Inference About the Difference Between Means $\left(\mu_{1}-\mu_{2}\right)$

Lecture 17
Reading: Chapter 14

Quote from Textbook, p. 452

A hypothesis test really says nothing about the size of the difference. All it says is that the observed difference is large enough that we can be confident that it isn't zero. That's what the term "statistically significant" means. It doesn't say that the difference is important, financially significant, or interesting. Rejecting a null hypothesis simply says that the observed statistic is unlikely to have been observed if the null hypothesis were true.

Overview: Inference for $\left(\mu_{1}-\mu_{2}\right)$

- Inference about comparing means $\left(\mu_{1}-\mu_{2}\right)$
- How do UO concentrations compare (Sparton)?
- How do parents' beliefs compare with kids' scores?
- Hypothesis testing and Cl estimation:
- Independent samples ("unequal variances")
- [Book] Independent samples ("equal variances")
- Note: If $n_{1}=n_{2}$, then $S E\left[\bar{X}_{1}-\bar{X}_{2}\right]$ is same whether or not you pool (i.e. is same for unequal and equal cases)
- Paired samples

	n	mean	s.d.
loc 1	10	0.325	0.204
loc 2	10	0.332	0.102
loc 3	10	0.437	0.270
loc 4	10	0.335	0.274
loc 5	10	0.283	0.147
loc 6	10	0.484	0.208
loc 7	10	0.383	0.200
loc 8	10	0.337	0.028

Last week investigated if each location met 0.32 threshold, but what about comparing locations with each other?
"Rising from the ashes" http://www.economist.com/node/15865280

How to Compare Two Locations?

- Q1: What parameters we are interested in?
- A1: Mean conc. of UO at one location $\left(\mu_{1}\right)$ vs. mean conc. of UO at another location (μ_{2})
- Q2: What's basis for inference re: $\left(\mu_{1}-\mu_{2}\right)$?
- A2: $\left(\bar{X}_{1}-\bar{X}_{2}\right)$
- Q3: Cl estimation or hypothesis testing (HT)?
- A3: Cl if we wish to measure how much two locations differ; If they differ (yes/no), then HT

If Confidence Intervals Overlap?

- The $90 \% \mathrm{Cl}$ estimate for Loc 5 \& Loc 6
- Loc 5: LCL= 0.198; UCL $=0.368$
$\cdot \bar{X} \pm t_{\alpha / 2} \frac{s}{\sqrt{n}}=0.283 \pm 1.833 \frac{0.147}{\sqrt{10}}=0.283 \pm 0.085$
- Loc 6: LCL $=0.363$; UCL $=0.605$
- Do these confidence intervals overlap?
- BUT there is a statistically significant difference between these locations at a 5% significance level
- Checking if Cl's overlap is wrong approach; Chapter 14 gives the correct approach
\qquad

Sampling Distribution

- Sampling distribution of $\left(\bar{X}_{1}-\bar{X}_{2}\right)$ tells how sampling error affects $\left(\bar{X}_{1}-\bar{X}_{2}\right)$:
$-E\left[\bar{X}_{1}-\bar{X}_{2}\right]=\mu_{1}-\mu_{2}$
$-V\left[\bar{X}_{1}-\bar{X}_{2}\right]=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}} ; S D\left[\bar{X}_{1}-\bar{X}_{2}\right]=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$
- If have a sufficiently large sample for each then \bar{X}_{1} and \bar{X}_{2} are Normal (CLT). Because ($\bar{X}_{1}-\bar{X}_{2}$) is a linear combination, then ($\bar{X}_{1}-\bar{X}_{2}$) also Normal
- But we don't know $\mu_{1}, \mu_{2}, \sigma_{1}^{2}$, and σ_{2}^{2}

HT \& CI Est. w/ Independent Samples

- To test $H_{0}:\left(\mu_{1}-\mu_{2}\right)=\Delta_{0}$ use the t test statistic $t=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\Delta_{0}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} \quad v=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1}-1}\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}+\frac{1}{n_{2}-1}\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}$ doesn't assume $\sigma_{1}^{2}=\sigma_{2}^{2}$
- For a Cl estimate of $\left(\mu_{1}-\mu_{2}\right)$ with confidence level $(1-\alpha)$ use same v given above and $\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t_{\alpha / 2} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$

The Degrees of Freedom Complication

- Make sure to see the box "An Easier Rule?" on page 446 of textbook
- Also, recall that as dof gets large (>1000) you can use the Normal table: Student t converges

$$
v=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1}-1}\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}+\frac{1}{n_{2}-1}\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}
$$

Obviously you do not want to deal with this dof formula (see footnote 1 on page 446) by hand unless necessary

Are you sure Loc 6 better than Loc 5 ?

$$
\begin{gathered}
H_{0}: \mu_{6}-\mu_{5}=0 v S . H_{1}: \mu_{6}-\mu_{5}>0 \\
t=\frac{\left(\bar{X}_{6}-\bar{X}_{5}\right)-\Delta_{0}}{\sqrt{\frac{s_{6}^{2}}{n_{6}}+\frac{s_{5}^{2}}{n_{5}}}} \\
t=\frac{0.201-0}{0.0805}=2.50 \\
v=\frac{.5}{\frac{1}{n_{6}-1}\left(\frac{s_{6}^{2}}{n_{6}}\right)^{2}+\frac{1}{n_{5}-1}\left(\frac{s_{5}^{2}}{n_{5}}\right)^{2}}=\frac{\left(\frac{0.208^{2}}{10}+\frac{0.147^{2}}{10}\right)^{2}}{\frac{1}{9}\left(\frac{0.208^{2}}{10}\right)^{2}+\frac{1}{9}\left(\frac{0.147^{2}}{10}\right)^{2}}=16.195 \approx 16
\end{gathered}
$$

Same Question with P-value

- $H_{0}: \mu_{6}-\mu_{5}=0$
- $H_{1}: \mu_{6}-\mu_{5}>0$
- $t=2.50$
- $P-$ value $=$ $P(t>2.50)=0.012$
- Statistically significant?
- What if question were are you sure loc 5 \& 6 are different?

Student t table tells us: $P(t>2.583 \mid v=16)=0.01$ $P(t>2.120 \mid v=16)=0.025$

How big is difference between best and worst locations? Use Cl

$$
\left(\bar{X}_{6}-\bar{X}_{5}\right) \pm t_{\alpha / 2} \sqrt{\frac{s_{6}^{2}}{n_{6}}+\frac{s_{5}^{2}}{n_{5}}}
$$

$(0.484-0.283) \pm 2.120 \sqrt{\frac{0.147^{2}}{10}+\frac{0.208^{2}}{10}} \quad \begin{aligned} & \text { Already } \\ & \text { calculated } \\ & v=16\end{aligned}$
$0.201 \pm 2.120 * 0.081=0.201 \pm 0.171$
We're 95\% confident that the mean UO concentration at Loc 6 is between 0.03 and $0.37 \mathrm{lbs} /$ ton higher than at Loc 5 . The point estimate is that the concentration at Loc 6 is a whopping 0.201 higher with a big margin of error of $0.171 \mathrm{lbs} / \mathrm{ton}$.

But $99 \% \mathrm{Cl}$ is 0.201 ± 0.235. What does that mean?

Paired Data

- For example, paired data would compare:
- Employee satisfaction for 20 employees before and after a change of management and policies
- Salaries of a random sample of 150 Ontario public sector employees in 2018 versus 2017
- With paired data, samples not independent
- From Lecture 16, recall the Dizon-Ross paper

Source: Rebecca Dizon-Ross, "Parents' Beliefs About Their Children’s Academic Ability: Implications for Educational Investments" forthcoming, American Economic Review https://www.aeaweb.org/articles?id=10.1257/aer.20171172

Summary Statistics		
Mean		
Scademic Performance (Average Achievement Scores)		
Overall score	46.8	17.5
Math score	44.9	20.2
English score	44.2	20.1
Chichewa score	51.2	22.5
(Math - English) score	0.71	19.5
Respondent's Beliefs about Child's Academic Performance		
Believed Overall score	62.4	16.5
Believed Math score	64.7	19.0
Believed English score	55.3	20.9
Believed Chichewa score	66.8	19.4
Beliefs about (Math - English) score		
Sample size (number of kids) 9.48	21.5	

Excerpt of Raw Data, $n=5,268$

hhid	refchild	ave	math	engl	chich	b_ave	b_math	b_engl	b_chich
4293	1	58	57	61	57	65	60	65	70
4420	2	89	92	100	75	50	40	20	60
14298	1	48	47	49	48	60	60	50	70
4102	1	59	80	53	43	75	65	75	85
4018	2	71	70	61	83	60	60	65	60
14123	2	47	60	37	43	50	70	45	30
4100	2	48	4	64	77	80	90	85	85
14477	1	50	51	59	40	65	40	75	50
\ldots									
9626	1	59	60	40	78	80	80	60	80
9628	2	26	45	25	8	55	85	45	50

First two variables are identifier variables.
Next four variables measure achievement scores: overall is an average of the three subjects. The last four variables are beliefs.

15
\qquad

HT \& CI Estimation w/ Paired Data

- To test $H_{0}: \mu_{d}=\Delta_{0}$ where $\mu_{d}=\left(\mu_{1}-\mu_{2}\right)$: - Use test statistic:

- where $d=\left(X_{1}-X_{2}\right)$ and \bar{d} sample mean difference; s_{d} s.d. of d
- For Cl estimate of μ_{d} :
- Use $\bar{d} \pm t_{\alpha / 2} \frac{s_{d}}{\sqrt{n}}$

hhid	refchild	chich	b_chich	d
4293	1	57	70	13
4420	2	75	60	-15
14298	1	48	70	22
4102	1	43	85	42
4018	2	83	60	-23
\ldots				
9626	1	78	80	2
9628	2	8	50	42

Define μ_{1} as pop. mean belief and μ_{2} as mean actual score. μ_{d} is the mean difference.

For both hypothesis testing and Cl estimation: $v=n-1$

Describe Data

Variable \|	Obs	Mean	Std. Dev.	Min	Max
chich I	5,258	51.20426	22.52733	0	100
b_chich \|	5,258	66.76436	19.42828	0	100
d I	5,258	15.5601	25.15133	-75	100

Recall Section 9.3 \& Lecture 8: $s_{X-Y}^{2}=s_{X}^{2}+s_{Y}^{2}-2 * r * s_{X} * s_{Y}$

```
. correlate chich b_chich
(obs=5,258)
| chich b_chich
    chich | 1.0000
        b_chich | 0.2883 1.0000
```

In other words, if independent, then mean of d would still be 15.5601 but s.d. would be 29.747919 .

Beliefs versus Actual Performance

- Are parents' beliefs biased up on average?

$$
\begin{aligned}
& -H_{0}: \mu_{d}=0 \text { vs. } H_{1}: \mu_{d}>0 \\
& -t=\frac{\bar{d}-\Delta_{0}}{\frac{s_{d}}{\sqrt{n}}}=\frac{15.5601-0}{\frac{25.15133}{\sqrt{5,258}}}=44.86
\end{aligned}
$$

- P-value? Statistically sig.? Economically sig.?
- How much are parents' biased on average?
$-\bar{d} \pm t_{\alpha / 2} \frac{s_{d}}{\sqrt{n}}=15.5601 \pm 1.960 \frac{25.15133}{\sqrt{5,258}}=$
15.6 ± 0.7 with a 95% confidence level

Application to U.S. Health Policy

- "Medicaid Increases Emergency-Department Use: Evidence from Oregon's Health Insurance Experiment" Taubman et al (2013)
- An important goal of this course: you are ready to read and understand empirical papers and research that use methods we have covered
- We will look at the abstract and a table of results from this paper to practice these skills http://www.sciencemag.org/content/343/6168/263.abstract

ABSTRACT: In 2008, Oregon initiated a limited expansion of a Medicaid program for uninsured, low-income adults, drawing names from a waiting list by lottery. This lottery created a rare opportunity to study the effects of Medicaid coverage using a randomized controlled design. Using the randomization provided by the lottery and emergency department records from Portlandarea hospitals, we study the emergency department use of about 25,000 lottery participants over approximately 18 months after the lottery. We find that Medicaid coverage significantly increases overall emergency use by 0.41 visits per person, or 40 percent relative to an average of 1.02 visits per person in the control group. We find increases in emergency-department visits across a broad range of types of visits, conditions, and subgroups, including increases in visits for conditions that may be most readily treatable in primary care settings.
Which kind of data: observational or experimental? Causality? 20

Table 2. Emergency-department use							
		Percent with any visits ${ }^{1}$			Number of visits ${ }^{2}$		
	N	Percent in Control Group	Effect of Medicaid Coverage	Pvalue	Mean Value in Control Group	Effect of Medicaid Coverage	Pvalue
Panel A: Overall							
All visits	24,646	34.5	$\begin{array}{\|l} 7.0 \\ (2.4) \end{array}$	0.003	$\begin{array}{\|l\|} \hline 1.022 \\ (2.632) \end{array}$	$\begin{aligned} & 0.408 \\ & (0.116) \end{aligned}$	<0.001

Notes: We report the estimated effect of Medicaid on emergency department use over our study period (March 10, 2008 - September 30, 2009). We report the sample size, the control mean of the dependent variable (with standard deviation for continuous outcomes in parentheses), the estimated effect of Medicaid coverage (with standard error in parentheses), and the p-value of the estimated effect. Sample consists of individuals in Portland-area zip codes ($\mathrm{N}=24,646$). ${ }^{1}$ For the percent-with-any-visits measures, the estimated effects of Medicaid coverage are shown in percentage points.
${ }^{2}$ The number-of-visits measures are unconditional, including those with no visits.

Panel A (entire sample) and

Panel B (subgroups of sample)

"We report the estimated effect of Medicaid on emergency department use over our study period (March 10, 2008 September 30, 2009) in the entire sample and in
subpopulations based on pre-randomization emergency department use. For each subpopulation, we report"

In other words, does the effect of Medicaid coverage on emergency department use vary across types of people: sicker people vs. heathier people?

One way to measure whether a person is sicker or healthier is by previous use of the emergency department: heavy users are likely sicker than those using it less or not at all.

Table 2. Emergency-department use							
		Percent with any visits ${ }^{1}$			Number of visits ${ }^{2}$		
	N	Percent in Control Group	Effect of Medicaid Coverage	Pvalue	Mean Value in Control Group	Effect of Medicaid Coverage	Pvalue
Panel A: Overall							
All visits	24,646	34.5	$\begin{array}{\|l} \hline 7.0 \\ (2.4) \end{array}$	0.003	$\begin{array}{\|l\|} 1.022 \\ (2.632) \end{array}$	$\begin{array}{\|l} 0.408 \\ (0.116) \end{array}$	<0.001
Panel B: By emergency department use in the pre-randomization period							
No visits	16,930	22.5	$\begin{array}{\|l\|} \hline 6.7 \\ (2.9) \end{array}$	0.019	$\begin{aligned} & 0.418 \\ & (1.103) \end{aligned}$	$\begin{aligned} & 0.261 \\ & (0.084) \end{aligned}$	0.002
One visit	3,881	47.2	$\begin{array}{\|l} \hline 9.2 \\ (6.0) \\ \hline \end{array}$	0.127	$\begin{aligned} & 1.115 \\ & (1.898) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.652 \\ (0.254) \end{array}$	0.010
Two+ visits	3,835	72.2	$\begin{array}{\|l} \hline 7.1 \\ (5.6) \\ \hline \end{array}$	0.206	$\begin{aligned} & 3.484 \\ & (5.171) \end{aligned}$	$\begin{aligned} & 0.380 \\ & (0.648) \end{aligned}$	0.557
${ }^{1}$ For the percent-with-any-visits measures, the estimated effects of Medicaid coverage are shown in percentage points. ${ }^{2}$ The number-of-visits measures are unconditional, including those with no visits.							

