixed-effect that captures between-airlines differences in

quality which are constant over time and across markets. ξ(2) represents the interaction of

(origin and destination) city dummies and time dummies. These terms account for demand

shocks, such as seasonal effects, which vary across cities and over time. ξ(3)
id is a demand

shock that is airline and route specific. The variable HUBi represents the "hub size" airline

i in the origin and destination airports of the route r.

In the Nested Logit, we have that vid = σ1 v
(1)
i +σ2 v

(2)
id , where v

(1)
i and v(2)

id are indepen-

dent Type I extreme value random variables, and σ1 and σ2 are parameters that measure

the dispersion of these variables, with σ1 ≥ σ2. A property of the nested logit model is that

the demand system can be represented using the following closed-form demand equations:

ln (sid)− ln (s0) =
bid − pid
σ1

+

(
1− σ2

σ1

)
ln (s∗id) (7.1)

where s0 is the share of the outside alternative in route r, that is, s0r ≡ 1−
∑N

i=1(sir0 +sir1),

and s∗id is the market share of product (i, d) within the products of airline i in this route,

that is, s∗id ≡ sid/ (si0 + si1).

Therefore, we have the following demand regression equation:

ln (sirdt)− ln (s0rdt) = Wirdt α +

(
−1

σ1

)
pirdt +

(
1− σ2

σ1

)
ln (s∗irdt) + ξ

(3)
irdt (7.2)

The regressors in vectorWirdt are: dummy for nonstop-flight, hub-size, distance, airline dum-

mies, origin-city dummies × time dummies, and destination-city dummies × time dummies.
Issues: IsHUBirt correlated with ξ

(3)
irdt? Are the BLP instruments (HUB size of competing

airlines in route r at period t) valid in this equation, that is, are they correlated with ξ(3)
irdt?

ASSUMPTION D1: Idiosyncratic demand shocks {ξ(3)
irdt} are not serially correlated over

time.
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ASSUMPTION D2: The idiosyncratic demand shock {ξ(3)
irdt} is private information of the

corresponding airline. Furthermore, the demand shocks of two different airlines at two dif-

ferent routes are independently distributed.

Under assumption D1, the hub-size variable is not correlated with ξ(3)
irdt because HUBirt is

predetermined. Under assumption D2, HUB sizes of competing airlines in route r at period

t are not correlated with ξ(3)
irdt and they are valid instruments for price pirdt. Note that both

assumptions D1 and D2 are testable. We can use the residuals of ξ(3)
irdt to test for no serial

correlation (assumption D1) and no spatial correlation (assumption D2) in the residuals.

Table 7 presents estimates of the demand system.
Table 7

Demand Estimation(1)

Data: 85,497 observations. 2004-Q1 to 2004-Q4
OLS IV

FARE (in $100)
(
− 1
σ1

)
-0.329 (0.085) -1.366 (0.110)

ln(s∗)
(

1− σ2
σ1

)
0.488 (0.093) 0.634 (0.115)

NON-STOP DUMMY 1.217 (0.058) 2.080 (0.084)

HUBSIZE-ORIGIN (in million people) 0.032 (0.005) 0.027 (0.006)

HUBSIZE-DESTINATION (in million people) 0.041 (0.005) 0.036 (0.006)

DISTANCE 0.098 (0.011) 0.228 (0.017)

σ1 (in $100) 3.039 (0.785) 0.732 (0.059)

σ2 (in $100) 1.557 (0.460) 0.268 (0.034)

Test of Residuals Serial Correlation
m1∼ N(0, 1) (p-value) 0.303 (0.762) 0.510 (0.610)

(1) All the estimations include airline dummies, origin-airport dummies × time dummies,
and destination-airport dummies × time dummies. Stadard errors in parentheses.

The most important result is that the effect of hub-size on demand is statistically signif-

icant but very small: on average consumers are willing to pay approx. $2 for an additional

connection of the airline at the origin or destination airports ($2 ' $100 ∗ (0.027/1.366)).
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7.5. Specification and Estimation of Marginal Cost. Static Bertrand competition
between airlines active in a route imply:

pirdt − cirdt =
σ1

1− s̄irt
where s̄irt = (eir0t + eir1t)

σ2/σ1 [1 +
∑N

j=1(ejr0t + ejr1t)
σ2/σ1 ]−1, eirdt ≡ exp{(birdt − pirdt)/σ2}.

Then, given the estimated demand parameters we can obtain estimates of the marginal costs

cirdt.

We are interested in estimation the effect of "hub-size" on marginal costs. We estimated

the following model for marginal costs:

cirdt = Wirdt δ + ωirdt

where the regressors in vector Wirdt are: dummy for nonstop-flight, hub-size, distance, air-

line dummies, origin-city dummies × time dummies, and destination-city dummies × time
dummies.

Again, under the assumption the error term ωirdt is not serially correlated, hub-size is an

exogenous regressor and we can estimate the equation for marginal costs using OLS.

Table 8
Marginal Cost Estimation(1)

Data: 85,497 observations. 2004-Q1 to 2004-Q4
Dep. Variable: Marginal Cost in $100

Estimate (Std. Error)

NON-STOP DUMMY 0.006 (0.010)

HUBSIZE-ORIGIN (in million people) -0.023 (0.009)

HUBSIZE-DESTINATION (in million people) -0.016 (0.009)

DISTANCE 5.355 (0.015)

Test of Residuals Serial Correlation
m1∼ N(0, 1) (p-value) 0.761 (0.446)

(1) All the estimations include airline dummies, origin-airport dummies × time dummies,
and destination-airport dummies × time dummies.

Again, the most important result from this estimation is that the effect of hub-size on

marginal cost is statistically significant but very small: on average an additional connection

of the airline at the origin or destination airports implies a reduction in marginal cost between

$1.6 and $2.3.
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7.6. Simplifying assumptions for solution and estimation of dynamic game of
network competition. The next step is the estimation of the effects if hub-size on fixed
operating costs and sunk entry-costs. We consider the following structure in these costs.

FCimt = γFC1 + γFC2 HUBimt + γFC3 DISTm + γFC4i + γFC5c + εFCimt

ECimt = ηEC1 + ηEC2 HUBimt + ηEC3 DISTm + ηEC4i + ηEC5c

where γFC4i and η
EC
4i are airline fixed effects, and γ

FC
5c and η

EC
5c are city (origin and destination)

fixed effects. εFCimt is a private information shock. The parameters in these functions are

estimated using data on airlines entry-exit decisions and the dynamic game.

However, this dynamic game has really a large dimension. Given the number of cities

and airlines in our empirical analysis, the number of possible industry networks is |X| =

2NM ' 1010,000 (much larger than all the estimates of the number of atoms in the observable

universe, around 10100). We should make simplifying assumptions.

We consider two types of simplifying assumptions that reduce the dimension of the
dynamic game and make its solution and estimation manageable.

1. An airline’s choice of network is decentralized in terms of the separate decisions
of local managers.

2. The state variables of the model can be aggregated in a vector of inclusive-values
that belongs to a space with a much smaller dimension than the original state space.

(1) Decentralizing the Airline’s Choice of Network. Each airline has M local

managers, one for each city-pair. A local manager decides whether to operate or not non-

stop flights in her local-market: that is, she chooses aimt. The private information shock εFCimt
is private information of the manager (i,m).

IMPORTANT: A local manager is not only concern about profits in her own route. She

internalizes the effects of her own entry-exit decision in many other routes. This is very

important to allow for entry deterrence effects of hub-and-spoke networks.

ASSUMPTION: Let Rimt be the sum of airline i’s variable profits over all the routes

that include city-pair m as a segment. Local managers maximize the expected and discounted

value of

Πimt ≡ Rimt − aimt (FCimt + (1− ximt)ECimt) .

(2) Inclusive-Values. Decentralization of the decision simplifies the computation of
players’best responses, but the state space of the decision problem of a local manager is still

huge. Notice that the profit of a local manager depends only on the state variables:

x∗imt ≡ (ximt, Rimt, HUBimt)
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ASSUMPTION: The vector x∗imt follows a controlled first-order Markov Process:

Pr
(
x∗im,t+1 | x∗imt, aimt,xt, zt

)
= Pr

(
x∗im,t+1 | x∗imt, aimt

)

A MPE of this game can be describe as a vector of probability functions, one for each

local-manager:

Pim(x∗imt) : i = 1, 2, ..., N ; m = 1, 2, ...,M

Pim(x∗imt) is the probability that local-manager (i,m) decides to be active in city-pair m

given the state x∗imt. An equilibrium exits. The model typically has multiple equilibria.

7.7. Estimation of dynamic game of network competition. We use the Nested
Pseudo Likelihood (NPL) method.
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Table 9
Estimation of Dynamic Game of Entry-Exit(1)

Data: 1,485 markets × 22 airlines × 3 quarters = 98,010 observations

Estimate (Std. Error)
(in thousand $)

Fixed Costs (quarterly):(2)

γFC1 + γFC2 mean hub-size +γFC3 mean distance 119.15 (5.233)
(average fixed cost)

γFC2 (hub-size in # cities connected) -1.02 (0.185)

γFC3 (distance, in thousand miles) 4.04 (0.317)

Entry Costs:
ηEC1 + ηEC2 mean hub-size +ηEC2 mean distance 249.56 (6.504)

(average entry cost)

ηEC2 (hub-size in # cities connected) -9.26 (0.140)

ηEC3 (distance, in thousand miles) 0.08 (0.068)

σε 8.402 (1.385)

β 0.99 (not estimated)

Pseudo R-square 0.231

(1) All the estimations include airline dummies, and city dummies.
(2) Mean hub size = 25.7 million people. Mean distance (nonstop flights) = 1996 miles

• Goodness of fit:
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Table 10
Comparison of Predicted and Actual Statistics of Market Structure

1,485 city-pairs (markets). Period 2004-Q1 to 2004-Q4
Actual Predicted

(Average All Quarters) (Average All Quarters)

Herfindahl Index (median) 5338 4955

Distribution of Markets Markets with 0 airlines 35.4% 29.3%
by Number of Incumbents " " 1 airline 29.1% 32.2%

" " 2 airlines 17.4% 24.2%
" " 3 airlines 9.8% 8.0%
" " ≥4 airlines 8.2% 6.2%

Number (%) of Monopoly Southwest 151 (43.4%) 149 (38.8%)
Markets for top 6 Airlines Northwest 66 (18.9%) 81 (21.1%)

Delta 57 (16.4%) 75 (19.5%)
American 31 (8.9%) 28 (7.3%)

Continental 27 (7.7%) 27 (7.0%)
United 16 (4.6%) 24 (6.2%)

Distribution of Markets Markets with 0 Entrants 84.7% 81.9%
by Number of New Entrants " " 1 Entrant 13.4% 16.3%

" " 2 Entrants 1.7% 1.6%
" " ≥3 Entrants 0.3% 0.0%

Distribution of Markets Markets with 0 Exits 86.5% 82.9%
by Number of Exits " " 1 Exit 11.8% 14.6%

" " 2 Exits 1.4% 1.4%
" " ≥3 Exits 0.3% 0.0%

7.8. Counterfactual Experiments. To deal with multiple equilibria or equilibrium
selection in the counterfactual experiment, we use the homotopy method that I described in

lecture #11.
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Table 11
Counterfactual Experiments

Hub-and-Spoke Ratios when Some Structural Parameters Become Zero

Method 1: Taylor Approximation
Experiment 1 Experiment 2 Experiment 3 Experiment 4
No hub-size effects No hub-size effects No hub-size effects No complementarity

Carrier Observed in variable profits in fixed costs in entry costs across markets

Southwest 18.2 17.3 15.6 8.9 16.0

American 42.0 39.1 36.5 17.6 29.8

United 45.7 42.5 39.3 17.8 32.0

Delta 48.0 43.7 34.0 18.7 25.0

Continental 68.3 62.1 58.0 27.3 43.0

Northwest 49.2 44.3 36.9 18.7 26.6

US Airways 45.3 41.7 39.0 18.1 34.4

Method II: Policy Iterations Starting from Taylor Approx.
Experiment 1 Experiment 2 Experiment 3 Experiment 4
No hub-size effects No hub-size effects No hub-size effects No complementarity

Carrier Observed in variable profits in fixed costs in entry costs across markets

Southwest 18.2 16.9 14.4 8.3 16.5

American 42.0 37.6 34.2 16.6 24.5

United 45.7 40.5 37.3 15.7 30.3

Delta 48.0 41.1 32.4 17.9 22.1

Continental 68.3 60.2 57.4 26.0 42.8

Northwest 49.2 40.8 35.0 17.2 23.2

US Airways 45.3 39.7 37.1 16.4 35.2

Experiment 1: Counterfactual model: α2= α3= δ2= δ3= 0
Experiment 2: Counterfactual model: γFC2 = 0
Experiment 3: Counterfactual model: ηEC2 = 0
Experiment 4: Counterfactual model: Variable profit of local manager in city-pair AB includes only variable profits
from non-stop routes AB and BA.
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Main results:

-Hub-size effects on demand, variable costs and fixed operating costs are significant
but can explain very little of the propensity to hub-spoke networks.

- Hub-size effects on Sunk Entry Costs are large. This is the most important
factor to explain hub-spoke networks.

- Strategic factors: hub-spoke network as a strategy to deter entry is the second
most important factor for some of the largest carriers (Northwest and Delta).

8. Dynamic strategic behavior in firms’innovation

8.1. Competition and Innovation: static analysis. Competition and Innovation.
Long lasting debate on the effect of competition on innovation (for instance, Schumpeter,

Arrow). Apparently, there are contradictory results between a good number of theory papers

showing that "competition" has a negative effect on innovation (Dasgupta and Stiglitz, 1980:

Spence, 1984), and a good number of reduced-form empirical papers showing a positive

relationship between measures of competition and measures of innovation (Porter, 1990;

Geroski, 1990; Blundell, Griffi th and Van Reenen 1999). Vives (JIND, 2008) presents a

systematic theoretical analysis of this problem that tries to explain the apparent disparaty

between existing theoretical and empirical results.

Competition and Innovation: Vives (2008) considers:

[1] Different sources of exogenous increase in competition. (i) reduction in entry
cost; (ii) increase in market size; (iii) increase in degree of product substitutability.

[2] Different types of innovation. (i) process or cost-reduction innovation; (ii) product
innovation / new products.

[3] Different models of competition and specifications. (i) Bertrand; (ii) Cournot

[4] Specification of demand. linear, CES, expontetial, logit, nested logit.
Vives shows that [1] the form of increase in competition; and [2] the type of innovation are

key to detemine a positive or a negative relatioship betwween competition and innovation.

However, the results are very robust: [3] the form of competition (Bertrand or Cournot) and

[4] the specification of the demand system.

Model. Static model with symmetric firms, endogenous entry. Profit of firm i: πj =

[pj − c(zj)] s d(pj, p−j, n;α)− zj−F , s = market size; n = number of firm; d(pj, p−j, n;α) =

demand per-consumer; α = degree of substitutability; c(zj) = marginal cost (constant); zi =

expenditure in cost reduction; c′ < 0 and c′′ > 0; F = entry cost.

Equilibrium. Nash equilibrium for simultaneous choice of (pj, zj). Symmetric equilib-

rium. There is endogenous entry. Marginal condition w.r.t cos-reduction R&D (z) is: −c′(z)

s d(p, n;α) − 1 = 0. Since c′′ > 0, this implies z = g(s d(p, n;α)), where gis an increasing
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function. The incentive to invest in cost reduction increases with output per firm, q ≡ s

d(p, n;α).

Any exogenous change in competition (say in α, s, or F ) has three effects on output per

firm and therefore on investment in cost-reduction R&D.

dz

dα
= g′(q)

[
∂ [s d(p, n;α)]

∂α
+
∂ [s d(p, n;α)]

∂p

∂p

∂α
+
∂ [s d(p, n;α)]

∂n

∂n

∂α

]

∂ [s d(p, n;α)]

∂α
is the direct demand effect,

∂ [s d(p, n;α)]

∂p

∂p

∂α
is the price pressure ef-

fect.
∂ [s d(p, n;α)]

∂n

∂n

∂α
is the number of entrants effect. The effects of different changes

in competition on cost-reduction R&D can be explained in terms of these three effects.

Summary of comparative statics. (i) Increase in market size. - Increases per-firm
expenditures in cost-reduction; - Effect on product innovation (# varieties) can be either

positive or negative. (ii) Reduction in cost of market entry. - Reduces per-firm

expenditures in cost-reduction; - Increases number of firms and varieties. (iii) Increase in
degree of product substitution. - Increases per-firm expenditures in cost-reduction; - #
varieties may increase or decline.

Some limitations in this analysis. The previous analysis is static, without uncertainty,

with symmetric and single product firms. Therefore, the following factors that relate com-

petition and innovation are absent from the analysis. (1) Preemptive motives. (2) Can-
nibalization of own products. (3) Increasing uncertainty in returns to R&D due

competition (asymmetric info). To study these factors, we need dynamic games with uncer-
tainty, and asymmetric multi-product firms.

8.2. Creative destruction: incentives to innovate of incumbents and new en-
trants. Innovation and creative destruction (Igami, 2017). Innovation, the creation of new
products and technologies, necessarily implies the "destruction" of existing products, tech-

nologies, and firms. In other words, the survival of existing products / technologies / firms

is at the cost of preemting the birth of new ones. The speed (and the effectiveness) of the

innovation process in an industry depends crucially on the dynamic strategic interactions be-

tween "old" and "new" products/technologies. Igami (JPE, 2017) studies these interactions

in the context of the Hard-Disk-Drive (HDD) industry during 1981-1998.

HDD: Different generations of products
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HDD: Different generations of products

Adoption new tech: Incumbents vs. New Entrants

Adoption new tech: Incumbents vs. New Entrants. Igami focuses on the transition

from 5.25 to 3.5 inch products. He consider three main factors that contribute to the rel-

ative propensity to innovate of incumbents and potential entrants. Cannibalization. For
incumbents, the introduction of a new product reduces the demand for their pre-existing



332 9. EMPIRICAL DYNAMIC GAMES OF OLIGOPOLY COMPETITION

products. Preemption. Early adoption by incumbents can deter entry and competition
from potential new entrants. Differences in entry/innovation costs. It can play either
way. Incumbents have knowledge capital and economies of scope, but they also have
organizational inertia.

Data. Market shares New/Old products

Average Prices: New/Old products

Average Quality: New/Old products
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Market Structure: New/Old products

Model. Market structure at period t is described by four type of firms according to the

products they produce: st = {N o`d
t , N both

t , Nnew
t , Npe

t }
• Initialy, N both

0 = Nnew
0 = 0. Timing within a period t:

1 Incumbents compete (a la Cournot) → Period profits πt(sit, s−it)

2. The N o`d
t firms draw private info shocks and simultaneously choose ao`dit ∈ {exit, stay,

innovate}
3. The N both

t observe ao`dt , draw private info shocks, and simultaneously choose a
both
it ∈

{exit, stay}
4. The Nnew

t observe ao`dt , a
both
t ,draw private info shocks, and simultaneously choose

anewit ∈ {exit, stay}
5. The Npe

t observe ao`dt , a
both
t , anewt , draw private info shocks, and simultaneously choose

apeit ∈ {entry, noentry}.
Given these choices, next period market structure is obtained, st+1, and demand and

cost variables evolve exogenously. Why imposing this order of move? This Assumption,
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together with: - Finite horizon T ; Homogeneous firms (up to the i.i.d. private info shocks)

withing each type, implies that there is a unique Markov Perfect equilibrium. This is
very convenient for estimation (Igami uses a standard/Rust Nested Fixed Point Algorithm

for estimation) and especially for counterfactuals.

Demand. Simple logit model of demand. A product is defined as a pair {technology,

quality}, where technology ∈ {o`d, new} and qua`ity represents different storage sizes. There
is no differentiation across firms (perhaps true, but assumption comes from data limitations).

Estimation:

ln

(
sj
sk

)
= α1 [pj − pk] + α2

[
1newj − 1newk

]
+ α3 [xj − xk] + ξj − ξk

Data: multiple periods and regions. IVs: Hausman-Nevo. Prices in other regions.

Estimates of Demand

Evolution of unobserved Quality (epsi)

Evolution of Marginal Costs
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Evolution of Period Profits [keeping market structure]

Estimates of Dynamic Parameters
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Estimates of Dynamic Parameters

Different estimates depending on the order of move within a period. Cost for innovation

is smaller for incumbents than for new entrants (κinc < κpe). Organizational inertia does

not seem an important factor. Magnitude of entry costs are comparable to the annual R&D

budget of specialized HDD manufacturers, for instance, Seagate Tech: between $0.6B −
$1.6B.

Estimated Model: Goodness of fit

Counterfactual: Removing Cannibalization

Counterfactual: Removing Preemption
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8.3. Competition and innovation in the CPU industry: Intel and AMD. Study
competition between Intel and AMD in the PC microprocessor industry. Incorporates dura-

bility of the product as a potentially important factor. Two forces drive innovation: -

competition between firms for the technological frontier; - since PCs have little physical

depreciacion, firms have the incentive to innovate to generate a tenological depreciation of

consumers’installed PCs that encourages them to upgrade [most of the demand during the

period >89% was upgrading]. Duopolists face both forces, whereas a monopolist faces only

the latter (but in a stronger way).

The PCmicroprocessor industry. Very important to the economy: - Computer equipment

manufacturing industry generated 25% of U.S. productivity growth from 1960 to 2007. - In-

novations in microprocessors are directly measured via improved performance on benchmark

tasks. Most important: CPU speed. Interesting also from the point of view of antitrust: -

In 2004: several antitrust lawsuits claiming Intel’s anticompetitive practices, for instance,

rewarding PC manufacturers that exclusively use Intel microprocessors. - Intel foreclosures

AMD to access some consumers.- Intel settled these claims in 2009 with a $1.25 billion

payment to AMD.

Market is essentially a duopoly, with AMD and Intel selling 95% CPUs. Firmst have

high R&D intensities, R&D/Revenue (1993-2004): - AMD 20% ; and Intel 11%. Innovation

is rapid: new products are released nearly every quarter. CPU performance (speed) doubles

every 7 quarters, that is, Moore’e law. AMD and Intel extensively cross-license each other’s

technologies, that is, positive spillovers.

As microprocessors are durable, replacement drives and important part of demand. The

importance of replacement is partly exogenous (new consumers arriving to the marker),

and partly endogenous: speed of improvements in frontier microprocessors that encourages

consumers to upgrade. In 2004, 82% of PC purchases were replacements. After an upgrade
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boom, prices and sales fall as replacement demand drops. Firms must continue to innovate

to rebuild replacement demand.

Data. Proprietary data from a market research firm specializing in the microprocessor

industry. Quarterly data from Q1-1993 to Q4-2004 (48 quarters). Information on: ship-

ments in physical units for each type of CPU; manufacturers’average selling prices (ASP);

production costs; CPU characteristics (speed). All prices and costs are converted to base
year 2000 dollars. Quarterly R&D investment levels, obtained from firms’annual reports.

Moore’s Law. Intel cofounder Gordon Moore predicted in 1965 that the number of

transistors ina CPU (and therefore the CPU speed) would double every 2 years. Following

figure shows “Moore’s law” over the 48 quarters in the data. Quality is measured using

processor speed. Quarterly % change in CPU speed is 10.2% for Intel and 11% for AMD.

Moore’s Law (Frontier CPU speed)

Differential log-quality between Intel and AMD. Intel’s initial quality advantage is mod-

erate in 1993—94. Then, it becomes large in 1995-96 when Intel releases the Pentium. AMD’s

responded in 1997 introduccing the K6 processor that narrows the gap. But parity is not

achieved until the mid-2000 when AMD released the Athlon.

Model: General features. Dynamic model of an oligopoly with differentiated and durable

products. Each firm j sells a single product and invests in R&D to improve its quality. If

investments are successful, quality improves next quarter by a fixed proportion δ; otherwise

it is unchanged: log quality qjt ∈ {0, δ, 2δ, 3δ, . . . }. Consumers: a key feature of demand
for durable goods is that the value of the no-purchase option is endogenous, determined by

last purchase. The distribution of currently owned products by consumerts is represented

by the vector ∆t. ∆t affects current consumer demand. [Details]
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Firms and consumers are forward looking. A consumer’s i state space consists of (q∗it, qt,

∆t): - q∗it = the quality of her currently owned product q∗t ; - qt = vector of firms’current

qualities qt; - ∆t = distribution of qualities of consumers currently owned products. ∆t

is part of the consumers’state space because it affects expectations on future prices. State

space for firms is (qt, ∆t). Given these state variables firms simultaneously choose prices pjt
and investment xjt.

Consumer Demand. Authors: "We restrict firms to selling only one product because the

computational burden of allowing multiproduct firms is prohibitive". Consumers own no more

than one microprocessor at a time. Utility for a consumer i from firm j’s new product with

quality qjt is given by: uijt = γ qjt−α pjt + ξj + εijt. Utility from the no-purchase option is:

ui0t = γ q∗it + εi0t. A consumer maximizes her intertemporal utility given her beliefs about

the evolution of future qualities and prices given (qt,∆t).
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Market shares for consuerms currently owning q∗ are:

sjt(q
∗) =

exp{vj(qt,∆t, q
∗)}∑J

k=0
exp{vk(qt,∆t, q∗)}

Using ∆t to integrate over the distribution of q∗ yields the market share of product j.

sjt(q
∗) =

∑
q∗

sjt(q
∗) ∆t(q

∗)

Transition rule of ∆t. By definition, next period ∆t+1 is determined by a known closed-form

function of ∆t, qt, and st.

∆t+1 = F∆(∆t, qt, st)

The period profit function is:

πj(pt, qt,∆t) = M sj(pt, qt,∆t) [pjt −mcj(qjt)]

The specification of the marginal cost is:

mcj(qjt) = λ0j − λ1(qmax
t − qjt)

Marginal costs are smaller for non-frontier firms. Parameter λ1 captures an spillover effect

from the innovation of other firms.

Model: Firms. Innovation process. Relationship between investment in R&D (xjt) and

log-quality improvement (∆qjt+1 = qjt+1 − qjt). Log-Quality improvement can take two

values, 0 or δ. The probability that ∆qjt+1 = δ is (Pakes and McGure, 1994):

χj(xjt, qjt) =
aj(qjt) xjt

1 + aj(qjt) xjt

aj(qjt) is the "investment effi ciency" function. It is a decreasing function, to capture the

idea that of an increasing ed diffi culty of advancing the frontier relative to catching up.

Let Wj(qt,∆t) be the value function. The Bellman equation is:

Wj(qt,∆t) = max
xjt,pjt

[πj(pt, qt,∆t)− xjt + β Et [Wj(qt+1,∆t+1)] ]

The decision variables are continuous, and the best response function should satisfy the

F.O.C.
∂πjt
∂pjt

+ β
∂Et [Wj,t+1]

∂pjt
= 0

∂πjt
∂xjt

− 1 + β
∂Et [Wj,t+1]

∂xjt
= 0

Markov Perfect Equilibrium. (1) firms’and consumers’ equilibrium strategies depend

only on current payoff relevant state variables (qt,∆t). (2) consumers have rational ex-

pectations about firms’ policy functions. (3) each firm has rational expectations about

competitors’policy functions and about the evolution of the ownership distribution.
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Estimation. Marginal cost parameters (λ0, λ1) are estimated in a first step because the

dataset includes data on marginal costs. The rest of the structural parameters, θ = (γ, α,

ξinte`, ξamd, a0,inte`, a0,amd, a1). Demand: γ, α, ξinte`, ξamd; Investment innovation effi iency:

a0,inte`, a0,amd, a1. θ is estimated using Indirect Inference or Simulated Method of Moments

(SMM).

Moments to match: Mean of innovation rates qj,t+1 − qjt for each firm. Mean R&D in-
tensities xjt/revenuejt for each firm. Mean of differential quality qinte`,t − qamd,t, and share
of quarters with qinte`,t ≥ qamd,t. Mean of gap qmax

t − ∆t. Average prices, and OLS esti-

mated coeffi cients of the regressions of pjt on qinte`,t, qamd,t, and average ∆t. OLS estimated

coeffi cients of the regression of sinte`,t on qinte`,t − qamd,t.
Empirical and predicted moments

Parameter estimates

Demand: Dividing γ by α: consumers are willing to pay $21 for enjoying during 1

quarter a δ = 20% increase in log quality. Dividing ξinte`− ξamd by α: consumers are willing
to pay $194 for Intel over AMD. The model needs this strong brand effect to explain the

fact that AMD’s share never rises above 22 percent in the period during which AMD had a

faster product. Intel and AMD’s innovation effi ciencies are estimated to be .0010 and .0019,

respectively, as needed for AMD to occasionally be the technology leader while investing

much less.

Counterfactuals

From current duopoly (1) to Intel Monopoly (3) Innovation rate increases from 0.599 to

0.624.Mean quality upgrade increases 261% to 410%. Investment in R&D: increases by 1.2B

per quarter: more than doubles. Price increases in $102 (70%). Consumer surplus declines
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in $121M (4.2%). Industry profits increase in $159M . Social surplus increases in $38M (less

than 1%)

From current duopoly (1) to symmetruic duopoly (2) Innovation rate declines from 0.599

to 0.501. Mean quality declines from 261% to 148%. Investment in R&D: declines by 178M

per quarter. Price declines in $48 (24%). Consumer surplus increases in $34M (1.2%).

Industry profits decline in $8M . Social surplus increases in $26M (less than 1%)

From current scenario (1) to myopic pricing. It reduces prices, increases CS, and reduces

firms’profits. Innovation rates and investment in R&D decline dramatically. Why? The

higher induce firms to innovate more rapidly. Prices are higher with dynamic pricing because

firms want to preserve future demand.
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The finding that innovation by a monopoly exceeds that of a duopoly reflects two features

of the model: the monopoly must innovate to induce consumers to upgrade; the monopoly is

able to extract much of the potential surplus from these upgrades because of its substantial

pricing power. If there were a steady flow of new consumers into the market, such that

most demand were not replacement, the monopoly would reduce innovation below that of

the duopoly.

Counterfactuals: Foreclosure. In 2009, Intel paid AMD $1.25 billion to settle claims

that Intel’s anticompetitive practices foreclosed AMD from many consumers. To study the

effect of such practices on innovation, prices, and welfare, the authors perform a series of

counterfactual simulations in which they vary the portion of the market to which Intel has

exclusive access. Let ζ be the proportion of foreclosure market. Intel market share becomes:

s∗j = ζ ŝj + (1− ζ) sj, where sj is the market share when AMD is competing, and ŝj is the

market share when Intel competes only with the outside alternative.

Counterfactuals: Foreclosure

Margins monotonically rise steeply. Innovation exhibits an inverted U with a peak at

ζ = 0.5. Consumer surplus is actually higher when AMD is barred from a portion of the

market, peaking at 40% foreclosure. This finding highlights the importance of accounting

for innovation in antitrust policy: the decrease in consumer surplus from higher prices can

be more than offset by the compounding effects of higher innovation rates.

Counterfactuals: Product substitutability

Innovation in the monopoly exhibits an inverted U as substitutability increases. Inno-

vation in the duopoly increases as substitutability increases until Var( ) becomes too small

for firms with similar qualities to coexist. - Beyond this “shakeout”threshold, the laggard
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eventually concedes the market as evidenced by the sharp increase in the quality difference.

Duopoly innovation is higher than monopoly innovation when substitutability is near the

shakeout threshold.

Summary of results. The rate of innovation in product quality would be 4.2% higher if

Intel were a monopolist, consistent with Schumpeter.

Without AMD, higher margins spur Intel to innovate faster to generate upgrade sales.

As in Coase’s (1972) conjecture, product durability can limit welfare losses from market

power. This result, however, depends on the degree of competition from past sales. If first-

time purchasers were to arrive suffi ciently faster than we observe, innovation in an Intel

monopoly would be lower, not higher, since upgrade sales would be less important.
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CHAPTER 10

Empirical Models of Auctions

Auctions are common mechanisms for selling goods and services such as agricultural

products (for instance, fish, livestock, wine), natural resources (for instance, timber, oil and

gas drilling rights), government contracts (procurement auctions), money in interbank mar-

kets, treasury bonds, electricity, or art work. More recently, internet auctions (for instance,

eBay) have become a popular way of selling a diverse range of products.

Auctions can be modelled as games of incomplete information. A seller (or a buyer,

in the case of a procurement auction) is interested in selling an object. The seller faces a

number of potential buyers or bidders, and she does not know their valuations of the object.

A bidder knows her own valuation of the object but not other bidders’values. Each bidder

submits a bid to maximize her expected payoff. The rules of the auction determines who gets

the object and the price she should pay. These rules (for instance, first price sealed bids,

second price), and the conditions on bidders’ information and on the correlation between

their valuations (for instance, independent private values, common values) are important

features that determine the predictions of the model.

Consider the auction of a single object with N bidders indexed by i ∈ {1, 2, ..., N}.
Bidder i’s valuation for the object is ui = U(vi, c) where U(., .) is an increasing function in

both arguments; vi represents a bidder’s private signal; and c is a common value that affects

the valuations of all the bidders. In an auction, the value of the vector (v1, v2, ..., vn, c)

is a random draw from the joint cumulative distribution function F(v1, v2, ..., vn, c) that is

continuously differentiable and has compact support [v, v]2 × [c, c]. Each bidder knows her

own private value vi and the functions U and F, but she does not know the other bidders’

private values. Depending on the model, she may or may not know the common component

c. The game is said to be symmetric if bidders are identical ex ante, that is, if the distribution

F is exchangeable in its first N arguments.

Each bidder decides her bid, bi, to maximize her expect payoff. Most of the empirical

literature has focused on first-price auctions: the winner is the highest bidder (provided it is

higher than the seller’s reservation price) and she pays her bid. Under this rule, the expected

payoff is:

πei (bi) = E (1 {bi > bj ∀j 6= i} [U(vi, c)− bi]) (0.1)
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where 1{.} is the indicator function. This literature assumes that bids come from a Bayesian
Nash equilibrium (BNE). This BNE is described as a vector of N strategy functions {si(vi) :

i = 1, 2, ..., N} such that each bidder’s strategy maximizes her expected payoff taking as
given the strategy functions of the other bidders:

si(vi) = arg max
bi

E (1 {bi > sj(vj) ∀j 6= i} [U(vi, c)− bi]) (0.2)

where the expectation is taken over the joint distribution of {vj : j 6= i} (and c, if this is not
common knowledge). This BNE can be described as the solution of a system of differential

equations.

Most empirical applications of structural auction models have focused on the Independent

Private Values (IPV) model. This model assumes that valuations depend only on private

information signals, U(vi, c) = vi, and they are independently and identically distributed,

that is, F(v1, v2, ..., vn) =
∏N

i=1 F (vi). It also imposes the restriction that the data comes

from a symmetric BNE: si(vi) = s(vi) for every bidder i. A BNE of the IPV model can be

described as a strategy function sthat solves the differential equation:

s(vi) = vi −
F (vi) s′ (vi)

(N − 1) f (vi)
(0.3)

subject to the boundary condition boundary s(v) = v, and where f is the density function

of the distribution F . This differential equation has a unique solution that has following

closed-form expression:

bi = s(vi) = vi −
1

[F (vi)]
N−1

∫ vi

v

[F (u)]N−1 du (0.4)

Auction data is widely available. In many countries, procurement auction data must be

publicly available by law. Empirical researchers have used these data to answer different em-

pirical questions such as detecting collusion among bidders, testing different auction models,

or designing auction rules that maximize seller’s revenue or total welfare.

The first empirical papers on auctions focused on testing important predictions of the

model, without estimating the structural parameters (Hendricks and Porter, 1988; Hendricks,

Porter, and Wilson, 1994; Porter, 1995). The papers by Paarsch (1992, 1997) and Laffont,

Ossard, and Vuong (1995) present the first structural estimations of auction models.

In the structural estimation of auction models, the researcher has some information on

bids and uses this information and the equilibrium conditions to estimate the distribution

of bidders’valuations. Auction data may come in different forms, and this has important

implications for the identification and estimation of the model. In an ideal situation, the

researcher has a random sample of T independent auctions (indexed by t) of the same type

of object from the same population of bidders, and she observes the bids of each of the

Nt bidders at every auction t in the sample. Such ideal situations are quite uncommon.



10. EMPIRICAL MODELS OF AUCTIONS 353

For instance, often the researcher observes only the winning bid. It is also common that

there is heterogeneity across the T auctions (for instance, different environments, or non

identical objects) such that it is not plausible to assume that the same distribution of bidders’

valuations, F , applies to the T auctions. In that case, it is useful to have observable auction

characteristics, Xt, such that the researcher may assume that two auctions with the same

observable characteristics have the same distributions of valuations: Ft(v|Xt) = F (v|Xt) for

every auction t. In general, an auction dataset can be described as:

Data =
{
b

(n)
t , Xt : n = 1, ..., N t; t = 1, 2, ..., T

}
(0.5)

where b(1)
t is the largest bid, b(2)

t is the second largest, and so on; and N t is the number of

bids the researcher observes in auction t. When the dataset includes only information on

winning bids, we have that N t = 1 for any auction t.

Tree planting procurement auctions in British Columbia. Paarsch (1992) studies first price

sealed-bid auctions of tree planting contracts operated by the Forest Service (government

agency) in the province of British Columbia, Canada. The object of an auction is described

by the number and type of trees to plant and the location. The bidding variable is the price

per tree, and the winner of the auction is the firm with the lowest price. The dataset consists

of 144 auctions in the same forest region between 1985 and 1988 with information on all the

bids. Paarsch estimates structurally independent private value models and common value

models under different parametric specifications of the distribution of firms’costs. All the

specifications of private value models are rejected. The estimated common value models are

consistent with observed bidders’behavior. More specifically, there is evidence consistent

with bidders’concern for the winner’s curse and with bid functions that increase with the

number of bidders.

The first empirical applications on structural auction models consider parametric speci-

fications of the distribution of valuations (Paarsch, 1992, 1997; Laffont, Ossard, and Vuong,

1995; Baldwin, Marshall, and Richard, 1997). However, the more recent literature has fo-

cused on the nonparametric identification and estimation of this distribution. Guerre, Per-

rigne, and Vuong (2000) obtained an important identification result and estimation method

in this literature. They show that equation (0.4), that characterizes the equilibrium of the

model, implies that a bidder’s valuation is a known function of her bid and the distribu-

tion of observed bids. Let G(b) and g(b) be the distribution and the density function of

bids, respectively, implied by the equilibrium of the model. Since the equilibrium bidding

strategy, s(vi), is strictly increasing, we have that vi = s−1(bi) and G(bi) = F (s−1(bi)), and

this implies that g(bi) = f(vi)/s
′(vi). Solving these expressions into the differential equation
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(0.3), we get:

vi = ξ (bi, G) = bi +
G(bi)

(N − 1) g(bi)
(0.6)

Based on this equation, the distribution of valuations can be estimated from the data using

a two-step procedure. Suppose for the moment that the data consists of a random sample

of independent and identical auctions with information on all bids. Then, the distribution

function G can be consistently estimated at any value b ∈ [b, b] using the estimator Ĝ(b) =

(NT )−1
∑T

t=1

∑N
n=1 1{b(n)

t ≤ b}, and the density function can be estimated using the kernel
method, ĝ(b) = (NT hg)

−1
∑T

t=1

∑N
n=1 K[(b

(n)
t −b)/hg], where hg is the bandwidth parameter.

In a second-step, we can use equation (0.6) to construct the estimated pseudo-values v̂(n)
t =

ξ
(
b

(n)
t , Ĝ

)
and use them to obtain a kernel estimator of the density of values: for any

v ∈ [v, v], f̂(v) = (NT hf )
−1
∑T

t=1

∑N
n=1 K[(v̂

(n)
t − v)/hf ]. GPV show consistency and

asymptotic normality of this estimator and its speed of convergence. The also show that the

estimator can be easily generalized to datasets where only the winning bid, b(1)
t , is observed.

Athey and Haile (2002) provide a comprehensive study on the nonparametric identifi-

cation of auction models. For IPV models, they show that the asymmetric IPV model is

identified from data of winning bids if the identity of the winner is observed. When the

distribution of values depends on observable auction characteristics, F (v|Xt), they show

that this distribution is identified from data of winning bids, both in the symmetric and the

asymmetric IPV model. They also provide conditions for the identification of the affi liated

private value model and the common values model.

In some applications, especially in procurement auctions, there may be substantial het-

erogeneity across auctions after controlling for the observable characteristics. Not controlling

for this heterogeneity can generate important biases in the estimated distributions of val-

uations. Krasnokutskaya (2011) and Asker (2010) propose and estimate auction models of

IPV with unobserved auction heterogeneity.

In Krasnokutskaya’s model, bidders’valuations have a multiplicative structure: uit =

vit ∗ ct, where vit is private information of bidder i at auction t, and ct is common knowledge
to all the bidders in auction t. She provides suffi cient conditions for the nonparametric

identification of the distribution of the two components, and proposes an estimation method.1

Krasnokutskaya applies her method to data from Michigan highway procurement auctions.

She finds that, after conditioning on observable auction characteristics (for instance, number

of bidders and project size), private information explains only 34% of the sample variation

in winning bids. The remaining sample variation comes from unobserved heterogeneity from

the point of view of the researcher. Estimates of the model that ignore this unobserved

1A key (and very intuitive) identification condition is that the researcher observes multiple bids for each
auction. Data with only winning bids is not suffi cient.
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heterogeneity provide substantial biases in the average and the variance of firms’costs, and

underestimate firms’mark-ups.

Asker (2010) considers a similar model where bidders’valuations have a multiplicative

structure between IPVs and common knowledge auction heterogeneity. He applies this model

to estimate the damages and effi ciency costs of a "bidding ring" (cartel) in the US market

for collectible stamps. Like Krasnokutskaya, he finds that accounting for unobserved auction

heterogeneity has an important impact on the estimated model and its economic implications.

The model without unobserved heterogeneity over-estimates the cartel’s damages to the seller

by more than 100%, and under-estimates the effi ciency loss from the cartel by almost 50%.

The recent literature on structural auction models has extended the standard model in

different important directions. Bajari and Hortacsu (2003), Li and Zheng (2009), Athey,

Levin, and Seira (2011), Marmer, Shneyerov, and Xu (2013), and Gentry and Li (2014)

study endogenous entry of bidders (and sellers). Jofre-Bonet and Pesendorfer (2003) estimate

a dynamic structural model of procurement auctions where firms have capacity constraints

and are forward-looking. Groeger (2014) estimates a dynamic model of entry in procurement

auctions where firms have sunk entry costs. Lu and Perrigne (2008), Guerre, Perrigne, and

Vuong (2009), Campo et al. (2011) incorporate bidders’risk aversion, provide conditions for

nonparametric identification, and propose estimation methods. Finally, Lewis and Bajari

(2011) and Takahashi (2014) study procurement auctions where the winner is determined

by a scoring rule that weights both the price and the quality in a firm’s bid.
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APPENDIX A

Appendix 1

1. Random Utility Models

Consider a discrete choice Random Utility Model (RUM) where the optimal choice, a∗,

is defined as:

a∗ = arg max
a∈A

{ua + εa}

A = {1, 2, ..., J} is the set of feasible choice alternative. u = (u1, u2, ..., uJ) is the vector with

the deterministic or constant components of the utility. ε = (ε1, ε2, ..., εJ) is the vector with

the stochastic or random component of the utility. The vector ε has a joint CDF Gthat is

continuous and strictly increasing with respect to the Lebesgue measure in the Euclidean

space.

This note derives closed form expressions for the distribution of the maximum utility (that

is, maxa∈A {ua + εa}), the expected maximum utility (that is, E(maxa∈A {ua + εa} |u)),

and the choice probabilities (that is, Pr(a∗ = a|u)) under three different assumptions on

the distribution of the vector ε : (1) iid Extreme Value distribution (MNL model); (2)

nested Extreme Value distribution (NL model); and (3) Ordered Generalized Extreme Value

distribution (OGEV model).

The following definitions and properties are used in the note.

Definition: A random variable X has a Double Exponential or Extreme Value distribution

with location parameter µ and dispersion parameter σ if its CDF is:

G(X) = exp

{
− exp

(
−
[
X − µ
σ

])}
Definition: Maximum utility. Let v∗ be the random variable that represents the maximum

utility, that is, v∗ ≡ maxa∈A {ua + εa}. This maximum utility is a random variable because

it depends on the vector of random variables ε.

Definition: Social Surplus function (McFadden). The social surplus function S (u) is the

expected value of the maximum utility conditional on the vector of constants u, that is,

S(u) ≡ E(maxa∈A {ua + εa} |u).

Definition: Conditional choice probabilities (CCPs). The conditional choice probability P(a)

is the probability that alternative a is optimal choice, that is, P(a|u) ≡ Pr(a∗ = a|u).
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Definition: Conditional choice expected utilities (CCEU). The conditional choice expected

utility e(a, u) is the expected value of ua + εa conditional on the vector u and on alternative

a being the optimal choice, that is, e(a, u) ≡ E(ua + εa|u, a∗ = a).

Williams-Daly-Zachary (WDZ) Theorem. Let S(u) be the function that represents the ex-

pected maximum utility conditional on the vector of constants u, that is, S(u) ≡ E(maxa∈A

{ua + εa} |u). Then, the conditional choice probabilities (CCPs), Pr(a∗ = a|u), can be ob-

tained as the partial derivatives of the function S(u), that is,

Pr(a∗ = a|u) =
∂S(u)

∂ua

Proof: (reference here). By definition of S(u),
∂S(u)

∂ua
=

∂

∂ua

∫
maxj∈A {uj + εj} dG(ε).

Given the assumptions on the CDF of ε, we have that
∂

∂ua

∫
maxj∈A {uj + εj} dG(ε) =∫

∂

∂ua
maxj∈A {uj + εj} dG(ε). Therefore,

∂S(u)

∂ua
=

∫
∂

∂ua
maxj∈A {uj + εj} dG(ε)

=

∫
1{ua + εa ≥ uj + εj for any j ∈ A}dG(ε)

= Pr(a∗ = a|u)

Theorem. For any distribution of ε, any value of the vector u, and any choice alternative a,

the conditional choice expected utility e(a, u) is equal to the social surplus function S(u), that

is, e(a, u) = S(u) for any (a, u). Furthermore, this implies that E(εa | u, a∗ = a) = S(u)−ua.
Proof: (reference here). By definition, e(a, u) = ua + E(εa | u, a∗ = a). Taking into

account that the random variable v∗ represents maximum utility, we have that the event

{a∗ = a} is equivalent to the event {v∗ = ua + εa}. Therefore,

e(a, u) = ua + E(εa | u, v∗ = ua + εa)

= ua + E(v∗ − ua | u)

= E(v∗|u) = S(u)

Inversion Theorem. *** Representation of S(u) in terms of CCPs and utilities only. How

to do it in general? ****
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2. Multinomial logit (MNL)

Suppose that the random variables in the vector ε are independent and identically dis-

tributed with double exponential distribution with zero location and dispersion σ. That is,

for every alternative a, the CDF of εa is G(εa) = exp
{
− exp

(
− εa

σ

)}
.

(a) Distribution of the Maximum Utility

Let v∗ be the random variable that represents the maximum utility, that is, v∗ ≡ maxa∈A

{ua + εa}. This maximum utility is a random variable because it depends on the vector of

random variables ε. By definition, the cumulative probability distribution of v∗ is:

H(v) ≡ Pr(v∗ ≤ v) =
∏

a∈A
Pr(εa ≤ v − ua)

=
∏

a∈A
exp

{
− exp

(
−v − ua

σ

)}

= exp
{
− exp

(
−v
σ

)
U
}

where U ≡
∑

a∈A
exp

(ua
σ

)
. We can also write H(v) = exp

{
− exp

(
−v − σ lnU

σ

)}
. This

expression shows that the maximum utility v∗ is a double exponential random variable with

dispersion parameter σ and location parameter σ lnU . Therefore, the maximum of a vector

of i.i.d. double exponential random variables is also a double exponential random variable.

This is the reason why this family of random variables is also called "extreme value". The

density function of v∗ is:

h(v) ≡ H ′(v) = H(v)
U

σ
exp

(
−v
σ

)
(b) Expected maximum utility

By definition, S(u) = E(v∗|u). Therefore,

S(u) =

∫ +∞

−∞
v∗ h(v∗) dv∗ =

∫ +∞

−∞
v∗ exp

{
− exp

(
−v
∗

σ

)
U

}
U

σ
exp

(
−v
∗

σ

)
dv∗

We apply the change in variable: z = exp(−v∗/σ), such that v∗ = −σ ln(z), and dv∗ =

−σ(dz/z). Then,

S(u) =

∫ 0

+∞
− σ ln(z) exp {−z U} U

σ
z

(
−σdz

z

)

= −σU
∫ +∞

0

ln(z) exp {−z U} dz
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Using Laplace transformation we have that
∫ +∞

0

ln(z) exp {−z U} dz =
ln(U) + γ

U
, where

γ is Euler’s constant. Therefore, the expected maximum utility is:

S = σU

(
ln(U) + γ

U

)
= σ ( ln(U) + γ )

(c) Choice probabilities

By Williams-Daly-Zachary (WDZ) theorem, the optimal choice probabilities can be ob-

tained by differentiating the surplus function. Therefore, for the MNL model,

P (a|u) = σ
∂ ln(U)

∂ua
= σ

∂U

∂ua

1

U

= exp
(ua
σ

) 1

U
=

exp (ua/σ)∑
j∈A

exp (uj/σ)

(d) Conditional choice expected utilities

As shown in general, e(a, u) = S(u). This implies that E(εa | u, a∗ = a) = S(u) − ua.
For the case of the i.i.d. double exponential ε we have that:

E(εa|u, a∗ = a) = σ ( ln(U) + γ )− ua

(e) Function relating E(εa | u, a∗ = a) and CCPs.

In some applications we are interested in the function that relates the expected value

E(εa|u, a∗ = a)with conditional choice probabilities {P (j|u) : j = 1, 2, ..., J}. From the

expression for P (a|u) in the MNL model, we have that lnP (a|u) = ua/σ−lnU , and therefore

ln(U) = ua/σ − lnPa. Solving this expression in the previous formula for the expectation

E(εa|u, a∗ = a) we get:

E(εa|u, a∗ = a) = σ (ua/σ − lnP (a|u) + γ)− ua = σ (γ − lnP (a|u))

3. Nested logit (NL)

Suppose that the random variables in the vector ε have the following joint CDF:

G(ε) = exp

−
R∑
r=1

[∑
a∈Ar

exp

(
− εa
σr

)]σr
δ


where {A1, A2, ..., AR} is a partition of A, and δ, σ1, σ2, ..., σR are positive parameters, with

δ ≤ 1.

(a) Distribution of the Maximum Utility
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H(v) ≡ Pr(v∗ ≤ v) = Pr(εa ≤ v − ua : for any a ∈ A)

= exp

−
R∑
r=1

[∑
a∈Ar

exp

(
−v − ua

σr

)]σr
δ


= exp

− exp
(
−v
δ

) R∑
r=1

[∑
a∈Ar

exp

(
ua
σr

)]σr
δ


= exp

{
− exp

(
−v
δ

)
U
}

where:

U ≡
R∑
r=1

[∑
a∈Ar

exp

(
ua
σr

)]σr
δ

=
R∑
r=1

U1/δ
r

where Ur ≡
[∑

a∈Ar
exp

(
ua
σr

)]σr
. The density function of v∗ is:

h(v) ≡ H ′(v) = H(v)
U

δ
exp

(
−v
δ

)

(b) Expected maximum utility

By definition, S(u) = E(v∗). Therefore,

S(u) =

∫ +∞

−∞
v∗ h(v∗) dv∗ =

∫ +∞

−∞
v∗ exp

{
− exp

(
−v
∗

δ

)
U

}
U

δ
exp

(
−v
∗

δ

)
dv∗

Let’s apply the following change in variable: z = exp(−v∗/δ), such that v∗ = −δ ln(z), and

dv∗ = −δ(dz/z). Then,

S =

∫ 0

+∞
− δ ln(z) exp {−z U} U

δ
z

(
−δdz

z

)
= −δU

∫ 0

+∞
ln(z) exp {−z U} dz

And using Laplace transformation:

S = δU

(
ln(U) + γ

U

)
= δ ( ln(U) + γ )

where γ is the Euler’s constant.

(c) Choice probabilities
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By Williams-Daly-Zachary (WDZ) theorem, choice probabilities can be obtained differ-

entiating the surplus function. For the NL model:

P (a|u) = δ
∂ ln(U)

∂ua
= δ

∂U

∂ua

1

U
=

= δ
σra
δ

[∑
j∈Ara

exp

(
uj
σra

)]σra
δ
−1

1

σra
exp

(
ua
σra

)
1

U

=
exp (ua/σra)∑
j∈Ara

exp (uj/σra)

[∑
j∈Ara

exp (uj/σra)
]σra
δ

∑R

r=1

[∑
j∈Ar

exp (uj/σr)
]σr
δ

The first term is q(a|ra) (that is, probability of choosing a given that we are in group Ara),
and the second term is Q(ra) (that is, probability of selecting the group Ara).

(d) Conditional choice expected utilities

As shown in general, e(a, u) = S(u). This implies that E(εa | u, a∗ = a) = S(u) − ua.
Given that for the NL model S(u) = δ (lnU + γ) we have that:

E(εa|u, a∗ = a) = δγ + δ lnU − ua

(e) Function relating E(εa | u, a∗ = a) and CCPs.

To write E(εa|u, a∗ = a) in terms of choice probabilities, note that from the definition of

q(a|ra) and Q(ra), we have that:

ln q(a|ra) =
ua − lnUra

σra
⇒ lnUra = ua − σra ln q(a|ra)

and

lnQ(ra) =
lnUra
δ
− lnU ⇒ lnU =

lnUra
δ
− lnQ(ra)

Combining these expressions, we have that:

lnU =
ua − σra ln q(a|ra)

δ
− lnQ(ra)

Therefore,

ea = δγ + δ

(
ua − σra ln q(a|ra)

δ
− lnQ(ra)

)
− ua

= δγ − σra ln q(a|ra)− δ lnQ(ra)
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4. Ordered GEV (OGEV)

Suppose that the random variables in the vector ε have the following joint CDF:

G(ε) = exp

−
J+M∑
r=1

[∑
a∈Br

Wr−a exp

(
− εa
σr

)]σr
δ


where:

(1) M is a positive integer;

(2) {B1, B2, ..., BJ+M} are J+M subsets of A, with the following definition:

Br = {a ∈ A : r −M ≤ a ≤ r}

For instance, if A = {1, 2, 3, 4, 5} and M = 2, then B1 = {1}, B2 = {1, 2},
B3 = {1, 2, 3}, B4 = {2, 3, 4}, B5 = {3, 4, 5}, B6 = {4, 5}, and B7 = {5}.
(3) δ, and σ1, σ2, ..., σJ+M are positive parameters, with δ ≤ 1;

(4) W0, W1, ..., WM are constants (weights) such that: Wm ≥ 0, and∑M

m=0
Wm = 1.

(a) Distribution of the Maximum Utility

H(v) ≡ Pr(v∗ ≤ v) = Pr(εa ≤ v − ua : for any a ∈ A)

= exp

−
J+M∑
r=1

[∑
a∈Br

Wr−a exp

(
−v − ua

σr

)]σr
δ


= exp

− exp
(
−v
δ

) J+M∑
r=1

[∑
a∈Br

Wr−a exp

(
ua
σr

)]σr
δ


= exp

{
− exp

(
−v
δ

)
U
}

where:

U ≡
J+M∑
r=1

[∑
a∈Br

Wr−a exp

(
ua
σr

)]σr
δ

=
J+M∑
r=1

U1/δ
r

where Ur ≡
[∑

a∈Br
Wr−a exp

(
ua
σr

)]σr
. The density function of v∗ is:

h(v) ≡ H ′(v) = H(v)
U

δ
exp

(
−v
δ

)
(b) Expected maximum utility
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By definition, S(u) = E(v∗|u). Therefore,

S(u) =

+∞∫
−∞

v∗ h(v∗) dv∗ =

+∞∫
−∞

v∗ exp

{
− exp

(
−v
∗

δ

)
U

}
U

δ
exp

(
−v
∗

δ

)
dv∗

Let’s apply the following change in variable: z = exp(−v∗/δ), such that v∗ = −δ ln(z), and

dv∗ = −δ(dz/z). Then,

S =

0∫
+∞

− δ ln(z) exp {−z U} U

δ
z

(
−δdz

z

)
= −δU

+∞∫
0

ln(z) exp {−z U} dz

And using Laplace transformation:

S = δU

(
lnU + γ

U

)
= δ (lnU + γ) = δγ + δ ln

J+M∑
r=1

[∑
a∈Br

Wr−a exp

(
ua
σr

)]σr
δ


where γ is the Euler’s constant.

(c) Choice probabilities

By Williams-Daly-Zachary (WDZ) theorem, choice probabilities can be obtained differ-

entiating the surplus function.

P (a|u) =
1

U

a+M∑
r=a

[∑
j∈Br

Wr−j exp

(
uj
σr

)]σr
δ
−1

Wr−a exp

(
ua
σr

)
=

a+M∑
r=a

q(a|r) Q(r)

where:

q(a|r) =
Wr−a exp (ua/σr)∑
j∈Br

Wr−j exp (uj/σr)
=

exp (ua/σr)

exp(lnUr/σr)

Q(r) =
exp (lnUr/δ)∑J+M

j=1
exp (lnUj/δ)

=
exp (lnUr/δ)

U

(d) Conditional choice expected utilities

As shown in general, e(a, u) = S(u). This implies that E(εa | u, a∗ = a) = S(u) − ua.
Given that for the OGEV model S(u) = δ (lnU + γ) we have that:

E(εa|u, a∗ = a) = δγ + δ lnU − ua

(e) Function relating E(εa | u, a∗ = a) and CCPs.

To write E(εa|u, a∗ = a) in terms of choice probabilities, note that from the definition of

q(a|r) and Q(r), we have that: ....

TBC



APPENDIX A

Appendix 2. Problems

1. Problem set #1

Context. At the end of year 2002, the federal government of the Republic of Greenishtan
introduced a new environmental regulation on the cement industry, one of the major polluting

industries. The most important features of this regulation is that new plants, in order to

operate in the industry, should pass an environmental test and should install new equipment

that contributes to reduce pollutant emissions. Industry experts consider that this new law

increased the fixed cost of operating in this industry. However, these experts disagree in the

magnitude of the effect. There is also disagreement with respect to whether the new law

affected variable costs, competition, prices, and output. You have been hired by the Ministry

of Industry as an independent researcher to study and to evaluate the effects of this policy

on output, prices, firms’profits, and consumer welfare.

Data. To perform your evaluation, you have a panel dataset with annual information on the
industry for the period 1998-2007. The Stata datafile eco2901_problemset_01_2011.dta

contains panel data from 200 local markets (census tracts) over 10 years (1998-2007) for the

cement industry in the Republic of Greenishtan. The local markets in this dataset have been

selected following criteria similar to the ones in Bresnahan and Reiss (1991). This is the list

of variables in the dataset:

Variable name Description

market : Code of local market
year : Year
pop : Population of local market
income : Per capita income in local market
output : Annual output produced in the local market
price : Price of cement in local market
pinput : Price index of intermediate inputs in local market
nplant : Number of cement plants in local market at current year

Model. To answer our empirical questions, we consider a model in the spirit of the model
by Bresnahan and Reiss that we have seen in class. The main difference with respect to

367
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that model is that we specify the demand function and the cost function in the industry and

make it explicit the relationship between these primitives and the profit of a plant.

Demand of cement in market m at period t. We assume that cement is an homogeneous

product and consider the following inverse demand function:

lnPmt = αD0 + αD1 lnPOPmt + αD2 ln INCmt − αD3 lnQmt + εDmt

where αD′s are demand parameters, Qmt represents output, POPmt is population, INCmt is

per capita income, Pmt is price, and εDmt is a component of the demand that is unobserved

to the researcher.

Production costs. Let qmt be the amount of output of a cement plant in marketm and period

t. The production cost function is Cmt(qmt) = FCmt + MCmt qmt, where FCmt and MCmt

are the fixed cost function and the marginal cost, respectively. We consider the following

specification for FCmt and MCmt:

FCmt = exp
{
Xmt α

FC + εFCmt
}

MCmt = exp
{
Xmt α

MC + εMC
mt

}
where Xmt is the vector (1, lnPOPmt, ln INCmt, lnPINPUTmt), where PINPUTmt is the

index price of inputs (energy and limestone); αFC and αMC are vectors of parameters; and

εFCmt and ε
MC
mt are components of the fixed cost and the marginal cost, respectively, that are

unobserved to the researcher. The main reason why we consider an exponential function in

the specification of FCmt and MCmt is to impose the natural restriction that costs should

be always positive.

Entry costs and scrapping value. For simplicity, we consider a static model and therefore we

assume that there are not sunk entry costs.

Unobservables. Let εmt be the vector of unobservables εmt ≡ (εDmt, ε
MC
mt , ε

FC
mt ). We allow

for serial correlation in these unobservables. In particular, we assume that each of these

unobservables follows an AR(1) process. For j ∈ {D, MC, FC}:

εjmt = ρj εjmt−1 + ujmt

where ρj ∈ [0, 1) is the autorregressive parameter, and the vector umt = (uDmt, u
MC
mt , u

FC
mt )

is i.i.d. over markets and over time with a joint normal distribution with zero means and

variance-covariance matrix Ω.

Question 1 [20 points]. (a) Propose an estimator of the demand parameters and explain
the assumptions under which the estimator is consistent. (b) Obtain estimates and standard
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errors. (c) Test the null hypothesis of "no structural break" in demand parameters after
year 2002.

Question 2 [20 points]. (a) Describe how to use the Cournot equilibrium conditions to

estimate the parameters in the marginal cost function. Explain the assumptions under which

the estimator is consistent. (b) Obtain estimates and standard errors. (c) Test the null
hypothesis of "no structural break" in the variable cost parameters after year 2003.

Question 3 [30 points]. Assume that ρFC = 0. (a) Describe how to estimate the

parameters in the fixed cost function. Show that these costs are identified in dollar amounts

(that is, not only up to scale). Explain the assumptions under which the estimator is

consistent. How does the estimation of fixed costs change if ρFC 6= 0? Explain. (b) Obtain
estimates and standard errors. (c) Test the null hypothesis of "no structural break" in the
fixed cost parameters after year 2003.

Question 4 [30 points]. Now, we use our estimates to evaluate the effects of the policy
change. Suppose that we attribute to the new policy the estimated change in the parameters

of the cost function, but not the estimated change in the demand parameters.

(a) [10 points] Given the estimated parameters "after 2002", calculate the equilibrium
values of the endogenous variables {Pm,2003, Qm,2003, Nm,2003} for every local market in 2003,
that is, for every value of the exogenous variables (Xm,2003, εm,2003). Obtain also firms’profits,

consumer welfare, and total welfare.

(b) [10 points] Now, consider the counterfactual scenario where demand parameters are
the ones "after 2002" but cost parameters are the ones "before 2003". For this scenario, cal-

culate the "counterfactual" equilibrium values of the endogenous variables {P ∗m,2003, Q
∗
m,2003,

N∗m,2003} for every local market in 2003. Also obtain the counterfactual values for firms’
profits, consumer welfare, and total welfare.

(c) [10 points] Obtain the effects of the policy one the number of firms, output, prices,
firms’ profits, consumer welfare, and total welfare. Comment the results. Present two-

way graphs of these effects with the logarithm of population in the horizontal axis and the

estimated on a certain endogenous variable in the vertical axis. Comment the results. What

are the most important effects of this policy?

2. Problem set #2

The Stata datafile eco2901_problemset_01_chiledata_2010.dta contains a panel dataset

of 167 local markets in Chile with annual information over the years 1994 to 1999 and for
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five retail industries: Restaurants (’Restaurantes,’product code 63111); Gas stations (’Gaso-

lineras,’ product code 62531); Bookstores (’Librerias,’ product code 62547); Shoe Shops

(’Calzado,’product code 62411); and Fish shops (’Pescaderias,’product code 62141). The

167 "isolated" local markets in this dataset have been selected following criteria similar to

the ones in Bresnahan and Reiss (1991). This is the list of variables in the dataset with a

brief description of each variable:
comuna_code : Coder of local market
comuna_name : Name of local market
year : Year
procode : Code of product/industry
proname : Name of product/industry
pop : Population of local market (in # people)
areakm2 : Area of local market (in square Km)
expc : Annual expenditure per capita in all retail products in the local market
nfirm : Number of firms in local market and industry at current year
nfirm_1 : Number of firms in local market and industry at previous year
entries : Number of new entrants in local market and industry during current year
exits : Number of exiting firms in local market and industry during current year

Consider the following static entry model in the spirit of Bresnahan and Reiss (JPE, 1991,

hereinafter BR-91 ). The profit of an active firm in market m at year t is:

Πmt = Smt v(nmt)− Fmt
where Smt is a measure of market size; nmt is the number of firms active in the market;

vis the variable profit per capita and it is a decreasing function; and Fmt represents fixed

operating costs in market m at period t. The function vis nonparametrically specific. The

specification of market size is:

Smt = POPmt exp
{
βS0 + βS1 expcmt + εSmt

}
where POPmt is the population in the local market; expcmt is per capita sales in all retail in-

dustries operating in the local market; βS0 and β
S
1 are parameters; and ε

S
mt is an unobservable

component of market size. The specification of the fixed cost is:

Fmt = exp
{
βF + εFmt

}
where βF is a parameter, and εFmt in an unobservable component of the fixed cost. Define

the unobservable εmt ≡ εSmt− εFmt. And let Xmt ≡ (lnPOPmt, expcmt) be the vector with the

observable characteristics of the local market. We assume that εmt is independent of Xmt

and iid over (m, t) N(0, σ2).

Question 1. [10 points] Show that the model implies the following probability distribution
for the equilibrium number of firms: let nmax be the maximum value of nmt, then for any
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n ∈ {0, 1, ..., nmax}:

Pr (nmt = n | Xmt) = Pr

(
cut(n) ≤ Xmt

[ 1
σ
βS1
σ

]
+
εmt
σ
≤ cut(n+ 1)

)

= Φ

(
cut(n+ 1)−Xmt

[ 1
σ
βS1
σ

])
− Φ

(
cut(n)−Xmt

[ 1
σ
βS1
σ

])
where cut(0), cut(1), cut(2), ... are parameters such that for n ∈ {1, 2, ..., nmax}, cut(n) ≡
(βF − βS0 − ln v(n))/σ, and cut(0) ≡ −∞, and cut(nmax + 1) ≡ −∞.

Question 2. [20 points] Given the Ordered Probit structure of the model, estimate
the vector of parameters {1/σ, βS1 /σ, cut(1), cut(2), ..., cut(nmax)} for each of the five
industries separately. Given these estimates, obtain estimates of the parameters

v(n+ 1)

v(n)

for n ∈ {1, 2, ..., nmax}. Present a figure of the estimated function
v(n+ 1)

v(n)
for each of the

five industries. Interpret the results. Based on these results, what can we say about the

nature of competition in each of these industries?

Question 3. [20 points] Repeat the same exercise as in Question 3 but using the following
specification of the unobservable εmt:

εmt = γt + δm + umt

where γt are time effects that can be captured by using time-dummies; δm are fixed market

effects that can be captured by using market-dummies; and umt is independent of Xmt and

iid over (m, t) N(0, σ2). Comment the results.

– – – – – – – – – – – – – – – – – – – – – – –

Now, consider the following static entry model of incomplete information. There are Nmt

potential entrants in market m at period t. The profit of an active firm in market m at year

t is:

Πimt = Smt v(nmt)− Fimt
Market size, Smt, has the same specification as in Question 2. The firm-specific fixed cost,

Fmt, has the following specification:

Fimt = exp
{
βF + εFmt + ξimt

}
The random variables εSmt, ε

F
mt, and ξimt are unobservable to the researcher. From the point

of view of the firms in the market, the variables εSmt and ε
F
mt are common knowledge, while

ξimt is private information of firm i. We assume that ξimt is independent of Xmt and iid over

(m, t) N(0, σ2
ξ).
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The number of potential entrants, Nmt, is assumed to be proportional to population:

Nmt = λ POPmt, where the parameter λ is industry specific.

Question 4. [5 points] Consider the following estimator of the number of potential en-
trants:

N̂mt = integer

{
max

over all{m′,t′}

[
entrantsm′t′ + incumbentsm′t′

POPm′t′

]
POPmt

}
where entrantsm′t′ and incumbentsm′t′ are the number of new entrants and the number of

incumbents, respectively, in market m′ at period t′. Show that N̂mt is a consistent estimator

of Nmt = λ POPmt.

Question 5. [15 points] Let P (Xmt, εmt) be the equilibrium probability of entry given the

common knowledge variables (Xmt, εmt). And let G(n|Xmt, εmt) be the distribution of the

number of active firms in equilibrium conditional on (Xmt, εmt) and given that one of the

firms is active with probability one. (i) Obtain the expression of the probability distribution

G(n|Xmt, εmt) in terms of the probability of entry P (Xmt, εmt). (ii) Derive the expression

for the expected profit of an active firm in terms of the probability of entry. (iii) Obtain the

expression of the equilibrium mapping that defines implicitly the equilibrium probability of

entry P (Xmt, εmt).

NOTE: For Questions 6 and 7, consider the following approximation to the function lnE(v(nmt)

| Xmt, εmt, 1 sure):

lnE(v(nmt)|Xmt, εmt, 1sure) ' ln v(1) +
Nmt∑
n=1

G(n|Xmt, εmt)

[
v(n)− v(1)

v(1)

]
This is a first order Taylor approximation to lnE(v(nmt)|Xmt, εmt, 1sure) around the values

v(1) = v(2) = ... = v(N), that is, no competition effects. The main advantage of using this

approximation for estimation is that it is linear in the parameters
[
v(n)−v(1)

v(1)

]
.

Question 6. [20 points] Suppose that εmt ≡ εSmt − εFmt is just an aggregate time effect,
εmt = γt. Use a two-step pseudo maximum likelihood method to estimate the vector of

parameters:

θ ≡
{

1

σξ
,
βS1
σξ
,

ln v(1) + βS0 − βF

σξ
,
v(n)− v(1)

σξ v(1)
: n = 2, 3, ...

}
for each of the five industries separately. Given these estimates, obtain estimates of the

parameters
v(n+ 1)

v(n)
for n ∈ {1, 2, ..., nmax}. Present a figure of the estimated function

v(n+ 1)

v(n)
for each of the five industries. Interpret the results. Based on these results, what
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can we say about the nature of competition in each of these industries? Compare these

results to those from the estimation of the BR-91 models in Questions 2 and 3.

Question 7. [10 points] Repeat the same exercise as in Question 7 but using the following
specification of the unobservable εmt:

εmt = γt + δm

where γt are time effects that can be captured by using time-dummies; and δm are fixed mar-

ket effects that can be captured by using market-dummies. Comment the results. Compare

these results to those in Questions 2, 3, and 6.

3. Problem set #3

This problem set describes a dynamic game of entry/exit in an oligopoly market. To answer

the questions below, you have to write computer code (for instance, GAUSS, MATLAB)

for the solution, simulation and estimation of the model. Please, submit the program code

together with your answers.

Consider the UK fast food industry during the period 1991-1995, as analyzed by Toivanen

and Waterson (RAND, 2005). During this period, the industry was dominated by two large

retail chains: McDonalds (MD) and Burger King (BK). The industry can be divided into

isolated/independent local markets. Toivanen and Waterson consider local districts as the

definition of local market (of which there are almost 500 in UK). At each local market these

retail chains decide whether to have an outlet or not.

We index firms by i ∈ {MD,BK} and time (years) by t. The current profit of firm i

in a local market is equal to variable profits, V Pit, minus fixed costs of operating an outlet,

FCit, and minus the entry cost of setting up an outlet by first time, ECit. Variable profits

are V Pit = (pit − ci)qit, where pit represents the price, ci is firm i’s marginal cost (that is,

the marginal cost of an average meal in chain i), and qit is the quantity sold (that is, total

number of meals served in the outlet at year t). The demand for an outlet of firm i in the

local market is:

qit =
St exp {wi − α pit}

1 + exp {wi − α pit}+ ajt exp {wj − α pjt}
St represents the size of the local market at period t (that is, total number of restaurant

meals over the year). wi and wj are the average willingness to pay for products i and j,

respectively. α is a parameter. And ajt is the indicator of the event "firm j is active in

the local market at period t". Every period t, the active firms compete in prices. There is

not dynamics in consumers demand or in variable costs, and therefore price competition is
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static. Fixed costs and entry costs have the following form:

FCit = FCi + εit

ECit = (1− ai,t−1) ECi

The fixed cost is paid every year that the firm is active in the market. The entry cost, or

setup cost, is paid only if the firm was not active at previous year (if ai,t−1 = 0). Both

fixed costs and entry costs are firm-specific. The entry cost is time invariant. εit represents

a firm-idiosyncratic shock in firm i’s fixed cost that is iid over firms and over time with a

distribution N(0, σ2). We also assume that εit is private information of firm i. If a firm is not

active in the market, its profit is zero. For notational simplicity I "normalize" the variance

of εit to be 1, though it should be understood that the structural parameters in the profit

function are identified up to scale.

––––––––––––––––––––––––––––––––––
QUESTION 1. [5 POINTS] Consider the static model of price competition.
Show that equilibrium price-cost margins, pit−ci, and equilibrium market shares,
qit/St, do not depend on market size St. Therefore, we can write the equilibrium
variable profit function as:

V Pit = (1− ajt) St θ
M
i + ajt St θ

D
i

where θMi and θDi represent the equilibrium variable profits per-capita (per-meal)
when firm i is a monopolist and when it is a duopolist, respectively.
– –––––––––––––––––––––––––––––––––
The payoff-relevant information of firm i at period t is {xt, εit} where xt ≡ {St, a1,t−1, a2,t−1}.

Let Pj(xt) represents firm i′s belief about the probability that firm j will be active in the

market given state xt. Given this belief, the expected profit of firm i at period t is:

πPit = (1− Pj(xt)) St θ
M
i + Pj(xt) St θ

D
i − FCi − (1− ai,t−1) ECi − εit

= ZP
it θi − εit

where ZP
it ≡ ((1− Pj(xt))St, Pj(xt)St,−1,−(1− ai,t−1)) and θi ≡

(
θMi , θ

D
i , FCi, ECi

)′
.

For the rest of this problem set, we consider the following values for the profit parameters:

θMMD = 1.5 ; θDMD = 0.7 ; FCMD = 6 ; ECMD = 6

θMBK = 1.2 ; θDBK = 0.3 ; FCBK = 4 ; ECBK = 4

MD’s product has higher quality (even after adjusting for marginal costs) than BK’s. This

implies that MD has higher variable profits than BK, either under monopoly or under

duopoly. However, MD has also higher costs of setting up and operating an outlet.
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Market size St follows a discrete Markov process with support {4, 5, 6, 7, 8, 9} and tran-
sition probability matrix:

FS =


0.9 0.1 0.0 0.0 0.0 0.0
0.1 0.8 0.1 0.0 0.0 0.0
0.0 0.1 0.8 0.1 0.0 0.0
0.0 0.0 0.1 0.8 0.1 0.0
0.0 0.0 0.0 0.1 0.8 0.1
0.0 0.0 0.0 0.0 0.1 0.9



A. STATIC (MYOPIC) ENTRY-EXIT GAME
We first consider a static (not forward-looking) version of the entry-exit game. A

Bayesian Nash Equilibrium (BNE) in this game can be described as a pair of probabili-

ties, {PMD (xt) , PBK (xt)} solving the following system of equations:

PMD (xt) = Φ
(
ZP
MDt θMD

)
PBK (xt) = Φ

(
ZP
BKt θBK

)
where Φ (.) is the CDF of the standard normal.

––––––––––––––––––––––––––––––––––
QUESTION 2. [10 POINTS] For every possible value of the state xt (that is, 24

values) obtain all the BNE of the static entry game.
Hint: Define the functions fMD(P ) ≡ Φ

(
ZP
MDt θMD

)
and fBK(P ) ≡ Φ

(
ZP
BKt θBK

)
.

Define also the function g(P ) ≡ P − fMD(fBK(P )). A BNE is zero of the function
g(P ). You can search for all the zeroes of g(P ) in different ways, but in this case
the simpler method is to consider a discrete grid for P in the interval [0, 1], for
instance, uniform grid with 101 points.
––––––––––––––––––––––––––––––––––
For some values of the state vector xt, the static model has multiple equilibria. To answer

Questions 3 to 5, assume that, in the population under study, the "equilibrium selection

mechanism" always selects the equilibrium with the higher probability that MD is active in

the market.

Let X be the set of possible values of xt. And let P0 ≡ {P 0
MD(x), P 0

BK(x) : x ∈ X}
be the equilibrium probabilities in the population. Given P0 and the transition probability

matrix for market size, FS. We can obtain the steady-state distribution of xt. Let p∗(xt) be
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the steady-state distribution. By definition, for any xt+1 ∈ X:

p∗(xt+1) =
∑

xt∈X
p∗(xt) Pr (xt+1|xt)

=
∑

xt∈X
p∗(xt) FS(St+1|St)

[P 0
MD(xt)]

aMDt+1 [1− P 0
MD(xt)]

1−aMDt+1 [P 0
BK(xt)]

aBKt+1 [1− P 0
BK(xt)]

1−aBKt+1

––––––––––––––––––––––––––––––––––
QUESTION 3. [10 POINTS] Compute the steady-state distribution of xt in the
population.
– –––––––––––––––––––––––––––––––––

––––––––––––––––––––––––––––––––––
QUESTION 4. [20 POINTS] Using the values of P 0, FS and p∗ obtained above,
simulate a data set {xmt : t = 0, 1, ..., T ;m = 1, 2, ...,M} for M = 500 local markets
and T+1 = 6 years with the following features: (1) local markets are independent;
and (2) the initial states xm0 are random draws from the steady-state distribution
p∗. Present a table with the mean values of the state variables in xt and with
the sample frequencies for the following events: (1) MD is a monopolist; (2) BK
is a monopolist; (3) duopoly; (4) MD is active given that (conditional) she was
a monopolist at the beginning of the year (the same for BK); (5) MD is active
given that BK was a monopolist at the beginning of the year (the same for BK);
(6) MD is active given that there was a duopoly at the beginning of the year
(the same for BK); and (7) MD is active given that there were no firms active
at the beginning of the year (the same for BK).
– –––––––––––––––––––––––––––––––––

––––––––––––––––––––––––––––––––––
QUESTION 5. [20 POINTS] Use the simulated data in Question 4 to estimate
the structural parameters of the model. Implement the following estimators: (1)
two-step PML using a frequency estimator of P0 in the first step; (2) two-step
PML using random draws from a U(0,1) for P0 in the first step; (3) 20-step
PML using a frequency estimator of P0 in the first step; (4) 20-step PML using
random draws from a U(0,1) for P 0 in the first step; and (5) NPL estimator
based on 10 NPL fixed points (that is, 10 different initial P ′s). Comment the
results.
– –––––––––––––––––––––––––––––––––

––––––––––––––––––––––––––––––––––
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QUESTION 6. [30 POINTS] Suppose that the researcher knows that local mar-
kets are heterogeneous in their market size, but she does not observed market
size Smt. Suppose that the researcher assumes that market size is constant over
time but it varies across markets, and it has a uniform distribution with discrete
support {4, 5, 6, 7, 8, 9}. Obtain the NPL estimator under this assumption (use 20
NPL fixed points). Comment the results.
– –––––––––––––––––––––––––––––––––

––––––––––––––––––––––––––––––––––
QUESTION 7. [30 POINTS] Use the previous model (both the true model and
the model estimated in Question 5) to evaluate the effects of a value added tax.
The value added tax is paid by the retailer and it is such that the parameters
θMi and θDi are reduced by 10%. Obtain the effects of this tax on average firms’
profits, and on the probability distribution of market structure.
– –––––––––––––––––––––––––––––––––

B. DYNAMIC ENTRY-EXIT GAME
Now, consider the dynamic (forward-looking) version of the entry-exit game. A Markov

Perfect Equilibrium (MPE) in this game can be described as a vector of probabilities P ≡
{Pi (xt) : i ∈ {MD,BK}, xt ∈ X} such that, for every (i, xt):

Pi (xt) = Φ
(
Z̃P
it θMD + ẽPit

)
where Z̃P

it and ẽ
P
it are defined in the class notes.

––––––––––––––––––––––––––––––––––
QUESTION 8. [20 POINTS] Obtain the MPE that we obtain when we iterate
in the equilibrium mapping starting with an initial P = 0. Find other MPEs.
– –––––––––––––––––––––––––––––––––

––––––––––––––––––––––––––––––––––
QUESTION 9. [10 POINTS] Compute the steady-state distribution of xt in the
population.
– –––––––––––––––––––––––––––––––––

––––––––––––––––––––––––––––––––––
QUESTION 10. [20 POINTS] The same as in Question 4 but using the dynamic
game and the MPE in Question 8.
– –––––––––––––––––––––––––––––––––
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––––––––––––––––––––––––––––––––––
QUESTION 11. [20 POINTS] The same as in Question 5 but using the dynamic
game and the MPE in Question 8.
– –––––––––––––––––––––––––––––––––

––––––––––––––––––––––––––––––––––
QUESTION 12. [30 POINTS] The same as in Question 6 but using the dynamic
game and the MPE in Question 8.
– –––––––––––––––––––––––––––––––––

––––––––––––––––––––––––––––––––––
QUESTION 13. [30 POINTS] The same as in Question 7 but using the dynamic
game and the MPE in Question 8.
– –––––––––––––––––––––––––––––––––

4. Problem set #4

QUESTION 1 (25 POINTS): This question deals with the paper by Hendel and Nevo
(Econometrica, 2006).

(a) Explain the implications on estimated elasticities and market power of
ignoring (when present) consumer forward-looking behavior and dynamics in

the demand of differentiated storable products. Discuss how the biases depend

on the stochastic process of prices (for instance, Hi-Lo pricing versus a more

stable price).

(b) Describe the main issues in the estimation of Hendel-Nevo model.
Discuss the assumptions that they make to deal with these issues.

QUESTION 2 (25 POINTS): The geographic definition of a local market is an important
modelling decision in empirical models of market entry.

(a) Explain the implications on the empirical predictions of these model of
using a definition of local that is too broad or too narrow.

(b) Explain the approach in Seim (2006). Discuss its advantages and

limitations.

QUESTION 3 (50 POINTS): There is a significant number of empirical applications
of static and dynamic models of entry in local markets which find the following empirical

regularity: after conditioning on observable market characteristics (for instance, population,

income, age) there is a positive correlation between the entry decisions of potential entrants.
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Three main hypotheses have been proposed to explain this evidence: (1) spillover effects

in consumer traffi c; (2) information externalities (see Caplin and Leahy [Economic Journal,

1998] and Toivanen and Waterson [RAND, 2005]); and (3) market characteristics which are

observable for the firms but unobservable to the researcher.

(a) Explain how these hypotheses can explain the empirical evidence.
(b) Discuss why it is important to distinguish between these hypothesis.

Do they have different policy implications?

(c) Consider the data and the empirical application in Toivanen and Wa-
terson (RAND, 2005). Explain how it is possible to identify empirically the

contribution of the three hypotheses.

(d) Consider the dynamic game of entry-exit in the Problem Set of this

course. Explain how to extend this model to incorporate information exter-

nalities as in Caplin and Leahy (1998). Discuss identification issues.

5. Problem set #5

Consider a market with N firms who can potentially operate in it. We index firms by

i ∈ {1, 2, ..., N}. Firms produce and sell a differentiated product. There are S consumers
and each consumer buys at most one unit (per period) of this differentiated product. A

consumer (indirect) utility of buying firm i′s product is:

Ui = wi − pi + εi

wi is the "quality" of product i which is valued in the same way by every consumer. pi is

the price. And {ε1, ε2, ..., εN} are consumer specific preferences which are i.i.d. with a type
1 extreme value distribution with dispersion parameter α. The utility of not buying any of

these products is normalized to zero. For simplicity, we consider that there are only two

levels of quality, high and low: wi ∈ {wL, wH}, with wL < wH . Firms choose endogenously

their qualities and prices. They also decide whether to operate in the market or not. Let

nL and nH be the number of active firms with low and high quality products, respectively.

Then, the demand for an active firm with quality wi and price pi is:

qi =

S exp

{
wi − pi
α

}
1 + nL exp

{
wL − pL

α

}
+ nH exp

{
wH − pH

α

}
where we have imposed the (symmetric) equilibrium restriction that firms with the same

quality charge the same price. Inactive firms get zero profit. The profit of an active firm is:

Πi = (pi − c(wi)) qi − F (wi)
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where c(wi) and F (wi) are the (constant) marginal cost and the fixed cost of producing a

product with quality wi. Each firm decides: (1) whether or not to operate in the market; (2)

the quality of its product; and (3) its price. The game that firms play is a sequential game

with the following two steps:

Step 1: Firms make entry and quality decisions. This determines nL and nH .

Step 2: Given (nL, nH), firms compete in prices a la Bertrand.

We start describing the Bertrand equilibrium at step 2 of the game.

––––––––––––––––––––––––––––––––––
QUESTION 1. [10 POINTS] Show that the best response functions of the
Bertrand game in step 2 have the following form.

pL = cL + α

1−
exp

{
wL − pL

α

}
1 + nL exp

{
wL − pL

α

}
+ nH exp

{
wH − pH

α

}

−1

pH = cH + α

1−
exp

{
wH − pH

α

}
1 + nL exp

{
wL − pL

α

}
+ nH exp

{
wH − pH

α

}

−1

––––––––––––––––––––––––––––––––––
ANSWER:

Note that equilibrium prices depend on (nL, nH).

––––––––––––––––––––––––––––––––––
QUESTION 2. [30 POINTS] Write a computer program that computes equilib-
rium prices in this Bertrand game. For given values of the structural parameters
(for instance, α = 1, wL = 2, wH = 4, cL = 1, cH = 2) calculate equilibrium prices
for every possible combination of (nL, nH) given that N = 4. Present the results
in a table.

nL nH pL pH
1 0 ? ?
0 1 ? ?
1 1 ? ?
2 0 ? ?
... ... ... ...

––––––––––––––––––––––––––––––––––
Now, consider the game at step 1. It is useful to define the indirect variable profit

function that results from the Bertrand equilibrium in step 2 of the game. Let ΠL(nL, nH)
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and ΠH(nL, nH) be this indirect variable profit, that is, ΠL(nL, nH) = (pL − cL)qL and

ΠH(nL, nH) = (pH − cH)qH , where prices and quantities are equilibrium ones.

––––––––––––––––––––––––––––––––––
QUESTION 3. [10 POINTS] Show that: ΠL(nL, nH) = αSqL/(S−qL) andΠH(nL, nH) =

αSqH/(S − qH).

––––––––––––––––––––––––––––––––––

Let nL(−i) and nH(−i) be the number of low and high quality firms, respectively, excluding

firm i. Let’s use wi = ∅ to represent no entry. And let b(nL(−i), nH(−i)) be the best response

mapping of a firm at step 1 of the game.

––––––––––––––––––––––––––––––––––
QUESTION 4. [10 POINTS] Show that the best response function b(nL(−i), nH(−i))

can be described as follows:

b(nL(−i), nH(−i)) =



∅ if

[
{ΠL(nL(−i) + 1, nH(−i))− FL < 0}

and {ΠH(nL(−i), nH(−i) + 1)− FH < 0}

]

wL if

[
{ΠL(nL(−i) + 1, nH(−i))− FL ≥ 0}

and {ΠL(nL(−i) + 1, nH(−i))− FL > ΠH(nL(−i), nH(−i) + 1)− FH}

]

wH if

[
{ΠH(nL(−i), nH(−i) + 1)− FH ≥ 0}

and {ΠL(nL(−i) + 1, nH(−i))− FL ≤ ΠH(nL(−i), nH(−i) + 1)− FH}

]
––––––––––––––––––––––––––––––––––
Now, suppose that a component of the fixed cost is private information of the firm: that

is, Fi(wL) = FL + ξiL and Fi(wH) = FH + ξiH , where FL and FH are parameters and ξiL
and ξiH are private information variables which are iid extreme value distributed across

firms. In this Bayesian game a firm’s strategy is a function of her own private information

ξi ≡ (ξiL,ξiH) and of the common knowledge variables (that is, parameters of the model and

market size S). Let ω(ξi, S) be a firm’s strategy function. A firm’s strategy can be also

described in terms of two probabilities: PL(S) and PH(S), such that:

PL(S) ≡
∫
I{ω(ξi, S) = wL} dFξ(ξi)

PH(S) ≡
∫
I{ω(ξi, S) = wH} dFξ(ξi)

where I{.} is the indicator function and Fξis the CDF of ξi.
––––––––––––––––––––––––––––––––––
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QUESTION 5. [20 POINTS] Show that a Bayesian Nash Equilibrium (BNE) in
this game is a pair (PL, PH) that is a solution to the following fixed problem:

PL =
exp {Πe

L (PL, PH)− FL}
1 + exp {Πe

L (PL, PH)− FL}+ exp {Πe
H (PL, PH)− FH}

pH =
exp {Πe

H (PL, PH)− FH}
1 + exp {Πe

L (PL, PH)− FL}+ exp {Πe
H (PL, PH)− FH}

with:

Πe
L (PL, PH) =

∑
nL(−i),nH(−i)

ΠL(nL(−i) + 1, nH(−i)) T (nL(−i), nH(−i)|N − 1, PL, PH)

Πe
H (PL, PH) =

∑
nL(−i),nH(−i)

ΠH(nL(−i), nH(−i) + 1) T (nL(−i), nH(−i)|N − 1, PL, PH)

where T (x, y|n, p1, p2) is the PDF of a trinomial distribution with parameters
(n, p1, p2).
– –––––––––––––––––––––––––––––––––
QUESTION 6. [50 POINTS] Write a computer program that computes the BNE
in this entry/quality game. Consider N = 4. For given values of the structural
parameters, calculate the equilibrium probabilities (PL(S), PH(S)) for a grid of
points for market size S. Present a graph for (PL(S), PH(S)) (on the vertical axis)
on S (in the horizontal axis). Does the proportion of high quality firms depend
on market size?
– –––––––––––––––––––––––––––––––––
QUESTION 7. [30 POINTS] Define the function λ(S) ≡ PH(S)/PL(S) that repre-
sents the average ratio between high and low quality firms in the market. Repeat
the same exercise as in Question 1.6. but for three different values of the ratio
FH/FL. Present a graph of λ(S) on S for the three values of FH/FL. Comment
the results.
– –––––––––––––––––––––––––––––––––
QUESTION 8. [50 POINTS] A regulator is considering a policy to encourage the
production of high quality products. The policy would provide a subsidy of 20%
of the additional fixed cost of producing a high quality product. That is, the new
fixed cost of producing a high quality product would be F ∗H = FH−0.20∗(FH−FL).
Given a parametrization of the model, obtain the equilibrium before and after
the policy and calculate the effect of the policy on: (1) prices; (2) quantities; (3)
firms’profits; (4) average consumers’surplus; and (5) total surplus.
– –––––––––––––––––––––––––––––––––
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Suppose that the researcher observes a random sample of M isolated markets, indexed

by m, where these N firms compete. More specifically, the researcher observes:

Data = {Sm, nHm, nLm, qHm, qLm, pHm, pLm : m = 1, 2, ...,M}

For instance, consider data from the hotel industry in a region where "high quality" is

defined as four stars or more (low quality as three stars or less). We incorporate two sources

of market heterogeneity in the econometric model (that is, unobservables for the researcher).

(A) Consumers’average valuations: wLm = wL+η
(wL)
m and wHm = wH+η

(wH)
m ,

where η(wL)
m and η(wH)

m are zero mean random variables.

(B) Marginal costs: cLm = cL + η
(cL)
m and cHm = cH + η

(cH)
m , where η(cL)

m and

η
(cH)
m are zero mean random variables.

We assume that the vector of unobservables ηm ≡ {η
(wL)
m , η

(wH)
m , η

(cL)
m , η

(cH)
m } is iid over

markets and independent of market size Sm. We also assume that these variables are

common knowledge. We want to use these data to estimate the structural parameters

θ = {α,wj, cj, Fj : j = L,H}.
––––––––––––––––––––––––––––––––––
QUESTION 9. [30 POINTS] Show that the econometric model can be described
in terms of three sets of equations.

(1) Demand equations: For j ∈ {L,H} let sjm be the market share
qjm/Sm. Then:

ln

(
sjm

1− sLm − sHm

)
=
wj
α
− 1

α
pjm +

η
(wj)
m

α
if njm > 0

(2) Price equations: For j ∈ {L,H}:

pjm = cj + α

(
1

1− sjm

)
+ η(cj)

m if njm > 0

(3) Entry/Quality choice: Suppose that from the estimation of (1)
and (2) we can obtain consistent estimates of ηm as residuals. After
that estimation, we can treat ηm as "observable" (though we should
account for estimation error). Then,

Pr(nLm, nHm|Sm, ηm) = T (nLm, nHm|N,PL(Sm, ηm), PH(Sm, ηm))

where PL(Sm, ηm), PH(Sm, ηm) are equilibrium probabilities in market
m.

– –––––––––––––––––––––––––––––––––
QUESTION 10. [30 POINTS] Discuss in detail the econometric issues in the
estimation of the parameters {wL, wH , α} from the demand equations: for j ∈
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{L,H} :

ln

(
sjm

1− sLm − sHm

)
=
wj
α
− 1

α
pjm +

η
(wj)
m

α
if njm > 0

Propose and describe in detail a method that provides consistent estimates of
{wL, wH , α}.
– –––––––––––––––––––––––––––––––––
QUESTION 11. [30 POINTS] Suppose for the moment that α has not been
estimated from the demand equations. Discuss in detail the econometric issues
in the estimation of the parameters {cL, cH , α} from the pricing equations: for
j ∈ {L,H} :

pjm = cj + α

(
1

1− sjm

)
+ η(cj)

m if njm > 0

Propose and describe in detail a method that provides consistent estimates
of {cL, cH , α}. What if α has been estimated in a first step from the demand
equations? Which are the advantages of a joint estimation of demand and supply
equations?
– –––––––––––––––––––––––––––––––––
QUESTION 12. [50 POINTS] For simplicity, suppose that the parameters
{wL, wH , cL, cH , α} are known and that ηm is observable (that is, we ignore es-
timation error from the first step estimation). We want to estimate the fixed
costs FL and FH using information on firms’entry/quality choices. Discuss in
detail the econometric issues in the estimation of these parameters. Propose and
describe in detail a method that provides consistent estimates of {FL, FH}.
– –––––––––––––––––––––––––––––––––
QUESTION 13. [50 POINTS] Suppose that you incorporate a third source of
market heterogeneity in the model:

(C) Fixed costs: FLm = FL + η
(FL)
m and FHm = FH + η

(FH)
m , where η(FL)

m

and η
(FH)
m are zero mean random variables, and they are common

knowledge to the players.

Explain which are the additional econometric issues in the estimation of {FL, FH}
when we have these additional unobservables. Propose and describe in detail a
method that provides consistent estimates of {FL, FH} and the distribution of
{η(FL)

m , η
(FH)
m }.

– –––––––––––––––––––––––––––––––––
QUESTION 14. [50 POINTS] Consider the econometric model without {η(FL)

m , η
(FH)
m }.

Suppose that Sm is log normally distributed and ηm ≡ {η
(wL)
m , η

(wH)
m , η

(cL)
m , η

(cH)
m } has

a normal distribution with zero means. Generate a random sample of {Sm, ηm}



6. PROBLEM SET #6 385

with sample size of M = 500 markets. Given a parametrization of the model, for
every value {Sm, ηm} in the sample, solve the model and obtain the endogenous
variables {nHm, nLm, qHm, qLm, pHm, pLm}. Present a table with the summary
statistics of these variables: for instance, mean, median, standard deviation,
minimum, maximum.
––––––––––––––––––––––––––––––––––
QUESTION 15. [50 POINTS] Write a computer program that implements the
method for the estimation of the demand that you proposed in Question 10.
Apply this method to the data simulated in Question 14. Present and comment
the results.
– –––––––––––––––––––––––––––––––––
QUESTION 16. [50 POINTS] Write a computer program that implements the
method for the estimation of the pricing equations that you proposed in Question
11. Apply this method to the data simulated in Question 14. Present and
comment the results.
– –––––––––––––––––––––––––––––––––
QUESTION 17. [100 POINTS] Write a computer program that implements the
method for the estimation of the entry/quality choice game that you proposed in
Question 12. Apply this method to the data simulated in Question 14. Present
and comment the results.
– –––––––––––––––––––––––––––––––––
QUESTION 18. [50 POINTS] Use the estimated model to evaluate the policy in
question 8. Present a table that compares the average (across markets) "actual"
and estimated effects of the policy on: (1) prices; (2) quantities; (3) firms’profits;
(4) average consumers’surplus; and (5) total surplus.

6. Problem set #6

In the paper "The Interpretation of Instrumental Variables Estimators in Simultaneous

Equations Models with an Application to the Demand for Fish," (REStud, 2000), Angrist,

Graddy and Imbens consider the following random coeffi cients model of supply and demand

for an homogeneous product:

Inverse Demand: pt = xt β
D −

(
αD + υDt

)
qt + εDt

Inverse Supply: pt = xt β
S +

(
αS + υSt

)
qt + εSt
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where pt is logarithm of price; qt is the logarithm of the quantity sold; and εDt , ε
S
t , υ

D
t and

υSt are unobservables which have zero mean conditional on xt. The variables υ
D
t and υSt

account for random shocks in the price elasticities of demand and supply. Suppose that the

researcher has a sample {pt, qt, xt : t = 1, 2, ..., n} and is interested in the estimation of the
demand parameters βD and αD.

(1) Explain why instrumental variables (or 2SLS) provides inconsistent estimates of the

parameters βD and αD.

(2) Descrine an estimation method that provides consistent estimates of βD and αD.

(3)

7. Problem set #7

Mitsubishi entered the Canadian automobile market in September 2002. You can consider

this to be an exogenous change. Subsequently, the firm had to decide in which local markets

to open dealerships. This, you should consider to be endogenous choices.

(1) How could you use this type of variation to estimate a model of entry like Bresnahan

and Reiss (1988, 1990, 1991)? What variation in the data will be useful to identify

which underlying economic parameters? How would you learn about or control for

the competitiveness of market operation?

(2) (It is not necessary to derive any equations, although you can if it helps your expo-

sition.).

(3) Could you use the same data to estimate an entry model like Berry (1992)? How?

(4) How would you use data for this industry to estimate the lower bound on concen-

tration in the sense of Sutton?

(5) Give an example of an economic question that you would be able to address with

this type of variation over time – entry by a new firm– that the previous authors

were unable to address using only cross sectional data.

(6)

8. Problem set #8

In the paper "The valuation of new goods under perfect and imperfect competition,"

Jerry Hausman estimates a demand system for ready-to eat cereals using panel data on

quantities and prices for multiple markets (cities), brands and quarters. The demand system

is (Deaton-Muellbauer demand system):

wjmt = α0
j + α1

m + α2
t +

∑J
k=1 βjk ln(pkmt) + γj ln(xmt) + εjmt
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where: j, m and t are the product, market (city) and quarter subindexes, respectively; xmt
represents exogenous market characteristics such as population and average income. There

are not observable cost shifters. The terms α0
j , α

1
m and α

2
t represent product, market and

time effects, respectively, which are captured using dummies. As instruments for prices,

Hausman uses average prices is nearby markets. More specifically, the instrument for price

pjmt is zjmt which is defined as:

zjmt =
1

# (Rm)

∑
m′ 6=m
m′∈Rm

pjm′t

where Rm is the set of markets nearby market m, and, # (Rm) is the number of elements

in that set.

(1) Explain under which economic assumptions, on supply or price equations, these

instruments are valid.

(2) Describe how Deaton-Muellbauer demand system can be used to calculate the value

of a new product.

(3) Comment the limitations of this approach as a method to evaluate the effects of

new product on consumers’welfare and firms’profits.

(4) Explain how the empirical literature on demand models in characteristics space

deals with some of the limitations that you have mentioned in question (c).

(5)

9. Problem set #9

Consider Berry-Levinshon-Pakes (BLP) model for the demand of a differentiated product.

The (indirect) utility of buying product j for consumer i is:

Uij = (β1 + ω1i)x1j + ...+ (βK + ωKi)xKj − α pj + ξj + εij

where α, β1, ..., and βK are parameters; ωi ≡ (ω1i, ω2i, ..., ωKi) is a vector of normal random

variables (with zero mean); and εi ≡ (εi1, εi2, ..., εiJ) is a vector of independent extreme value

random variables.

(1) Describe in detail BLP estimation method.

(2) Explain why it is important to allow for consumer heterogeneity in the marginal

utility with respect to product characteristics.

(3) A key identifying assumption in BLP method is that unobserved product character-

istics, ξj, are not correlated with observed product characteristics other than price,

(x1j, x2j, ..., xKj). Comment on this assumption.
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(4) Suppose that there is only one observable product characteristic, xj, that we can

interpret as a measure of product quality. Let x∗j is the "true" quality of product

j, which is unobservable to the researcher. That is, xj = x∗j + ej where ej is

measurement error which is assumed independent of x∗j . According to this model,

the unobservable ξj is equal to −βej. Show that the type of instrumental variables
proposed by BLP can still be valid in this model with measurement error in quality.

(5)

10. Problem set #10

Consider an oligopoly industry in which competition takes place at the level of local

markets. For concreteness, suppose that there are only two firms in the industry: firm

1 and firm 2. There are M local markets, where M is a large number. Consider the

following adaptation to this industry of the simultaneous equations model in Olley and

Pakes (Econometrica, 1996).

Production Function: yimt = αLi `imt + αKi kimt + ωimt + eimt

Investment Function: iimt = fi (k1mt, k2mt, ω1mt, ω2mt, rmt)

Stay-in-the-market decision: χimt = I{ωimt ≥ ω∗i (k1mt, k2mt, rmt)}
where: i is the firm subindexl; m is the local-market subindex; t is the time subindex; rmt
represents input prices in market m at period t; and all the other variables and parameters

have the same interpretation as in Olley-Pakes. Following Olley-Pakes we assume that labor

is a perfectly flexible input and that new investment is not productivity until next period

(that is, time-to-build). We are interested in the estimation of the production function

parameters {αL1, αK1, αL2, αK2}.

(1) Explain why a direct application of Olley-Pakes method to this model will not

provide consistent estimates of the parameters of interest.

(2) Describe how Olley-Pakes method can be adapted/extended to this industry and

data to obtain a consistent estimator of {αL1, αK1, αL2, αK2}.
(3) Suppose that the average productivity of labor is larger in markets where both firms

are active (relative to markets where only one of the two firms is active). Mention

different hypotheses that might explain this evidence. Explain how one can use

the estimated model to measure the contribution of each of these hypothesis to the

observed differential in the average productivity of labor.

(4)
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11. Problem set #11

Consider the following description of a hotel industry. There are N firms/hotel chains

in the industry. These firms compete in independent local markets (cities). We index hotel

chains by i ∈ {1, 2, ..., N} and local markets bym ∈ {1, 2, ..., N}. The product that hotels sell
is vertically differentiated. For simplicity, we consider that there are only two levels of quality,

high (H) and low (L). At each local market, each firm decides whether or not to operate in

the market, the quality of its product, and its price. The game that hotel chains play is a

sequential game with the following two steps. Step 1: firms make entry and quality decisions.

This step determines the number of low and high quality hotels in the market: nLm and n
H
m

respectively. Step 2: Given (nLm, n
H
m), firms compete in prices a la Bertrand. Associated to

the Bertrand equilibrium we can define the (indirect) variable profit functions VL(nLm, n
H
m, Sm)

and VH(nLm, n
H
m, Sm): that is, VL(nLm, n

H
m, Sm) (VH(nLm, n

H
m, Sm)) is the variable profit of a low

(high) quality hotel in a market with size Sm, with nLm low quality hotels and with nHm

high quality hotels. Total operating costs are: ΠLim = VL(nLm, n
H
m, Sm) − FL − εLim and

ΠHim = VH(nLm, n
H
m, Sm) − FH − εHim, where FL and FH are the fixed costs for low and

high quality firms, respectively, and εLim and εHim are private information shocks which are

iid extreme value distributed across firms and markets. A firm’s strategy can be described

in terms of two probabilities: the probability of being active with low quality, PL, and the

probability of being active and high quality, PH .

(1) Show that a Bayesian Nash Equilibrium (BNE) in this game is a pair (PL, PH) that

is a solution to the following fixed problem:

PL =
exp {V e

L (PL, PH)− FL}
1 + exp {V e

L (PL, PH)− FL}+ exp {V e
H (PL, PH)− FH}

PH =
exp {V e

H (PL, PH)− FH}
1 + exp {V e

L (PL, PH)− FL}+ exp {V e
H (PL, PH)− FH}

with:

V e
L (PL, PH) =

∑
nL(−i),nH(−i)

VL(nL(−i) + 1, nH(−i)) T (nL(−i), nH(−i)|N − 1, PL, PH)

V e
H (PL, PH) =

∑
nL(−i),nH(−i)

VH(nL(−i), nH(−i) + 1) T (nL(−i), nH(−i)|N − 1, PL, PH)

where T (x, y|n, p1, p2) is the PDF of a trinomial distribution with parameters (n, p1, p2).

(2) Suppose that the indirect profit functions VL(nL, nH , S) and VH(nL, nH , S) are

known, that is, they have been estimated using price an quantity data). The re-

searcher observes the sample {nHm, nLm, Sm : m = 1, 2, ...,M}. We want to estimate
the fixed costs FL and FH using information on firms’entry/quality choices. Discuss
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in detail the econometric issues in the estimation of these parameters. Propose and

describe in detail a method that provides consistent estimates of {FL, FH}.
(3) Suppose that you incorporate unobserved market heterogeneity in fixed costs: FLm =

FL + ηLm and FHm = FH + ηHm, where η
L
m and η

H
m are zero mean random variables,

and they are common knowledge to the players. Explain which are the additional

econometric issues in the estimation of {FL, FH} when we have these additional
unobservables. Propose and describe in detail a method that provides consistent

estimates of {FL, FH} and the distribution of {ηLm, ηHm}.

12. Problem set #12

Consider an extension of Rust’s machine replacement model (Rust, 1987) that incor-

porates asymmetric information in the market of machines. A firm produces at several

independent plants (indexed by i) that operate independently. Each plant has a machine.

The cost of operation and maintenance of a machine increases with the age of the machine.

Let xit.be the age of the machine at plant i and at period t. There are two types of machines

according to their maintenance costs: low and high maintenance costs. When the firm’s

manager decides to buy a machine, she does not observe its type. However, the manager

learns this type just after one year of operation. The maintenance cost is: ci xit + εit(0)

where ci ∈ {θL, θH} is a parameter and εit(0) is a component of the maintenance cost that

is unobserved for the researcher. There is a cost of replacing an old machine by a new one.

This replacement cost is: RC + εit(1) where RC is a parameter, and εit(1) is a component

of the maintenance cost that is unobserved for the researcher. The firm has decide when to

replace a machine in order to minimize the present value of the sume of maintenance and

replacement costs. Suppose that the researcher has a random sample of machines.


