Type I Errors, Type II Errors, and Power Lecture 15 Reading: Sections 12.9 - 12.10 Type I and Type II Errors • Type I Error: Reject a true null hyp. • Type II Error: Fail to reject a false null hyp. • For example, in trial H₀: innocent; H₁: guilty - Type I Error: Convict Guilty Innocent innocent person No Type I (DNA test exonerate) Convict Error Error - Type II Error: Set guilty Type II Acquit person free Error Error Just Facts: Sexual Assault · Consider crimes of sexual assault in Canada - "According to the 2014 GSS, in that year, the majority (83%) of sexual assaults were [definitely] not reported to police. In fact, only 5% were reported [with 12% unknown]." • "For the 2016/2017 fiscal year, 42% of all sexual assault

case decisions in adult criminal court resulted in a

• Which type of error may make victims hesitate in

reporting crimes: Type I or Type II?

April 2019 report by the Canadian Department of Justice, Research and Statistics Division, https://www.justice.gc.ca/eng/rp-pr/jr/jf-pf/2019/docs/apr01.pdf

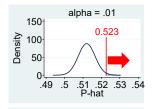
finding of guilt."

Type I & Type II: Hypotheses for p	
• Suppose we wished to prove that less than 95 percent of children in a school district have been fully vaccinated $-H_0: p=0.95 \\ -H_1: p<0.95$ • Can write $H_0: p\geq0.95$, which helps in thinking of Type I and II errors $ \begin{array}{c} \text{ However, for either the P-value or rejection} \\ \text{region approach, you} \\ \text{use the exactly equal} \\ \text{amount in the null } (p_0) \\ -\text{Hence, we usually write} \\ H_0: p=p_0 \text{ rather than} \\ H_0: p\leq p_0 \text{ for right-tailed tests or } H_0: p\geq p_0 \\ \text{for left-tailed tests} \\ \end{array} $	
Significance Level Recap & Type I Error • Significance level (α): Maximum probability you are willing to tolerate that sampling error caused your observed results: if probability is lower then results are statistically significant - α is maximum chance of a Type I Error that you would tolerate: i.e. that your sample differs from a true H ₀ only by chance (sampling error) • α = 0.05: ready to risk 5% chance of rejecting a true H ₀ • How to reduce the chance of a Type I error?	
 Ex: Lower Sodium A gov't agency claims that fewer than 20% of soup eaters notice if sodium is lowered by one-third A soup maker wants to prove this wrong - H₀: - H₁: If percent of all soup eaters would notice the lower sodium and the P-value for the soup maker's study is then this is an example of 	

β = Probability of a Type II Error	
• β = P(fail to reject H ₀ when it is false)	
- It's a probability: it must be between 0 and 1	
• Many factors affect the size of β : one is α	
— Decreasing α (max. tolerable chance of Type I error) increases β (chance of Type II error)	
– If raise burden of proof ($\sqrt{\alpha}$) so as not to convict	
the innocent, increase chance guilty go free ($\uparrow \beta$)	
– If lower burden of proof ($\uparrow \alpha$) to "put criminals in jail" ($\downarrow \beta$), increase chance the innocent go to jail	
7	
Power	
 A powerful test is highly likely to lead you to reject a false null hypothesis 	
- Power is the complement of Type II error: i.e. the	
chance you do NOT make a Type II error	
- Power = $1 - \beta$ • β = P(Type II Error) = P(fail to reject H ₀ when it is false)	
 Power is important: forget costly data collection if 	
the n you are planning will yield insufficient power $ullet$ Increasing the sample size increases power	
8	
Sex Ratios at Birth in Ontario	
Sex ratios at birtii iii Olitario	
 Recall Ontario sex ratios from Lectures 13, 14 	
– Natural proportion of boys born is 51.2%	
 H₀: p = 0.512; H₁: p > 0.512 What would a Type I error be? 	
What would a Type II error be?	
 How powerful is a statistical test to detect an unnaturally high proportion of males? 	
unnaturally high proportion of males? — To calculate power, must also specify α , n , and	
exactly what we would consider unnaturally high	
9	

What's Needed to Find Power?

- H_0 : p = 0.512; H_1 : p > 0.512
- 766,688 births in Ontario from 2002 2007
 - But divide it to separately study subgroups
 - i.e. 1st child of Chinese born mom where n = 12,339
 - Consider a "typical" subgroup with n = 12,000
- Choose $\alpha = 0.01$
- Unnaturally high? Let's say an extra 1 percentage point boys: i.e. p = 0.522



150

50-

Density 100beta = .554

0.523

.51 .52 .53 .54 P-hat

• H_0 : p = 0.512

• $H_1: p > 0.512$

• *n* = 12,000

$$SD[\hat{P}|H_0] = \sqrt{\frac{0.512(0.488)}{12,000}} = 0.0046$$

• α = 0.01

- · Chance we would fail to reject the false null is very high: P(Type II error) is 0.554
- Power is low: there is only a 44.6% chance our sample would allow us to reject H₀

Size of Type I and II Errors

- Type I Error: Reject a true H₀
 - Set maximum chance of Type I error when pick lpha
- Type II Error: Fail to reject a false H₀
 - P(Type II error) is β ; It depends on many factors:
 - ullet Parameter value in H_0 and direction of H_1
 - Significance level (α)
 - Sample size (n)
 - True parameter value (e.g. p)
 - Which of these 4 factors are observed?

Which type of error is more serious? (See page 388.)

^{*}Everything on this slide determined BEFORE collecting data * 11

Pharmaceutical Ex. (p. 390)

- Huge sunk costs in drug development
 - Pharmaceutical companies do not want to fail to market an effective drug
- Suppose a cancer drug deemed effective if it stops tumor growth in at least 40% of patients
 - $H_0: p = 0.40$
 - $H_1: p > 0.40$
 - Where is the burden of proof?

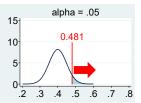
If interested in learning more: Lakdawalla (2018) "Economics of the Pharmaceutical Industry" https://doi.org/10.1257/jel.20161327, which discusses Manski (2009).

Type II Error: Drug Example

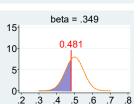
- H₀ value, H₁ direction
 - $H_0: p = 0.4$
 - $H_1: p > 0.4$
- Significance level (lpha)
 - $-\alpha = 0.05$
- Sample size (n)
 - n = 100
- True parameter
 - p = 0.5

- In this case, clearly H₀ is wrong and H₁ is correct
 - Why? Because p = 0.5(0.5 is greater than 0.4)
- Hence whenever we do not reject H₀ we are making a mistake
 - Which kind of mistake?

14



- $H_0: p = 0.4$
- $H_1: p > 0.4$
- $\alpha = 0.05$
- n = 100



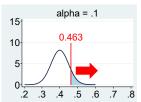
• If *p* is really 0.5

$$P(\hat{P} < 0.481 \mid p = 0.5, n = 100)$$

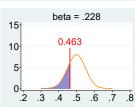
$$= P\left(Z < \frac{0.481 - 0.5}{\sqrt{0.5(0.5)}}\right)$$

$$= P(Z < -0.38) = 0.35$$

15

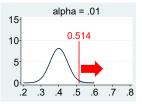


- H_0 : p = 0.4
- $H_1: p > 0.4$
- α = 0.10 **<<**
- n = 100



- If *p* is really 0.5
- Is this test more powerful?

16

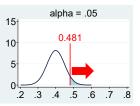


- $H_0: p = 0.4$
- $H_1: p > 0.4$
- α = 0.01 **<<**
- n = 100

beta = .61 15 10 0.514 5 0.2 .3 .4 .5 .6 .7 .8

- If *p* is really 0.5
- Is this test less powerful?

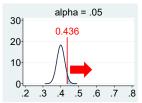
17



- $H_0: p = 0.4$
- $H_1: p > 0.4$
- $\alpha = 0.05$
- n = 100

beta = .349 10 0.481 0.2 .3 .4 .5 .6 .7 .8 • If p is really 0.5

18

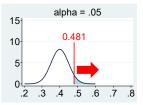


- H_0 : p = 0.4
- $H_1: p > 0.4$
- $\alpha = 0.05$
- n = 500 **≺≺**
- beta = .0021

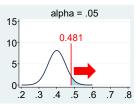
 0.436

 10

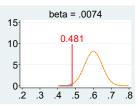
 0.2 .3 .4 .5 .6 .7 .8
- If p is really 0.5
- Is this test powerful?



- H_0 : p = 0.4
- $H_1: p > 0.4$
- $\alpha = 0.05$
- n = 100
- beta = .349 15 10 0.481 5 0.2 .3 .4 .5 .6 .7 .8
- If *p* is really 0.5



- H_0 : p = 0.4
- $H_1: p > 0.4$
- $\alpha = 0.05$
- n = 100



• If p is really $0.6 \checkmark \checkmark$

21	

Power: Got It?	
Can you compute power before seeing data?	
Should you draw graphs to find power?	
 What do you need to specify to find power (or its complement: probability of Type II error)? 	
 Review today's notes and chart how changes in each factor affect power and explain why 	
 What does it mean if your statistical test is not very powerful (i.e. has a high chance of Type II 	
error)?	
 its complement: probability of Type II error)? Review today's notes and chart how changes in each factor affect power and explain why What does it mean if your statistical test is not very powerful (i.e. has a high chance of Type II error)? 	