Required Exercises: Chapter 20: 9, 27

Required Problems:

(1) In predicting percent body fat for a sample of 65 males using weight, height, abdominal circumference, and age an R² of 0.1345 is obtained. Is the multiple regression statistically significant overall? If so, at which significance levels?

(2) Consider a regression with five RHS variables (i.e. x variables) to explain y.

(a) Using a random sample with 21 observations, how big does the R² need to be for the model overall to be statistically significant at the 0.1% level?

(b) Using a random sample with 126 observations, how big does the R² need to be for the model overall to be statistically significant at the 0.1% level?

(c) Using a random sample with 100,000 observations, how big does the R² need to be for the model overall to be statistically significant at the 0.1% level?

(d) Why are the answers so different for parts (a), (b) and (c)?

(3) Suppose for a random sample of 500 houses the mean selling price, measured in thousands of dollars, is 201.420 with a s.d. of 63.553. A multiple regression model uses five variables (living area, lot size, age, number of bathrooms, and number of bedrooms) to predict the selling price. The R-squared is 0.4782. What is the value of s_e (i.e. the Root MSE, s.d. of the residuals)? Make sure to include the units of measurement.

(4) Consider the correlation matrix below.

```
correlate pct_body_fat height_cm abdomen_cm age weight_kg if (case_number~=39 &
case_number~=42)
```

(obs=250)

	pct_body_fat	height_cm	abdomen_cm	age	weight_kg
pct_body_fat height_cm abdomen_cm age weight_kg	1.0000 -0.0294 0.8237 0.2951 0.6173	1.0000 0.1867 -0.2459 0.5129	1.0000 0.2428 0.8737	1.0000 -0.0161	1.0000

(a) Is the correlation between age and pct_body_fat statistically significant? If so, at which significance levels?

(b) Is the correlation between age and weight statistically significant? If so, at which significance levels?

(5) Consider the R² and the adjusted R²: $R^2 = 1 - \frac{SSE}{SST}$ and $Adj R^2 = 1 - \frac{SSE/(n-k-1)}{SST/(n-1)}$.

(a) Can the Adjusted R² ever be bigger than the R²?

(b) Can the Adjusted R² ever be negative? How about the R²? Explain.

(c) When will the Adjusted R^2 and R^2 be most different?

(6) Consider twenty x variables (x1 - x20) that are entirely unrelated to y in the population. For example, you have data for 100 Canadian adults and try to predict years of education using measures such as the circumference of the person's maternal grandfather's knee when he was 18, the last two numbers of the person's mother's SIN, the number of the house/apt where the person grew up, the temperature in Miami Florida on the day the person lost their first tooth, etc. What would happen if you regress y on all of these irrelevant variables? You might think that none of the estimated coefficients would come out to be statistically significant. However, because there are twenty chances for Type I error you would likely reject at least one true null hypothesis (H_0 : $\beta_j = 0$). Here is an example of a regression of y on twenty completely irrelevant variables. Which coefficient is statistically significant in this example? Is the model overall statistically significant?

Source	SS	df	MS		Number of obs	= 100
Model Residual	13.8586384 60.982375	20 .69 79 .771	293192 928798		F(20, 79) Prob > F R-squared	= 0.90 = 0.5906 = 0.1852 = 0.0211
Total	74.8410134	99.755	969833		Root MSE	= .87859
у	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
x1	.0798302	.1022369	0.78	0.437	1236672	.2833276
x2	.1233008	.1048957	1.18	0.243	0854888	.3320905
x3	1387776	.0915604	-1.52	0.134	321024	.0434689
x4	.0262483	.1018933	0.26	0.797	1765652	.2290619
x5	.1242398	.0914512	1.36	0.178	0577893	.3062688
x6	.1557071	.0989298	1.57	0.120	0412078	.352622
x7	.0527839	.1035481	0.51	0.612	1533234	.2588913
x8	098754	.0994973	-0.99	0.324	2967984	.0992903
x9	2459072	.1053007	-2.34	0.022	4555029	0363114
x10	0156936	.088371	-0.18	0.860	1915917	.1602045
x11	.0827041	.0981579	0.84	0.402	1126743	.2780826
x12	1263454	.0974091	-1.30	0.198	3202333	.0675426
x13	1245131	.1036529	-1.20	0.233	3308291	.0818028
x14	0410782	.1008314	-0.41	0.685	2417781	.1596218
x15	0513262	.1108718	-0.46	0.645	272011	.1693586
x16	0435848	.0912515	-0.48	0.634	2252164	.1380469
x17	0407015	.0962939	-0.42	0.674	2323697	.1509668
x18	0575465	.1011599	-0.57	0.571	2589003	.1438074
x19	.0440475	.0888704	0.50	0.622	1328445	.2209396
x20	0191734	.1011402	-0.19	0.850	2204878	.182141
cons l	2698414	.1033971	2.61	0.011	.0640347	4756481

(7) We can use a Monte Carlo simulation to illustrate a key conceptual point from lecture: for testing the overall statistical significance of a multiple regression model the F test should be used and NOT k different t tests. Recall the definition of a Monte Carlo simulation: A problem solving method where a computer generates many random samples and the researcher makes an inference based on patterns in outcomes. If you are uncomfortable with the concept of simulation, review Lecture 10. Consider the following set-up for a Monte Carlo simulation:

- **1.** Theoretical model: $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_{20} x_{20i} + \varepsilon_i$
- 2. Computer generates a random sample:
 - o $y, x_1, x_2, \dots, x_{20}$ are <u>independently</u> drawn from N(0,1)
 - o 100 observations
 - A computer estimates the regression parameters $\hat{y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + \dots + b_{20} x_{20i}$ and the standard errors and test statistics
 - It records the *t* statistics and the *F* statistic

 To systematically record the outcomes, each regression results appear as an row in a new data set with the following variables:

Variable	Description
num_sig90	Number of significant coefficients, α = 0.10
num_sig95	Number of significant coefficients, α = 0.05
num_sig99	Number of significant coefficients, α = 0.01
joint_sig90	=1 if regression significant, =0 otherwise, α = 0.10
joint_sig95	=1 if regression significant, =0 otherwise, α = 0.05
joint_sig99	=1 if regression significant, =0 otherwise, α = 0.01
any_sig90	=1 if any coefficients significant, =0 otherwise, α = 0.10
any_sig95	=1 if any coefficients significant, =0 otherwise, α = 0.05
any_sig99	=1 if any coefficients significant, =0 otherwise, α = 0.01

- **3.** A computer repeats Step **2** 9,999 more times.
- 4. The simulation results are summarized here.

Variable	Obs	Mean	Std. Dev.	Min	Max
num sig90	10000	2.0195	1.543489	0	10
num sig95	10000	1.0076	1.117975	0	8
num sig99	10000	.2033	.4783221	0	4
joint sig90	10000	.1051	.3066976	0	1
joint sig95	10000	.0562	.230319	0	1
joint sig99	10000	.0117	.1075373	0	1
any sig90	10000	.8383	.3681938	0	1
any sig95	10000	. 5937	.4911664	0	1
any sig99	10000	.1741	.3792144	0	1

(a) What are the true parameter values in this simulation? Explain.

(b) Are the first 6 rows of results what we expected?

(c) Of the 10,000 regressions estimated, how many had at least one statistically significant coefficient estimate at the 5% level? What is the relevant test statistic? What is the critical value of the test statistic? When should you infer statistical significance?

(d) Of the 10,000 regressions estimated, how many were statistically significant overall at the 5% significance level? What is the relevant test statistic? What is the critical value of the test statistic? When should you infer statistical significance?

(e) Explain why the answers to (c) and (d) are very different.

(f) Analytically compute the expected value of each of the 9 variables: num_sig90 – any_sig99. (In this example a Monte Carlo simulation is not necessary: the probabilities and means can all be found analytically.) Hint: You'll need to remember your probability rules to do this. Explain why the Monte Carlo Simulation results are similar but not exactly the same.