Sampling Distribution of $ar{X}$ and Simulation Methods	
Lecture 11	
Reading: Sections 10.3 – 10.5	
1	
Ontario Public Sector Salaries	
Public Sector Salary Disclosure Act, 1996	
 Requires organizations that receive public funding from the Province of Ontario to disclose annually 	
the names, positions, salaries and total taxable benefits of employees paid \$100,000 or more in a	
 calendar year E.g. Government of Ontario, Crown Agencies, Municipalities, Hospitals, Boards of Public Health, 	
School Boards, Universities, Colleges, Hydro One, Ontario Power Generation, etc.	
2013 disclosure of 2012 salaries: https://www.ontario.ca/page/public-sector-salary-disclosure-act-disclosures-2013	
Sampling Error a Plausible Explanation for \bar{X} being \$3,700 above μ ?	
 For all ON public sector employees w/ salaries 	
of \$100K+, mean is \$127.5K and s.d. \$39.6K — Are these numbers parameters or statistics?	
– Shape of the salary distribution? (2 explanations)	
 Random sample of 1,000 Ontario public sector employees has a mean salary of \$131.2K 	
– Why is \bar{X} different than μ ? • How likely is <i>such</i> a <i>big</i> sample mean if claim true? i.e.	
$P(\bar{X} \ge 131.2 \mid \mu = 127.5, \sigma = 39.6, n = 1,000) = ?$	

STATA Summary of Population

salary				
	Percentiles	Smallest		
1%	100.168	100		
5%	100.9921	100		
10%	102.0471	100	Obs	88545
25%	105.7447	100	Sum of Wgt.	88545
50%	115.3013		Mean	127.5176
		Largest	Std. Dev.	39.64454
75%	133.2821	843.095		
90%	164.5416	935.2365	Variance	1571.69
95%	193.125	1036.74	Skewness	5.019101
99%	296.8753	1720	Kurtosis	64.99817

Note: Technically, $\sigma=39.6443$. STATA computes s, not σ : but degrees of freedom correction matters little given large number of observations.

Mean and Variance of \bar{X}

•
$$\mu_{\bar{X}} = E[\bar{X}] = E\left[\frac{\sum_{i=1}^{n} X_i}{n}\right] = \frac{1}{n} \sum_{i=1}^{n} E[X_i] = \frac{1}{n} \sum_{i=1}^{n} \mu = \frac{1}{n} n\mu = \mu$$

•
$$\sigma_{\bar{X}}^2 = V[\bar{X}] = V\left[\frac{\sum_{i=1}^n X_i}{n}\right] = \frac{1}{n^2} \sum_{i=1}^n V[X_i] = \frac{1}{n^2} \sum_{i=1}^n \sigma^2 = \frac{1}{n^2} n \sigma^2 = \frac{\sigma^2}{n}$$

•
$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

In deriving $\sigma_{\bar{X}}$ above, why is $V[\sum_{i=1}^n X_i] = \sum_{i=1}^n V[X_i]$?

10% Condition / 10% Rule

- Derivation of $\sigma_{\bar{X}}^2$ assumes that each observation (X_i) is *independent* of others
 - For this to be true, must sample with replacement
 OR sample without replacement from a population that is infinitely large
 - In contrast, real applications involve sampling without replacement from a finite population
 - BUT if sample < 10% of population, independence assumption is true enough: can use $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$

7

Recall Parking Permit Ex (Lec. 10)

$$E[\overline{X}] = \mu = 0.8 = 0 * 0.064 + \frac{1}{3} * 0.192$$

+ $\frac{2}{3} * 0.288 + 1 * 0.256 + \frac{4}{3} * 0.144 + \frac{5}{3}$
* $0.048 + 2 * 0.008$

$$V[\bar{X}] = \frac{3}{n} = \frac{3.33}{3} = 0.187$$

$$= (0 - 0.8)^2 0.064 + \left(\frac{1}{3} - 0.8\right)^2 0.192$$

$$+ \left(\frac{2}{3} - 0.8\right)^2 0.288 + (1 - 0.8)^2 0.256$$

$$+ \left(\frac{4}{3} - 0.8\right)^2 0.144 + \left(\frac{5}{3} - 0.8\right)^2 0.048$$

$$+ (2 - 0.8)^2 0.008$$

Work to find $\mu_{ar{X}}$ and $\sigma^2_{ar{X}}$ not

needed. Why is work needed?

Shape of sampling distribution of \bar{X} ?

- $\mu_{ar{X}}=\mu$ and $\sigma_{ar{X}}=rac{\sigma}{\sqrt{n}}$, but shape: $ar{X}\sim$?
 - <u>Central Limit Theorem (CLT)</u>: For a random sample from *any* population the sampling distribution of the sample mean (\bar{X}) is approximately Normal for a sufficiently large sample size
 - <u>Rough</u> rule of thumb: $n \ge 30$. But, n < 30 sufficient for mildly non-Normal populations: n = 1 is sufficient for Normal populations. Further, n > 60 (or more) may be required for very skewed populations.

9

Is sampling error a <code>plausible</code> explanation for \overline{X} as big as 131.2? $_{11}$

Sampling Error: Plausible Explanation?

 $P(\bar{X} \geq 131.2 \mid \mu = 127.518, \sigma = 39.645, n = 1,000)$

$$= P\left(\frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} \ge \frac{131.2 - \mu_{\bar{X}}}{\sigma_{\bar{X}}}\right)$$

$$= P\left(Z \ge \frac{131.2 - 127.518}{39.645/\sqrt{1,000}}\right)$$

$$= P(Z \ge 2.94) = 0.0016$$

What if sample size 50?
$P(\bar{X} \ge 131.2 \mid \mu = 127.5,$
$\sigma = 39.6, n = 50) = ?$

Which *serious* issue may we face in trying to find this probability?

Monte Carlo Simulation

- Monte Carlo Simulation: A problem solving method where a computer generates many random samples and you make an inference based on patterns in outcomes
 - Simulation is most useful when theoretical results (e.g. CLT) do not apply and the problem is too big for an analytic approach
- It allows us to find sampling distributions with a high degree of accuracy

14

Recall Central Limit Theorem

- The CLT says the sampling distribution of the sample mean is Bell shaped no matter what the shape of the population so long as the sample size is sufficiently large
 - What is sufficiently large?
 - Is a "rule of thumb" always correct or is it just a rough guide?
 - What factors affect how large is sufficiently large?

15

ECO220Y1Y,	Lecture	11,	Page	5

n = 50: Sufficiently Large?

- Monte Carlo simulation: many samples of 50
 ON public employees (in each sample, n = 50)
 - # simulation draws (# samples drawn) = very big
 - Simulation error: Chance difference between simulated probability and true probability
 - Drive it to zero by doing many draws
 - For each sample compute the sample mean
 - Summarize distribution of \overline{X} : graphically (histogram) and numerically (Stata summary)

16

Simulated Sampling Distribution of \bar{X} for n = 50

17

Simulated Sampling Dist. of \bar{X} , n=50

X-Dar				
	Percentiles	Smallest		
1%	116.9729	109.5587		
5%	119.4248	109.6845		
10%	120.8754	111.0465	Obs	500000
25%	123.5441	111.2133	Sum of Wgt.	500000
50%	126.9508		Mean	127.513
		Largest	Std. Dev.	5.600294
75%	130.8465	172.6622		
90%	134.8423	173.6038	Variance	31.3633
95%	137.4918	174.159	Skewness	.6994546
99%	143.1469	174.9272	Kurtosis	4.167933

Recall that $\mu \approx \$127.5K$ and $\sigma \approx \$39.6K$ in the population. What is meaning of $\sigma_{\bar{X}} = \frac{39.6}{\sqrt{50}}$ and where does it appear above?

Is sampling error a plausible explanation for an \overline{X} above \$132K? $_{_{18}}$

Three Very Different Histograms

Summary of a Random Sample

Surury					
	Percentiles	Smallest			
1%	100.1664	100.1664			
5%	100.9522	100.9473			
10%	102.0943	100.9522	Obs	50	
25%	108.7771	101.021	Sum of Wgt.	50	
50%	121.4592		Mean	132.7467	
500	121.4352	Largest	Std. Dev.	34.22585	
75%	155	173.4973			
90%	167.9037	183.4379	Variance	1171.409	
95%	183.4379	219.4789	Skewness	2.125154	
99%	283.6693	283.6693	Kurtosis	9.144829	

20

Simulated Sampling Distribution of the Sample Median for n = 50

1

Simulated Sampling Distribution of the Sample Median, n=50

Median				
	Percentiles	Smallest		
1%	108.8332	104.4422		
5%	110.5338	104.7897		
10%	111.4963	104.8258	Obs	500000
25%	113.2028	104.97	Sum of Wgt.	500000
50%	115.2876		Mean	115.4981
		Largest	Std. Dev.	3.265556
75%	117.5475	135.461		
90%	119.9086	137.6988	Variance	10.66386
95%	121.0002	138.1573	Skewness	.4225524
99%	124.086	139.0575	Kurtosis	3.392273

Recalling that the population median is \$115.3013K, is sampling error a plausible explanation for a sample median above \$118K? How about above \$136K?