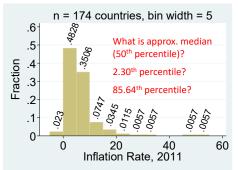


Notes: The management score is unweighted average of the score for each of the 16 questions, where each question is first mormalized to be on a 0-1 scale. The sample is all 2016 CEES surveyors with at least 11 non-missing responses to management questions and [select firms].

Percentiles, STATA, Box Plots, Standardizing, and Other Transformations


Lecture 3

Reading: Sections 5.7 – 5.14

Remember, when you finish a chapter make sure not to miss the last couple of boxes: "What Can Go Wrong?" and "Ethics in Action"

2

Measures of Relative Standing: Percentiles

World bank data, again

[&]quot;Do CEOs Know Best? Evidence from China" (2018) http://www.nber.org/papers/w24760 1

Reading STATA Output

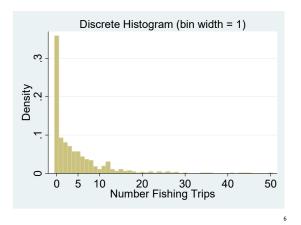
. su inflation_2011, detail

inflation_2011

	Percentiles	Smallest		
1%	-2.517798	-4.895247		
5%	.9223603	-2.517798		
10%	2.075173	3644478	Obs	174
25%	3.329906	2833333	Sum of Wgt.	174
50%	4.977675		Mean	6.646499
		Largest	Std. Dev.	6.77998
75%	8.253968	26.09021		
90%	12.43155	33.22422	Variance	45.96813
95%	17.71178	47.27686	Skewness	3.773002
99%	47.27686	53.2287	Kurtosis	22.85972

Median?

Range?


Sample size?

Trips	Freq.	Percent	Cum.
0	294	35.85	35.85
1	76	9.27	45.12
2	66	8.05	53.17
3	58	7.07	60.24
4	47	5.73	65.98
5	47	5.73	71.71
6	36	4.39	76.10
7	30	3.66	79.76
8	28	3.41	83.17
9	15	1.83	85.00
10	9	1.10	86.10
11	16	1.95	88.05
12	25	3.05	91.10
13	9	1.10	92.20
14	5	0.61	92.80
15	9	1.10	93.90
16	5	0.61	94.51
17	6	0.73	95.24
18	4	0.49	95.73

Trips	Freq.	Percent	Cum.
19	1	0.12	95.85
20	3	0.37	96.22
21	2	0.24	96.46
22	4	0.49	96.95
23	1	0.12	97.07
24	4	0.49	97.56
25	2	0.24	97.80
26	4	0.49	98.29
27	2	0.24	98.54
28	3	0.37	98.90
30	1	0.12	99.02
34	1	0.12	99.15
35	1	0.12	99.27
36	1	0.12	99.39
41	1	0.12	99.51
43	1	0.12	99.63
44	1	0.12	99.76
45	1	0.12	99.88
50	1	0.12	100.00
Total	820	100.00	

What is the median?

What is the 75th percentile?

Reading STATA Output

. summarize Number_of_Trips, detail;

Number_of_Trips					
	Percentiles	Smallest			
1%	0	0			
5%	0	0			
10%	0	0	Obs	820	
25%	0	0	Sum of Wgt.	820	
50%	2		Mean	4.52439	
		Largest	Std. Dev.	6.684273	
75%	6	43			
90%	12	44	Variance	44.6795	
95%	17	45	Skewness	2.717188	
99%	30	50	Kurtosis	13.01081	

How can the 10th percentile and the 25th percentile both be zero?

7

One Popular Use of Percentiles

- Quartiles:
 - 1st quartile: obs btwn 0th and 25th percentiles
 - 2nd quartile: obs btwn
 25th and 50th percentiles
 - 3rd quartile: obs btwn
 50th and 75th percentiles
 - 4th quartile: obs btwn
 75th and 100th percentiles
- · Quintiles:
 - Divide variable into fifths: e.g. top quintile includes obs btwn 80th and 100th percentiles
- Deciles:
 - Divide variable into tenths: e.g. bottom decile includes obs btwn 0th and 10th percentiles

Note: You are responsible for knowing the meaning of these terms if they appear on a test, exam, etc.

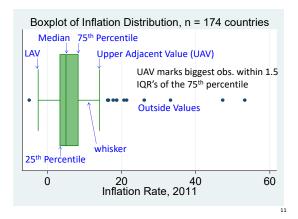
Practice Reading and Interpreting

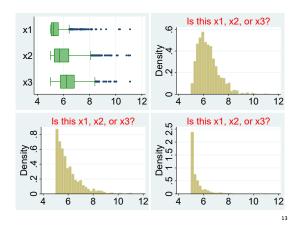
Table 11. Hours Worked in Selected OECD Countries, by Income $^{\rm a}$

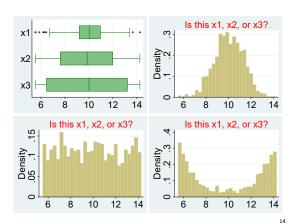
Median/mean							
Income quintile	France, 1994	Germany, 1994	Italy, 1995	Nether- lands, 1994	Sweden, 1995	Switzer- land, 1992	United States, 1997
First (lowest)	39/38	12/26	50/50	0/16	39/35	55/62	35/27
Second	39/41	40/39	40/41	40/35	39/38	44/50	40/42
Third	39/41	40/41	40/40	40/40	39/39	42/46	40/44
Fourth	39/42	40/42	40/40	40/41	39/39	42/46	40/45
Fifth	45/47	44/45	40/42	40/44	39/40	45/50	45/48

Source: Luxembourg Income Study data. a. By males aged 25–54.

Alesina et al (2001) "Why Doesn't the United States Have a European-Style Welfare State?"


What do these numbers mean? How should they be interpreted?


9

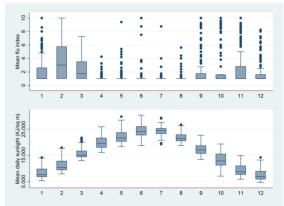

Interquartile Range (IQR)

- <u>Interquartile range</u>: 75th percentile minus 25th percentile
 - Measures spread of middle observations
 - What does it measure?

10

"Sunlight and Protection Against Influenza"

Table 1: Summary Statistics


	(1)	(2)	(3)	(4)	(5)
	N	Mean	StDev	Min	Max
Flu index	1,404	2.000	2.139	1	10
Sunlight (kJ/m ² /day)	1,404	15,771	6,509	4,576	30,334
Population Density (individuals/mi ²)	1,404	197.2	269.5	5.8	1,195
Temperature (°F)	1,404	54.0	17.9	5.1	94.3
Days/month temp <15°F	1,404	2.0	4.7	0	29.8
Specific humidity (g water vapor / kg air)	1,404	10.8	6.4	1.8	29.7
Days/month specific humidity < 6 g/kg	1,404	9.8	10.5	0	31

Note: Unit of observation is a year-month for each of the 36 contiguous [U.S.] states that have complete flu and sunlight data.

Which kind of data are these: cross-sectional, time series, or panel?

Why 1,404 observations? These are monthly data from Oct. 2008 to Dec. 2011 (39 months) for 36 states (39*36=1,404).

Slusky and Zeckhauser (2018), http://www.nber.org/papers/w24340.pdf

Jan is 1, Feb is 2, ... Each month has 108 obs (36 states*3yrs) except Oct, Nov, and Dec have 144 obs (36 states*4yrs). N = 1,404 (=9*108 + 3*144)

Outliers

- <u>Outliers</u>: extremely large or small values different from the bulk of the data
- Robust: not sensitive to outliers
 - Is the sample mean a robust measure of central tendency?
 - Is the sample median robust?
 - However, the mean retains more information from sample & has useful statistical properties
 - Is the IQR robust? variance?

17

Charitable Donors: Stats Can

http://www5.statcan.gc.ca/cansim/a05?lang=eng&id=1110002&pattern=1110002&searchTypeByValue=1&p2=35

Donors and donations	2011
Number of taxfilers ⁴	24,841,630
Number of donors ^{2,3}	5,709,700
Percentage of donors aged 0 to 24 years ^{2,3,6}	3
Percentage of donors aged 25 to 34 years ^{2,3,6}	12
Percentage of donors aged 35 to 44 years ^{2,3,6}	17
Percentage of donors aged 45 to 54 years ^{2,3,6}	23
Percentage of donors aged 55 to 64 years ^{2,3,6}	21
Percentage of donors aged 65 years and over ^{2,3,6}	25

 $^{^2\}mathrm{Charitable}$ donor is defined as a taxfiler reporting a charitable donation amount on line 340 of the personal income tax form.

18

Average	Age	of	Don	ors?
, werage	, ,pc	\circ .	001	0.5.

Section 5.7 "Grouped Data" tells how to approximate the mean & s.d. with grouped data

% aged 0 to 24	3
% aged 25 to 34	12
% aged 35 to 44	17
% aged 45 to 54	23
% aged 55 to 64	21
% aged 65 and	25
over	-3

Mean≈ 0.03 * 21 + 0.12 * 29.5
+ 0.17 * 39.5 + 0.23 * 49.5
+ 0.21 * 59.5 + 0.25 * 70
≈ 52.3 years

What if we use 75 years old for last category? Then mean \approx 53.5.

What if we use 12 years old for first category? Then mean \approx 52.0.

19

Logic of Calculation: Smaller Example

 Survey a random sample of 40 A&S students asking how many courses are you currently taking. A tabulation:

num_courses	Freq.	Percent	Cum.
2	3 7	7.50 17.50	7.50
5 6	28 2	70.00	95.00 100.00
	 40	100.00	

$$\bar{X} = \frac{\sum_{i=1}^{40} x_i}{n} = \frac{\sum_{i=1}^{3} 2 + \sum_{i=1}^{7} 4 + \sum_{i=1}^{28} 5 + \sum_{i=1}^{2} 6}{40} = \frac{3 * 2 + 7 * 4 + 28 * 5 + 2 * 6}{40}$$

= 0.075 * 2 + 0.175 * 4 + 0.7 * 5 + 0.05 * 6 = 4.65

20

Similarly for standard deviation

num_courses	Freq.	Percent	Cum.
2	3	7.50	7.50
4	7	17.50	25.00
5	28	70.00	95.00
6	2	5.00	100.00
Total	40	100.00	

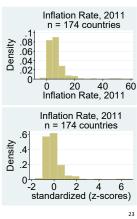
$$s = \sqrt{\frac{\sum_{i=1}^{40} (x_i - \bar{X})^2}{n-1}}$$

$$=\sqrt{\frac{\sum_{i=1}^{3}(2-4.65)^{2}+\sum_{i=1}^{7}(4-4.65)^{2}+\sum_{i=1}^{28}(5-4.65)^{2}+\sum_{i=1}^{2}(6-4.65)^{2}}*\frac{*40}{39}}$$

$$= \sqrt{(0.075(2 - 4.65)^2 + 0.175(4 - 4.65)^2 + 0.7(5 - 4.65)^2 + 0.05(6 - 4.65)^2) \frac{40}{39}}$$

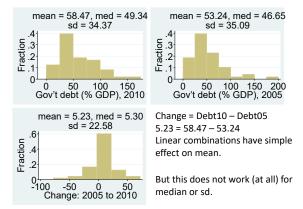
 $= 0.89 \quad \text{ And, if you ignore 40/39, you get 0.88 (very close to right answer)} \qquad {}_{21}$

Standard Deviation of Age of Donors?

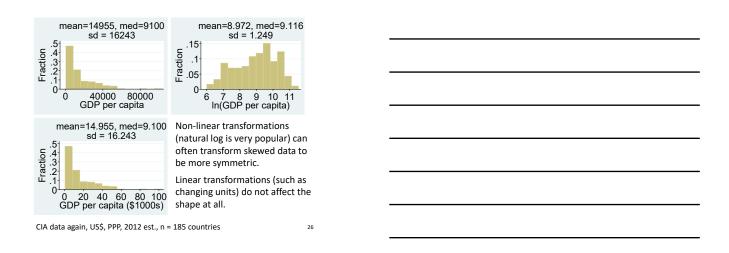

% aged 0 - 24 [21]	3
% aged 25 - 34 [29.5]	12
% aged 35 - 44 [39.5]	17
% aged 45 - 54 [49.5]	23
% aged 55 - 64 [59.5]	21
% aged 65 & over [70]	25

```
\approx 0.03(21-52.3)^2
+0.12(29.5-52.3)^2
+0.17(39.5-52.3)^2
+0.23(49.5 - 52.3)^2
+0.21(59.5 - 52.3)^2
+0.25(70-52.3)^{2}
= 210.6 \, years^2
s. d. \approx \sqrt{210.6} = 14.5 \text{ years}
```

22


Standardization ("z-scores")

- Standardize: $z = \frac{x \bar{x}}{c}$
 - z: how many s.d.'s a value is from the mean (+ if above; - if below)
 - Z has a mean of 0 and s.d. of 1 and no units
 - Eg: mean inflation 6.64, s.d. 6.78; 2.91 in Canada: z=-0.55=(2.91-6.64)/6.78
 - What does -0.55 mean?



Linear Transformations

- · Linear transformation can be written as Y = a + bX where a and b are constants
 - Linear transformation of X?
 - Y = 200 X
 - $Y = X^2 1 = (X 1)(X + 1)$
 - Y = (X 10)/2
 - Linear transformations change scale of a variable but not shape of the distribution
 - Standardization is a linear transformation

World Bank data again, Central gov't debt, n = 48 countries

