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Homework 17: ECO220Y – SOLUTIONS 
 
Required Problems: 
 
(1) (a) Call 𝜇  the population mean donated amongst those that would give money and are offered no match. Call 𝜇  the 
population mean donated amongst those that would give money and are offered a 1:1 match. Similarly 𝜇  and 𝜇  
correspond to a 2:1 and 3:1 match. The question asks three different things that would require three hypothesis tests: 𝐻 : 𝜇 − 𝜇 = 0 versus 𝐻 : 𝜇 − 𝜇 > 0; 𝐻 :𝜇 − 𝜇 = 0 versus 𝐻 : 𝜇 − 𝜇 > 0; 𝐻 : 𝜇 − 𝜇 = 0 versus 𝐻 : 𝜇 − 𝜇 >0. There is no point in doing these tests because we clearly have NO EVIDENCE in favor of our research hypotheses. 
Why? Because in all three cases the sample average amount donated with a match is LESS THAN the average amount 
donated with no match. If we did the formal hypothesis tests, our P-values would be above 0.5 (i.e. huge): we have no 
evidence that offering a match increases the mean amount donated among those donating. 
 
(b) One sentence is potentially misleading: “We find that the match offer increases both the revenue per solicitation and 
the response rate.” The seems to imply two effects when there is only one effect. The proportion giving money does 
increase when you offer a match compared to no match (i.e. the match causes an increase in the response rate). 
However, that is the only effect. The ONLY REASON the mean revenue per solicitation goes up is because a higher 
proportion of people give and so you are averaging in fewer zeros.  

 
(c) In this case, because we know the amount donated cannot be less than 0, the mean and s.d. ($79.99 and $627.06) 
alone show the obvious presence of an outlier (or outliers). If we made the mistake of going ahead with the analysis and 
compared the amount donated for a 3:1 match versus a 2:1 match: 
 𝐻 : 𝜇 − 𝜇 = 0 versus 𝐻 :𝜇 − 𝜇 ≠ 0 (Note: the question said difference, not increase) 
 𝑆.𝐸. 𝑋 − 𝑋 = 393201.5253 + 1871.691252 = 39.5 

 𝑡 = 79.98696 − 45.337339.5 = 0.88 
 

𝜈 = 𝑠𝑛 + 𝑠𝑛1𝑛 − 1 𝑠𝑛 + 1𝑛 − 1 𝑠𝑛 = 254.4 ≈ 254 

 
From our Student t table, obtain the critical value for 250 degrees of freedom (a good approximation) and a significance 
level of 0.05 for this two-tailed test: 1.969. The rejection region would be (-∞, -1.969) and (1.969, ∞). The test statistic is 
not in the rejection region so we fail to reject the null. We do not have a statistically significant difference at a 5% level. 
We can approximate the P-value with the Student t table to be greater than 0.20 (remember it is a two-tailed test) so it 
is not statistically significant at any reasonable significance level. [Note: You may be surprised that this large positive 
outlier that pulled up the mean so much did not cause a statistically significant difference. The outlier also made the s.d. 
very large.] The difference between an average donation of $79.99 and $45.34 would certainly be economically 
significant even if it is not statistically significant. However, because a single data point single-handedly caused this large 
this difference, we would not say that we have an economically significant result. 
 
(2) (a) These are paired data and must be analyzed as such. First, you must remember Section 9.3 and Lecture 8 
regarding the variance of linear combinations of variables.  
 
Applying that here for comparing December with January: 𝑉 𝑑𝑒𝑐12 − 𝑗𝑎𝑛13 = 𝑉 𝑑𝑒𝑐12 + 𝑉 𝑗𝑎𝑛13 − 2𝐶𝑂𝑉 𝑑𝑒𝑐12, 𝑗𝑎𝑛13  
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But we’ve been given correlations so use the other version of the formula: 
 𝑉 𝑑𝑒𝑐12 − 𝑗𝑎𝑛13 = 𝑉 𝑑𝑒𝑐12 + 𝑉 𝑗𝑎𝑛13 − 2 ∗ 𝑟 ∗ 𝑆𝐷 𝑑𝑒𝑐12] ∗ 𝑆𝐷[𝑗𝑎𝑛13] 
 𝑉[𝑑𝑒𝑐12 − 𝑗𝑎𝑛13] = 415541.3 + 319237.4 − 2 ∗ 0.5298 ∗ 644.6249 ∗ 565.011 = 348836.6 
 𝑆𝐷[𝑑𝑒𝑐12 − 𝑗𝑎𝑛13] = √348836.6 = 590.6239 
 
We also know that: 𝑀𝐸𝐴𝑁[𝑑𝑒𝑐12 − 𝑗𝑎𝑛13] = 𝑀𝐸𝐴𝑁[𝑑𝑒𝑐12] −𝑀𝐸𝐴𝑁[𝑗𝑎𝑛13] = 163.1968 
 
(Note: Your answers may differ very slightly because of rounding: the above numbers come directly from STATA.) 
 𝐻 : 𝜇 = 0 versus 𝐻 : 𝜇 ≠ 0  
 𝑆𝐸 �̅� = 𝑠√𝑛 = 590.6239√1200 = 17.0498 

 𝑡 = �̅� − Δ𝑆𝐸 �̅�  = 163.1968 − 017.0498 = 9.57 

 𝜈 = 𝑛 − 1 = 1,199 
 
Here the critical value comes from the Standard Normal table because the degrees of freedom are huge. However, we 
need not bother because the t test statistic is enormous and falls deep within any rejection region with a P-value = 0. 
Hence there is definitely a statistically significant difference in the mean credit card spending comparing the month of 
December with January. Further, the point estimate of the difference is $163.20, which is also economically significant. 
 
Using the same approach to compare January and February we obtain: 𝑉[𝑓𝑒𝑏13 − 𝑗𝑎𝑛13] = 317313.2 +  319237.4 − 2 ∗ 0.4843 ∗ 563.3056 ∗ 565.011 = 328270.54 
 𝑆𝐷[𝑓𝑒𝑏13 − 𝑗𝑎𝑛13] = √328270.54 = 572.94898 
 
We also know that: 𝑀𝐸𝐴𝑁[𝑓𝑒𝑏13 − 𝑗𝑎𝑛13] = 𝑀𝐸𝐴𝑁[𝑓𝑒𝑏13] −𝑀𝐸𝐴𝑁[𝑗𝑎𝑛13] = 565.605 − 564.9852 = 0.6198 
 𝐻 : 𝜇 = 0 versus 𝐻 : 𝜇 ≠ 0  
 𝑆𝐸 �̅� = 𝑠√𝑛 = 572.94898√1200 = 16.539612 

 𝑡 = �̅� − Δ𝑆𝐸 �̅�  = 0.6198 − 016.539612 = 0.04 

 𝜈 = 𝑛 − 1 = 1,199 
 
Here the critical value can be obtained from the Standard Normal table because the degrees of freedom are huge. 
However, we need not bother because the t test statistic is tiny and will not fall within any rejection. Using the Normal 
table the P-value = 0.968 (remember this is a two-tailed test). Hence there is definitely not a statistically significant 
difference in the mean credit card spending comparing the month of January with February. Further, the point estimate 
of the difference is $0.62, which is also not economically significant. 
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Using the same approach to compare January and March we obtain: 𝑉[𝑚𝑎𝑟13 − 𝑗𝑎𝑛13] = 362509.8 +  319237.4 − 2 ∗ 0.4555 ∗ 602.0878 ∗ 565.011 = 371837.54 
 𝑆𝐷[𝑚𝑎𝑟13 − 𝑗𝑎𝑛13] = √371837.54 = 609.78483 
 𝑀𝐸𝐴𝑁[𝑚𝑎𝑟13 − 𝑗𝑎𝑛13] = 𝑀𝐸𝐴𝑁[𝑚𝑎𝑟13] −𝑀𝐸𝐴𝑁[𝑗𝑎𝑛13] =  602.761 − 564.9852 = 37.7758 
 𝐻 : 𝜇 = 0 versus 𝐻 : 𝜇 ≠ 0  
 𝑆𝐸 �̅� = 𝑠√𝑛 = 609.78483√1200 = 17.602972 

 𝑡 = �̅� − Δ𝑆𝐸 �̅�  = 37.7758 − 017.602972 = 2.15 

 𝜈 = 𝑛 − 1 = 1,199 
 
Get the critical value from the Standard Normal table because the degrees of freedom are huge. At a 5% significance 
level the rejection region is (-, -1.96) and (1.96, ). Our test statistic falls in the rejection region so we reject the null 
and infer that there is a statistically significant difference in mean credit card spending comparing January and March.  
Using the Normal table the P-value = 0.0316 (remember this is a two-tailed test). Hence, there is a statistically significant 
difference in the mean credit card spending comparing the month of January with February at the 5% level (but not at a 
1% level). The point estimate of the difference is $37.78, which may be economically significant. Average monthly 
spending is consistently over $500 so a $37.78 difference is not very big from the perspective of an individual customer. 
 
(b) The 95% CI for mean difference from December to January is (-196.6, -129.7). Show your work. We are 95% 
confident that the mean credit card spending of ALL of our customers (not just the 1200 in the sample) decreased 
between $127.7 and $196.6. The 95% CI for mean difference from January to February is (-31.8, 33.1). We are 95% 
confident that the change from January to February in mean spending of all of our credit card customers is somewhere 
from a $32 drop (spent less in February) to a $33 increase (spent more in February): it is not at all clear whether mean 
spending went up or down, but either way there appears to be very little difference in mean spending between these 
two months. The point estimate of mean spending in January was $564.99 and it is $565.61 in February, which do not 
even differ by a dollar. The 95% CI for mean difference from January to March is (3.2, 72.3), which you can interpret. 
 
(c) The hypothesis tests would be less powerful and the confidence interval estimates would be wider if we failed to 
recognize that these data are paired. 
 
(3) (a) Hypothesis testing for Q1 and confidence interval estimation for Q2. 
 
(b) These data are cross-sectional: different markets at the same point in time. These data are also observational.  The 
presence of a monopolist or competition in a particular market has neither been randomly assigned by a researcher (as 
in experimental data) nor randomly assigned by other external forces (as in a natural experiment).  In fact, firms choose 
whether or not to enter a market and compete, which means that the presence of a monopolist or competition in a 
particular market is not randomly set.  This is the defining feature of observational data.  
 
(c) This diagram illustrates the research question (in blue) and the confounding effects (in orange).  
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(d) The effect that we are interesting in is the blue arrow: how does the nature of competition (monopoly or 
competition) affect the price in a particular market.  The confounding effects are that across different geographic 
markets the demand conditions, cost conditions and government regulations will vary.  These differences would not be a 
problem if they only affected price, but we know that they will also affect the nature of competition because firms 
choose whether or not to enter a market based on demand conditions, cost conditions, government regulations, etc.  It 
is the presence of the first orange arrow that makes these data observational and makes the nature of competition an 
endogenous variable. Unfortunately, this means that bias will creep into our inference about the magnitude of the blue 
arrow, which represents our research question.  If we attribute all of the differences in price across markets to the 
presence or absence of a monopolist, we will have a biased estimate.  The reason is that the other things (orange box) 
are systematically different among monopolized and competitive markets and part of the differences in price is 
attributable to these factors.  Hence attributing all of the differences in price to the nature of competition would be 
wrong (i.e. would suffer an endogeneity bias). 

 
(e) Suppose that isolated rural areas tend to be monopolized and have high input costs (expensive to ship gasoline) or 
that cities tend to have many competitors but high prices due to high taxes and expensive land.  This illustrates how 
locations may not be otherwise comparable and how the confounding factors will affect price and the nature of 
competition. This leaves us with the troubling question: If two locations are really comparable, then why is one 
monopolized while other has competition? Without using more advanced techniques (you would learn in a 300-level 
statistics/econometrics course) it will be impossible to isolate the effect we are interested in: the confounding effects 
will be tangled up and cause bias.  
 
(f) Define 𝜇  as the average price in all monopolized retail gasoline markets (population mean). Define 𝜇  as the 
average price in all competitive retail gasoline markets (population mean).  𝐻 : 𝜇 − 𝜇 = 0  𝐻 : 𝜇 − 𝜇 > 0  

 𝑡 = 𝑋 − 𝑋 − (𝜇 − 𝜇 )𝑠𝑛 + 𝑠𝑛 = (1.87 − 1.80) − (0)0.02581994 + 0.09071158 = 0.070.03457223 = 2.02 

 

𝜈 = 𝑠𝑛 + 𝑠𝑛1𝑛 − 1 𝑠𝑛 + 1𝑛 − 1 𝑠𝑛 = 0.02581994 + 0.0907115813 0.02581994 + 17 0.09071158 ≈ 9 

 
Rejection region at a 5% significance level is (1.83, ). Because the test statistic of 2.02 falls in the rejection region, 
reject the null and conclude that prices are higher, in a statistically significant way, in markets that are monopolized 
compared to competitive. [Note: You may have also answered using the P-value approach and found that the P-value 
given the test statistic of 2.02 is between 0.05 and 0.025.] This is NOT the same question as Q1. Q1 is the causal research 
question. The question asked for part (f) is simply a descriptive question. There is a HUGE conceptual difference between 
asking whether prices are statistically different and asking about what caused that difference. 
 
(g) No. No, we cannot conclude that monopolies cause higher prices.  We have observational data and we believe that 
our control variable (the nature of competition) is endogenous.  Hence, our sample means will be systematically 
different from each other not only because of the nature of competition but also because of other systematic 
differences across markets (cost structure, demand structure, etc.).  Our statistical analysis above does not control for 
these other differences.  It simply compares the raw means: the average in the monopolized markets and the average in 
the competitive markets.  Further it attributes ALL differences in these means to either sampling noise or to differences 
in the nature of competition. But we know that other things cause a difference in the mean prices and differences in the 
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nature of competition.  Hence, our analysis is biased.  Despite a small P-value (which would be great if we did not have 
an endogenous control variable) we cannot conclude that monopolies cause higher prices.  All we can say is that 
monopolized markets tend to have higher prices than competitive markets but that could be due to not only the nature 
of competition but also to other unobserved factors like demand structure and costs. 

 
(If the other factors (cost structure, demand structure, etc.) did not cause differences in firms’ choices about entering 
market and hence the nature of competition, then we would NOT have a problem and we could conclude causality. It is 
OK if these other factors affect price, but it is not OK that they also affect the nature of competition. Unfortunately it is 
entirely implausible to suggest that the nature of competition is exogenous and hence we cannot infer causality in this 
example.) 
 
(4) (a) 𝐻 : 𝜇 , − 𝜇 , = 0 and 𝐻 : 𝜇 , − 𝜇 , ≠ 0   (Note: You may have specified a 
directional hypothesis but most often researchers are referring to a two-tailed tests.) Of all the methods in Chapters 12, 
13, and 14 the method you would use in this case is hypothesis testing to make an inference about the difference 
between population means (mean wages) for independent samples (Section 14.2). 
 
(b) 𝐻 : 𝑝 , − 𝑝 , = 0 and 𝐻 : 𝑝 , − 𝑝 , < 0 Of all the methods in 
Chapters 12, 13, and 14 the method you would use in this case is hypothesis testing to make an inference about the 
difference between population proportions (proportion unemployed) (Section 12.8). 
 
(c) For Part (a), the point estimate would be difference in the sample mean wages from the data used in the study: 𝑋 , − 𝑋 , .  For Part (b), the point estimate would be difference in the sample proportions that are 
unemployed from the data used in the study: 𝑃 , − 𝑃 , . 
 
(d) If a researcher says that the difference in wages is not significant, this means that the difference is either not 
statistically significant, not economically significant, or is both not statistically significant and not economically 
significant. Any difference in wages may have been small (in terms of dollars) and/or any difference may simply be 
because of sampling error.  
 
(e) No. While this research and these results are interesting they are not conclusive. The authors of the paper present 
many cautions and caveats (one of which is visible in the included excerpt). Wages are also self-reported so maybe the 
people who lied and claimed a fake degree are also lying about their wages (saying that they are higher than they really 
are). Also, certainly the study is only looking at wages: most people would agree that part of the “value” of being 
educated (to both you and society) is separate from wages. 
 
(5) (a) Panel B breaks out the original sample of 24,646 lottery participants (i.e. the winners and losers) into three 
different subgroups: those that had “no visits” to the ED BEFORE the lottery (i.e. the healthy people), those with “one 
visit” BEFORE the lottery (i.e. sometimes not healthy people), and those with two or more visits to the ED BEFORE the 
lottery (i.e. the chronically unhealthy people). Notice the description written in the title of Panel B and how 16,930 + 
3,881 + 3,835 = 24,646. Within each subgroup (e.g. the healthy subgroup) some people won the lottery (got insurance) 
and others lost (no insurance). Hence what the Panel B results show is that regardless of whether we look at people who 
were healthier or sicker PRIOR to the lottery, we see POSITIVE and economically significant increases in the ED use with 
coverage (the opposite of what politicians had predicted). However, not all the results are statistically significant. 
  
(b) Define 𝑝  to be the proportion of all people in the control group (i.e. no Medicaid, lost the lottery) who did not have 
any visits to the ED in the pre-randomization period (i.e. before the lottery) that did visit the ED after the lottery. Define 𝑝  to be the proportion of all people in the treatment group (i.e. got Medicaid, won the lottery) who did not have any 
visits to the ED in the pre-randomization period (i.e. before the lottery) that did visit the ED after the lottery. 
 𝐻 : (𝑝 − 𝑝 ) = 0 𝐻 : (𝑝 − 𝑝 ) ≠ 0 
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𝑧 = ( ) ( )  
 𝑃 =   
 
The table tells us that 𝑛 + 𝑛 = 16,903. However, it does not report how many people are in the control group and 

treatment group. But it does tell us that 𝑃 − 𝑃 = 0.067 and that ( ) + ( ) = 0.029 (and also that 𝑃 = 0.225 

which implies that 𝑃 = 0.292). Hence we can find the z value: 
 𝑧 = ( ) ( ) = .. = 2.31  𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 𝑃(𝑧 < −2.31) + 𝑃(𝑧 > 2.31) = 2 ∗ 0.0104 = 0.0208. The table reports a P-value of 0.019: ours is off a 
tiny bit because we used rounded numbers in our calculations (and we used the Normal table instead of software). 
 
(c) Define 𝜇  to be the mean number of ED visits post-randomization (i.e. after the lottery) of all people in the control 
group (i.e. no Medicaid, lost the lottery) who did not have any visits to the ED in the pre-randomization period (before 
the lottery). Define 𝜇  to the mean number of ED visits post-randomization (i.e. after the lottery) of all people in the 
treatment group (i.e. got Medicaid, won the lottery) who did not have any visits to the ED in the pre-randomization 
period (before the lottery). 𝐻 : (𝜇 − 𝜇 ) = 0 𝐻 : (𝜇 − 𝜇 ) ≠ 0 

While it is clear that these are independent samples (not paired data), it is unclear if they assumed equal variances or 
not. Even though your textbook cautions against it, researchers often use the equal variances assumption. 𝑡 = ( )   

From the table (𝑋 − 𝑋 ) = 0.261 and Δ = 0 (and also that 𝑋 = 0.418, which implies that 𝑋 = 0.679). Again, the 

table does not give us enough to compute 𝑠  and 𝑛  and 𝑛 . But, it does tell us that + = 0.084. Hence we can 

find the t value: 𝑡 = .. = 3.11. Give the large degrees of freedom, we can use the Normal table very accurately 
approximate the P-value. 𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 𝑃(𝑡 < −3.11) + 𝑃(𝑡 > 3.11) ≈ 2 ∗ 𝑃(𝑍 > 3.11) = 2 ∗ 0.0009 = 0.0018. The 
table reports a P-value of 0.002 and our calculations round to exactly that.  

(d) There are two reasons. One is the bigger difference in mean visits comparing the treatment and control groups 
(0.652 versus 0.380): other things equal, this leads to a bigger test statistic and smaller P-value. (It is easier to reject a 
null hypothesis of no difference in mean visits comparing the two groups if we see a big difference in the sample.) 
However, if you look at the standard error for that estimate, it is also smaller than the next row (0.254 versus 0.648). 
Remember the formula for the standard error of the difference between two sample means, independent samples: [𝑋 − 𝑋 ] = +  , which is an estimate of 𝑆𝐷[𝑋 − 𝑋 ] = +  . In addition to sample sizes, it is also a function 

of the variance of ED visits among those in the treatment group and those in the control group. These must be smaller 
to explain the smaller standard error. It makes sense the s.d. would be smaller for the group that had one ED visit 
compared to the group that had two+ visits as the latter group likely includes some rather unwell people who had lots of 
visits: i.e. a long right tail. 


