
Logarithms in Regression Analysis with Asiaphoria

for ECO220Y1, 2019/20

Written by Jennifer Murdock

Contents

1 Required supplement to the textbook 1

2 Logarithms in simple regression, descriptive statistics 2

3 Motivating example: Human Development Index (HDI) 2

3.1 Natural logarithm versus base 10 logarithm . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Logarithm of the x variable but not the y variable: ŷi = b0 + b1ln(xi) 4
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1 Required supplement to the textbook

Many applications of regression analysis involve variables that have had a logarithmic transforma-

tion. This supplement supports your study of this important topic and is required reading for all

sections of ECO220Y1Y. It supplements the textbook, which does address non-linearity in regression
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analysis.1 So, why do you need extra required reading? This supplement addresses how to interpret

the coefficients when logarithms are used. The textbook touches on this on page 660 but otherwise

does not address the interpretation of these extremely common regression results.

Study this supplement right after Chapters 6 - 7. Review it, along with Chapters 6 - 7, when you

begin Chapters 18 - 21. Work through all exercises in Section 11 and use Section 12 to check your

work. Last, but not least, study the Asiaphoria case in Section 13, starting on page 23.

2 Logarithms in simple regression, descriptive statistics

This supplement works within simple regression. For example, how happiness (y variable) is related

to wealth (x variable). Simple regression is sometimes called bivariate regression because there are

two variables. Chapters 20 and 21 extend to multiple regression. For example, how happiness (y

variable) relates to wealth, health, age, gender, ... (multiple x variables). However, simple regression

comes up two times: once with Chapters 6 - 7 and again with Chapters 18 - 19. The later chapters

apply formal methods of statistical inference (hypothesis testing and interval estimation) to regression

analysis. However, the key concepts specific to the use of logarithms can be explained within simple

regression and descriptive statistics (i.e. Chapter 6 - 7), which is what this supplement does.

3 Motivating example: Human Development Index (HDI)

The United Nations (UN) reports the Human Development Index (HDI) across countries and over

time. The HDI measures development “by combining indicators of life expectancy, educational at-

tainment and income into a composite index.”2 On page 187 of Section 7.8, the textbook studies cell

phone penetration versus the HDI. Let’s use more recent HDI data (2012) from the UN for a cross-

section of 187 countries and more recent cellular telephone data from the ITU3 for a cross-section of

157 countries.4 Unlike Figure 7.5 in the textbook, Figure 1 shows a fairly linear association.
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Figure 1: A scatter plot of mobile-cellular subscriptions per 100 inhabitants versus
the HDI for a cross-section of 156 countries is fairly linear.

1See Section 6.4 “Straightening Scatterplots,” Section 7.8 “Nonlinear Relationships,” “Watch out for changing
spread” in Chapter 18 on p. 623, Section 19.6 “Linearity,” Section 19.7 “Transforming (Re-expressing) Data,” Section
19.8 “The Ladder of Powers,” “Don’t fit a linear regression to data that aren’t straight” and “Watch out for the plot
thickening” in Chapter 20 on pp. 709-10.

2See page entitled “Human Development Index (HDI)” at http://hdr.undp.org/en/statistics/hdi.
3See pp. 228 - 229 of “Measuring the Information Society: 2013” by the International Telecommunication Union

(ITU): http://www.itu.int/en/ITU-D/Statistics/Pages/publications/mis2013.aspx .
4When these two data sets are merged there are 156 observations. The ITU data include Macao, China as an

observation but the UN data do not. All of the other ITU observations are also in the UN data.

2

http://hdr.undp.org/en/statistics/hdi
http://www.itu.int/en/ITU-D/Statistics/Pages/publications/mis2013.aspx


Recall that one of the factors in the composite Human Development Index is income. The UN uses

GNI (Gross National Income). Figure 2 shows a nonlinear association between the HDI and GNI.

Any statistic that assumes linearity – R2, correlation, OLS slope – will describe it poorly. Logarith-

mically transforming either the x variable, y variable, or both often straightens relationships. Which

combination, if any, will straighten this scatter plot?
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Figure 2: A scatter plot of the HDI in 2012 versus GNI per capita in 2012 for a
cross-section of 187 countries shows a highly non-linear association.

Figure 3 shows a fairly linear association between HDI and the natural log of GNI per capita. Hence

logarithmically transforming the x variable straightened this scatter plot.
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Figure 3: HDI versus the natural log of GNI per capita is fairly linear.

The other two possible combinations of logarithmic transformations – given in Figure 4 and Figure

5 – do not work or do not work as well.
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Figure 4: The natural log of HDI versus GNI per capita shows that logarithmically
transforming the y variable does not help straighten the scatter plot and seems to
make it even more non-linear.
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Figure 5: The natural log of HDI versus the natural log of GNI per capita shows
that logarithmically transforming both the x and y variables helps straighten the
scatter plot compared to Figure 2 but does not do as good a job as in Figure 3.

3.1 Natural logarithm versus base 10 logarithm

Before getting to the main point – how to interpret the OLS coefficient when one or more of the

variables have been logarithmically transformed – consider natural logarithms versus base 10 loga-

rithms. In applied work, and certainly amongst economists, when someone says “logarithm” they

mean “natural logarithm.” It is common to write log() even when talking about a natural logarithm. 5

What if a base 10 logarithmic transformation is applied to GNI per capita? Figure 6 looks very

similar to Figure 3 but for the scale of the horizontal axis. In fact, the R2 is 0.8854 in both cases.

However, you will see why the natural logarithm is convenient in the next sections.
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Figure 6: The horizontal scale differs from Figure 3 but the straightening ability
of a natural log and a base 10 log are indistinguishable.

4 Logarithm of the x variable but not the y variable: ŷi = b0+b1ln(xi)

For HDI versus GNI taking the log of the x variable succeeded in straightening the scatter plot.

Figure 7 shows the OLS line fitted to the transformed data: ĤDIi = −0.45 + 0.13 ∗ ln(GNIi). How

to interpret 0.13? You CANNOT say “In countries where the natural logarithm of GNI per capita

is 1 unit higher the HDI is 0.13 higher on average.” That is NOT an interpretation. Interpretation

means explaining numbers so that people can understand them: it is hard to find a person who thinks

in terms of the natural logarithm of dollars!

5Popular software reflect this convention. In Stata both the function log and ln return the natural log: you must
type log10 for base 10. However, in Excel the LOG function is base 10 by default, so use the LN function.
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Figure 7: OLS: straightened scatter plot.
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Figure 8: HDI versus GNI.

An interpretation requires understanding how y varies with respect to x. For example, how HDI

varies with respect to GNI. There is a linear association between HDI and the natural logarithm of

GNI – Figure 7 – but a non-linear association between HDI and GNI – Figure 8. The interpretation

is about HDI and GNI (not logged): i.e. the curve in Figure 8. To see how to get from the equation,

which involves logarithms, to an interpretation that does not involve logarithms:

Start with the equation: y = b0 + b1ln(x)

Take the derivative with respect to x (i.e. find the slope): dy
dx = b1

1
x

Rewrite to see how a change in x associates with a change in y: dy = dx
x b1

The slope of a curve is not constant: in this case dy
dx = b1

x . However, if dx
x is fairly small – i.e. a

change in x that is modest relative to the size of x – you can use a point estimate.

A percent change in x is 100 ∗ dx
x . For example, if GNI goes from $10,000 to $10,250 that is a 2.5%

increase: 2.5 = 100 ∗ dx
x = 100 ∗ 250

10000 . Hence, dy = dx
x b1 says that b1

100 can be interpreted as the

change in y given a percent change in x: dy = (100 ∗ dx
x )( b1

100).

So, how to interpret 0.13? “In 2012, in countries where Gross National Income per capita is 1 per-

cent higher the Human Development Index (an index between 0 and 1) is approximately 0.0013 units

higher on average.” You may also write “In 2012, in countries where GNI per capita is 10 percent

higher the HDI (an index between 0 and 1) is approximately 0.013 units higher on average.”

Can you see how the idea of percent changes in x captures the curve in Figure 8? A 10% increase in

GNI if GNI is $3,000 (poor country) is $300 per capita. A 10% increase in GNI if GNI is $60,000 (rich

country) is $6,000 per capita. According to the prediction of the regression line, both the $300 and

the $6,000 change are associated with an HDI that is 0.013 higher on average. There are diminishing

marginal returns: the HDI is constructed to increase with income but at a decreasing rate.

5 Logarithm of the y variable but not the x variable: ̂ln(yi) = b0+b1xi

In exercises 45 through 48 in Chapter 19 (pp. 684-5), the textbook studies data on Maine lobsters.

Variables include total lobsters harvested (by weight), market value, price per pound, number of
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license holders, number of traps, and water temperature.6 These data are time-series: the unit of

observation is a year.

Figure 9 shows the non-linear association between the dollar value of the Maine lobster harvest and

the price per pound over the 1950 to 2006 period. Figure 10 shows that a logarithmic transformation

of the y variable somewhat straightens it, although there is still clear evidence of non-linearity at low

prices. Ignoring the remaining concerns about non-linearity, the OLS line fitted to the transformed

data is: ̂ln(V aluet) = 1.87 + 0.94 ∗ Pricet. How to interpret 0.94?
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Figure 9: Untransformed y-variable
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Figure 10: Ln transformed y-variable

The same approach as in Section 4 can illuminate the interpretation of the OLS coefficient:

Start with the equation: ln(y) = b0 + b1x

Rewrite: y = exp(b0 + b1x)

Take the derivative with respect to x (i.e. find the slope): dy
dx = b1exp(b0 + b1x)

Rewrite: dy
dx = b1y

Rewrite to see how a change in x associates with a change in y: dy
y = b1dx

A percent change in y is 100 ∗ dy
y . For example, if the market value of the lobster harvest goes from

$50.0 million to $50.7 million that is a 1.4% increase: 1.4 = 100∗ dyy = 100∗ 0.750 . Hence, dy
y = b1dx says

that 100∗b1 can be interpreted as the percent change in y given a unit change in x: 100∗dyy = 100∗b1dx.

So, how to interpret 0.94? “Over the period from 1950 through 2006, in years where the price

per pound of lobster is $0.10 higher the total dollar value of the annual Maine lobster harvest is

approximately 9.4 percent higher on average.” Why use a price change of $0.10 and not $1? In this

context a $1 price change is very large and would strain the interpretation, which is an approximation.

6More recent data are available from the Maine Department of Natural Resources on a page entitled “Historical Maine
Lobster Landings”: http://www.maine.gov/dmr/commercial-fishing/landings/documents/lobster.table.pdf.
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6 Logarithm of both the x and the y variables: ̂ln(yi) = b0 + b1ln(xi)

Consider data on compensation of presidents at public universities in the U.S.7 Variables include the

president’s total compensation, base pay, total university expenditures, and the date the president

took office. These data are cross-sectional: the unit of observation is a university president.8

Do presidents at bigger schools make more money? Start with a scatter diagram of compensation

versus total expenditures. Figure 11 shows an outlier and non-linearity. Figure 12 excludes the

outlier but there is still non-linearity. Both cases clearly show heteroscedasticity (unequal spread).
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Figure 11: E. Gordon Gee $6.1 million
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Figure 12: Non-linear even w/o outlier

For patterns like these taking the natural log of both variables often works.9 Figure 13 is much more

in line with the underlying assumptions of OLS.10 Even the outlier is less extreme. Often outliers

disappear altogether but the former Ohio State president continues to stand out. To check how the

results are affected by this single point: see Figure 14. The OLS coefficient does differ between the

two figures – 0.27 versus 0.23 – but is that a large difference? To answer requires knowing how to

interpret the OLS coefficient when both the x and y variables have been logged.
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Figure 13: Both x and y logged
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Figure 14: Both logged; w/o outlier

The same approach as the previous sections can illuminate the interpretation of the OLS coefficients:

7On May 16, 2014 The Chronicle of Higher Education published “Executive Compensation at Public Colleges, 2013
Fiscal Year.” No link is given as these data are available only by subscription.

8Of the 254 observations, the analysis focuses on the 146 who were in office for the entire 2013 fiscal year.
9For another such example see page 188 of the textbook.

10There is still some suggestion of heteroscedasticity but it is no longer a substantial violation.
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Start with the equation: ln(y) = b0 + b1ln(x)

Rewrite: y = exp(b0 + b1ln(x)) = exp(b0) ∗ xb1

Take the derivative with respect to x (i.e. find the slope): dy
dx = b1exp(b0) ∗ xb1−1

Rewrite: dy
dx = b1

y
x

Rewrite to see how a change in x associates with a change in y: dy
y = b1

dx
x

A percent change in x is 100 ∗ dx
x and percent change in y is 100 ∗ dy

y . Hence, dy
y = b1

dx
x says that b1

can be interpreted as the percent change in y given a percent change in x: 100 ∗ dy
y = b1 ∗ 100 ∗ dx

x .

Economists would call this an elasticity. Hence, it is often called a constant elasticity functional form.

So, how to interpret the 0.27 and 0.23 OLS coefficients from Figure 13 and Figure 14? “In

2013 in the U.S., public colleges and universities with total expenditures that are 1 percent higher

typically pay the president approximately 0.27 percent more in total compensation. However, if the

highest paid president (with total compensation over $4 million more than the second-highest paid

president) is removed, the estimate drops from 0.27 to 0.23. Either way, presidents at bigger schools

(as measured by total expenditures) do receive somewhat more lucrative compensation packages.”

7 Interpretation summary

To summarize, here is how to interpret OLS coefficients when logarithms are used. For comparison,

the first case is the simple linear functional form with no logarithmic transformations.

Linear specification (ŷi = b0 + b1xi) “A one unit change in xi is associated with a b1 unit change

in yi on average.” The OLS coefficient b1 is a slope. Note well: A full interpretation must specify

the context, give variable descriptions, and provide the units of measurement of both x and y.

Partial-log specification (ŷi = b0 + b1ln(xi)) “A one percent change in xi is associated with ap-

proximately a b1/100 unit change in yi on average.” Note well: A full interpretation must specify

the context, give variable descriptions, and provide the units of measurement of y.

Semi-log specification
( ̂ln(yi) = b0 + b1xi

)
“A one unit change in xi is associated with approxi-

mately a 100 ∗ b1 percent change in yi on average.” Note well: A full interpretation must specify

the context, give variable descriptions, and provide the units of measurement of x.

Log-log specification
( ̂ln(yi) = b0 + b1ln(xi)

)
“A one percent change in xi is associated with

approximately a b1 percent change in yi on average.” The OLS coefficient b1 is an elasticity. Note

well: A full interpretation must specify the context and give variable descriptions.
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7.1 Descriptive versus causal interpretations: you must take a stand

The interpretation templates above are descriptive. However, if you are able to infer causality then

a full interpretation must make that clear. This is the difference between saying an extra year of

education is associated with 7% higher annual earnings on average (descriptive) and saying that

investing in an extra year of education yields 7% higher earnings on average (causal). The first

describes patterns but is not a sufficient reason to advise people to get more education: it may

be that those who choose to obtain extra education are systematically different from those that

do not. In that case, it may be the systematic other differences (e.g. high motivation, successful

parents, etc.) that are causing some (or even all) of the observed higher earnings. However, if a

causal interpretation is warranted then it would be the basis for sound advise: people who were not

planning on more education on average would earn 7% higher annual earnings per additional year of

eduction. Sometimes students think that always offering a descriptive interpretation (which is less

strong) is safe and always correct. No. You must be clear on causality and imply it when justified.

Otherwise you would fail to offer a full interpretation.

7.2 Percent changes versus percentage point changes

When the x or y variable (or both) have been logged, notice that the interpretation of OLS coeffi-

cients involves percent changes. Is there a difference between a percent change and a percentage point

change? Yes, these are very different. Percent changes make sense regardless of the units of measure-

ment of the original variable. For example, if a city had 26 smog-alert days in 2013 and 32 in 2014,

then it is up by 6 days, which is a 23 percent increase (= 100 ∗ (32− 26)/26). However, percentage

point changes only make sense if a variable is measured as a percent: percentage points are the units

of measurement for a variable measured as a percent. For example, if a city had an unemployment

rate of 7.2 percent in 2013 and 8.1 percent in 2014, then unemployment is up by 0.9 percentage points.

Consider this sentence: “Lottery winners are 14.1 percentage points more likely to enroll in college

the fall after their senior year, a 49.0 percent increase from the control mean of 28.8 percent.”11

What does this mean exactly? This means that 28.8 percent of lottery losers (the control group)

enroll in college while 42.9 percent of lottery winners (the treatment group) enroll. There are two

different ways to describe this (large) difference in these percents. You could say that the lottery

winners are 14.1 percentage points more likely to enroll (= 42.9 − 28.8). Alternatively, you could

say that the lottery winners are 49.0 percent more likely to enroll (100 ∗ (42.9 − 28.8)/28.8). Ob-

viously 14.1 and 49.0 are very different numbers: percent and percentage point mean different things.

To illustrate this distinction when interpreting OLS coefficients, consider a situation where a variable

measured as a percent either has or has not been logged. Consider a random sample of 40 publicly

traded firms. The x variable is the percent of the CEO’s total annual compensation that is stock

options (e.g. x could be 10, which means 10% of the CEO’s compensation is stock options). The

y variable is the change in the firm’s stock price from 2013 to 2014 in dollars (e.g. y could be

-0.53 if the stock price dropped by 53 cents). Suppose a scatter plot looks straight and the OLS

regression results are: ŷi = 0.8 + 0.1xi. How to interpret the OLS coefficient of 0.1? Start by

11This appears on page 16 of a 2013 NBER working paper entitled “The Medium-Term Impacts of High-Achieving
Charter Schools on Non-Test Score Outcomes” by Will Dobbie and Roland Fryer http://www.nber.org/papers/w19581.
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recalling the units of measurement: x is measured as a percent and y in dollars. On average firms

whose CEO’s have 1 percentage point more of their compensation in the form of stock options (e.g.

7% versus 6%) have annual growth in their stock price that is 10 cents ($0.10) higher. Suppose a

log transformation of the x variable is required to straighten the scatter plot and the OLS regression

results are: ŷi = 0.6 + 0.4ln(xi). How to interpret the OLS coefficient of 0.4? On average firms

whose CEO’s have 1 percent more of their compensation in the form of stock options (e.g. 6.06%

versus 6%) have annual growth in their stock price that is 0.4 cents ($0.004) higher. In this example

a 1 percent change is really tiny (6.06% versus 6%) so it makes more sense to use 10 percent in the

interpretation: On average firms whose CEO’s have 10 percent more of their compensation in the

form of stock options (e.g. 6.6% versus 6%) have annual growth in their stock price that is 4 cents

($0.04) higher. In this example, specifications where the y variable is logged do not make sense as it

can take negative values (stock prices often go down).

7.3 When logs are involved, coefficient interpretations are approximations

When reviewing the interpretation summaries at the start of Section 7, did you notice that the word

approximately appears for each specification involving logarithms but not for the linear specification?

These interpretations are approximations that are accurate for marginal changes. They can become

nonsense for non-marginal changes. In contrast, for a linear specification it does not matter whether

the change is marginal because the slope is constant.

For example, consider cross-sectional data for 20 geographic areas. The x variable measures the

unemployment rate: for example, x equal to 0.05 is 5% unemployment. The y variable measures the

fraction of voters favoring free trade: for example, 0.63 means that 63% favor free trade. If the OLS

regression results are ̂ln(yi) = −0.4 − 1.5xi, how to interpret -1.5? Here’s a terrible answer: A one

unit increase in x is on average associated with a 150% decrease in y. This makes no mention of the

context, fails to say what the variables are, forgets to specify units, and uses an approximation for

a non-marginal change. The last mistake explains the crazy 150% decrease. (Something positive,

like the fraction favoring free trade, could at most decrease by 100%, say from 0.60 to 0.) Because

the unemployment rate has range from 0 to 1, a 1 unit change compares geographic areas with 0%

unemployment to those with 100% unemployment! The approximate interpretation fails because this

is not a marginal change. However, for a smaller change in x – such as a 1 percentage point increase

in unemployment (e.g. going from 5 to 6% is a 0.01 increase in x) – the approximation is fine. Here’s

a good interpretation: Geographic areas with unemployment rates that are 1 percentage point higher

(e.g. 8% versus 7%) on average have 1.5 percent less support for free trade (e.g. 59.1% versus 60%).

Notice that this descriptive interpretation keeps percent and percentage points straight but forgot

to say approximately : often researchers leave out that word (but they do make sure to consider only

marginal changes when logarithms are involved).12

7.3.1 But what about a non-marginal change (i.e. when the approximation fails)?

What is the interpretation of a coefficient for a non-marginal change in a regression with logarithms?

Even if the approximation fails, an exact interpretation is still possible. Continuing with the free

trade and unemployment example, what does the regression coefficient say about about geographic

12For an example of this situation arising in real research, see Question (1) on the April 2016 ECO220Y1Y final exam.
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areas with 100% unemployment versus others with 0% unemployment? (Note: In this example

these are both likely outside the range of the data: this comparison would require extrapolation well

beyond the evidence. However, put aside concerns about extrapolation to see what the coefficient

mathematically implies about that comparison. In general, just because changes are non-marginal

does not imply that they are necessarily outside the range of the data.) Define ln(y1i) as the predicted

natural logarithm of free trade support in geographic areas with 100% unemployment (x = 1) and

define ln(y0i) as the predicted natural logarithm of free trade support in geographic areas with 0%

unemployment (x = 0). The difference of interest is ln(y1i) − ln(y0i), which OLS estimates as -1.5

(−1.5 = (−0.4− 1.5 ∗ 1)− (−0.4− 1.5 ∗ 0)).

ln(y1i)− ln(y0i) = −1.5

ln

(
y1i
y0i

)
= −1.5

ln

(
1 +

y1i − y0i
y0i

)
= −1.5

1 +
y1i − y0i

y0i
= e−1.5

y1i − y0i
y0i

= e−1.5 − 1 = −0.78

What does -0.78 mean? Geographic areas with unemployment rates that are 100 percentage point

higher on average have 78 percent less support for free trade (e.g. the difference between 67% and

15% of voters supporting free trade). Notice the big difference between saying 150 percent less (the

failed approximation) and 78 percent less (the exact value).

Given that the approximate interpretations should not be used for non-marginal changes, where is

the boundary between a marginal and a non-marginal change? The answer is subjective. On page 94

of Mastering ‘Metrics: The Path from Cause to Effect (2015), the authors (prominent professors of

economics at MIT and LSE) suggest that if the predicted difference in the logged values of y is between

-0.2 and 0.2 then this is sufficiently marginal to use the standard approximations given at the start of

this section. To illustrate, suppose that the OLS results for the free trade and unemployment example

had been ̂ln(yi) = −0.4 − 0.1xi (instead of ̂ln(yi) = −0.4 − 1.5xi). Then ln(y1i) − ln(y0i) = −0.1,

and -0.1 is between -0.2 and 0.2. Geographic areas with unemployment rates that are 100 percentage

point higher on average have approximately 10 percent less support for free trade, whereas the exact

value is 9.5 percent less (e−0.1 − 1 = −0.095). The approximation is excellent.

8 Sneaky non-linearities

Sometimes it is hard to see non-linearity. The ITU data in Section 3 include variables on fixed

telephone subscriptions per 100 inhabitants, mobile-cellular telephone subscriptions per 100 inhabi-

tants, percent of households with a computer, and percent of households with internet access. These

are measured for 157 countries for each of two years (2011 and 2012), which means these are panel

(longitudinal) data. How well does the 2011 percent of households with internet access predict the

percent in 2012? Figure 15 shows a strong association (as would be expected) between 2011 and

11



2012 internet penetration. It is hard to see, but it is NOT straight. The best way to check for

non-linearity is to try to run a linear regression and then graph the residuals (ei = yi− ŷi) versus the

predicted values of y (ŷi). This makes violations of the linearity assumption more visually obvious.

Your textbook makes this important point repeatedly (e.g. Sections 7.5 and 20.3). Always check a

graph of the residuals versus y-hat when checking for violations of the linearity assumption.
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9 Limitations of logarithmic transformations

Logarithms cannot address all non-linearities: for example, a U-shaped association or any non-

monotonic relationship (i.e. sometimes goes up and sometimes goes down). Taking the logarithm of

a variable that sometimes takes negative values is not possible. The logarithm of zero also does not

exist. If a variable contains some zeros, researchers sometimes add a small constant as a workaround.

When logarithms can straighten a scatter plot they are often used because the coefficients have an

easy (approximate) interpretation and using logarithms does not require adding extra variables.13

10 Using the natural log for convenience, not necessity

Often researchers apply a natural log transformation to either the x or y variable (or both), not to

straighten a curved relationship, but for convenience. Sometimes a relationship is pretty straight

either way. What is the convenience? A percent interpretation of an OLS coefficient is useful. We

do not need to worry about units or levels. For example, knowing that the concentration of lead

in a city’s drinking water went up by 1 part per billion may not be meaningful to you because you

are unfamiliar with those units of measurement. However, if you are told that there has been a 25

percent increase, you realize that is pretty big (even though one part per billion may sound small).

For another example, knowing that a university offered financial aid to 100 more students than last

year does not mean much without context. You understand the units of measurement (number of

students) but you do not know the level beforehand. If the university had offered 500 students finan-

cial aid last year, then 100 more is whopping 20 percent increase but if they had offered financial aid

to 9,000 students last year, then 100 more is a modest 1.1 percent increase.

A great example of using the natural log for the convenience is when the x variable is a dummy

variable and the researcher takes the natural log of the y variable. A dummy variable, also called

13An alternative is to add a squared term and higher order polynomials: these are more flexible (e.g. can accommodate
non-monotonic relationships) but are a less parsimonious solution (i.e. require adding more variables). While this is
possible with multiple regression analysis, more variables are only desirable if necessary.
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an indicator variable or a fixed effect, is a variable that takes a value of one if something is true

and a value of zero otherwise. Dummy variables are used to include categorical information – for

example, sex, religion, race – in a regression analysis. Because a dummy variable can take only two

possible values – zero or one – it is not possible for there to be a non-linear relationship between

the y variable and a dummy variable. A non-linear relationship would require at least three pos-

sible values of x. Hence, the reason for the log is convenience, not straightening a curved relationship.

To illustrate, consider a regression to explore salary differences between female and male faculty

members in the Economics Department at U of T. The y variable is the 2016 salary, measured in

Canadian dollars, and the x variable is sex.14 To measure sex, consider a dummy variable named

female that is equal to one if the professor is female and equal to zero if the professor is male. Figure

17 shows a scatter diagram and the regression results. The OLS line, given in the title of the figure,

shows that male professors on average make $188,907 (i.e. when the female variable is equal to zero

the OLS line predicts a salary of $188,907) and female professors on average make $33,543 less than

males (i.e. when the female variable is equal to one we add -33,543*1 to obtain the predicted salary),

which means $155,364 (= $188,907 - $33,543).
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Figure 18 shows what happens if we logarithmically transform the y variable. Using what we learned

in Section 5 we can interpret the OLS coefficient of -0.172: on average, the 2016 salaries of female

faculty members are approximately 17.2 percent lower than male faculty members in the U of T

Economics Department. Remember that Section 7.3 explains that the interpretation is an approx-

imation. In this simple case, we can compute that the salaries of females are exactly 17.8 percent

lower (= 100 ∗ 33,542
188,907). However, the log approach still gives a good approximation, which will be

useful in more detailed analyses that use multiple regression (i.e. look for differences in salary by sex

after controlling for other factors such as years of employment, scholarly output, etc.).

As mentioned at the start of this section, part of what makes logs convenient is that percentage

interpretations are not affected by units. To illustrate, consider measuring salary in 1,000s of dollars.

Figure 19 shows that the coefficient on the dummy variable is now -33.543 compared to -33,543 in

Figure 17. However, when we log salary, the coefficient on female is -0.172 regardless of the units

14The data are from the Ontario public sector salary disclosure and knowledge of the sex of each of my 60 colleagues.
For more on the salary data, see Modules C and D in DACM.
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of measurement of salary: it is the same in Figure 18 and Figure 20. This is convenient as we may

not always be fluent in the specific units of measurement (e.g. a non-Canadian may not be sure if

$33,543 in Canadian dollars is a lot of money or not) or we may be reading research that does not

very precisely document the units of measurement (e.g. may fail to specify Canadian dollars).
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Figure 19: y with a unit change
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Is the U of T Economics Department unfairly discriminating against female faculty members in

awarding raises and/or setting starting salaries? We cannot even start to answer that causal re-

search question with a simple regression analysis on observational data. There are a host of possible

non-discriminatory reasons for a salary disparity between the sexes. At a minimum, we would like

to control for some other valid reasons for salary discrepancies such as years of experience. Recall

Section 7.1 and notice how the earlier interpretation of -0.172 is a descriptive statement (i.e. it docu-

ments the salary discrepancy that exists) and does not make a causal interpretation (i.e. it does not

imply that the discrepancy is caused by bias or discrimination).

This mini-case study is a good example of heteroscedasticity: unequal scatter about an OLS line.

Sometimes we can correct both non-linearity and heteroscedasticity with natural log transformations.

However, this mini-case does not (and cannot) have an issue with non-linearity, so that cannot be

the underlying cause of heteroscedasticity. In fact, Figures 17, 18, 19, and 20 all show heteroscedas-

ticity. Salary variation among male professors is much greater than salary variation among female

professors. Checking the data, the standard deviation of salaries among female professors is $26,034

whereas the standard deviation is $56,065 among male professors.

Also, in case you are wondering if the one very well-paid male professor (above $400K) is driving the

results: he is not. The median salary of male professors is $172,737 whereas the median salary of

female professors is $148,338 (and the median is robust to outliers).

11 Exercises

Q1. The OLS line for Figure 1 is ŷi = −2.32 + 156.1xi. Give a full interpretation of each of the

coefficients (i.e. b0 and b1).

Q2. The OECD (Organization for Economic Cooperation and Development) makes data about its

34 member nations publicly available (http://stats.oecd.org/). Consider data for 2013 with

14
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two variables: percent of females aged 15 - 64 who are employed and percent of males aged 15

- 64 who are employed. The mean female employment rate is 60.4% with a s.d. of 10.6%. For

males the mean is 72.3% with a s.d. of 6.5%. How predictive is male employment of female

employment? A simple regression of the female employment rate (%) on the male employment

rate (%) yields ŷi = −16.03 + 1.06xi with n = 34 and R2 = 0.42.

(a) Are these data cross-sectional, time series or panel?

(b) Give a full interpretation of each of the coefficients (i.e. b0 and b1).

(c) Does the fact that these two variables are measured as percentages mean that the coefficient

is an elasticity (%∆y given %∆x) like the log-log specification? Explain.

(d) How predictive is the male employment rate of the female employment rate?

Q3. Recall the data discussed in Section 3. Figure 21 shows the number of mobile-cellular sub-

scriptions per 100 inhabitants versus Gross National Income (GNI) per capita for 156 countries

in 2012. Figure 22 shows a similar scatter diagram but with a logarithmic transformation of

the GNI per capita.
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Figure 22

(a) Referring to the figures, would it be appropriate to calculate the coefficient of correlation

between mobile-cellular subscriptions per 100 inhabitants and GNI?

(b) OLS regression should not be applied directly to the data shown in Figure 21. What is

the fundamental reason why not?

(c) What is the full interpretation of 22.93 in Figure 22?

(d) What is the full interpretation of 0.47 in Figure 22?

(e) Suppose you do not remember the units of measurement of GNI per capita (i.e. is it in

thousands of dollars or tens of thousands of dollars or is it CAN$ or US$). Does that affect

the interpretation of 22.93 in Figure 22?

(f) The OLS regression in in Figure 22 can be written Ĉellj = −98.49+22.93ln(GNIj). Sup-

posing that mobile-cellular subscriptions are measured per 1000 inhabitants, what would

that equation change to?

Q4. How do Olympic medals relate to a country’s wealth? Let’s refine the question to summer

Olympics: a country’s climate and topography heavily influence performance in the winter

Olympics. Further, restrict attention to the 1988 and later Olympics where there are almost
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no boycotts15 by major competitor nations: this includes 7 summer Olympics. Further, restrict

attention to major competitor nations: those averaging 5 or more medals per summer Olympic

games since it began competing as an independent nation or 1988 (whichever is later).16 Use

data on the number of gold, silver, and bronze medals won by a country in each of the summer

Olympics merged with data on the total (not per capita) real GDP of each country in each

year.17 Given that it takes time to invest in athletes, the GDP variable measures the GDP

three years before each Olympic games. Figure 23 shows a highly non-linear association and

some points stand out: the U.S. and China. However, Figure 24 shows the non-linearity persists

even without these two countries. Figure 25 and Figure 26 show logarithmic transformations

applied to both variables. Figure 27 and Figure 28 drop the U.S. and China.
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Figure 23: Olympic medals and wealth
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Figure 24: Excluding the U.S. and China
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Figure 25: Log-log specification
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Figure 27: Excluding the U.S. and China
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Figure 28: Diagnostic scatter plot

(a) Are these data cross-sectional, time series or panel?

15The exception is Ethiopia in 1988.
16Australia, Azerbaijan, Belarus, Brazil, Bulgaria, Canada, China, Czech Rep., Denmark, Ethiopia, France, Georgia,

Germany, Great Britain, Greece, Hungary, Italy, Jamaica, Japan, Kazakhstan, Kenya, New Zealand, Norway, Poland,
Romania, Russia, S. Korea, Spain, Sweden, Switzerland, Netherlands, Turkey, Ukraine, and the U.S.A.

17The sources are “Olympic Games” http://www.olympic.it/english/game and “The Penn World Tables” http://

www.rug.nl/research/ggdc/data/penn-world-table (“output-side real GDP at chained PPPs (in millons 2005US$)”).
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(b) Why isn’t the number of observations in Figure 23 equal to 238 (= 7 ∗ 34)?

(c) What is the fundamental reason why it is wrong to find the OLS regression line associated

with Figure 23?

(d) What explains the difference in the number of observations in Figure 23 versus Figure

24? Show the calculation.

(e) The logarithm of zero does not exist. Given this, how is it possible that the number of

observations in Figure 25 is the same as in Figure 23?

(f) Putting aside any concerns about violations of underlying assumptions, give a full inter-

pretation of the number 0.41 that appears in Figure 25.

(g) Is there a concern about a violation of linearity in Figure 25? How about heteroscedas-

ticity? What about in Figure 26?

(h) Putting aside any concerns about violations of underlying assumptions, give a full inter-

pretation of the number 0.36 that appears in Figure 27.

(i) Is there a concern about a violation of linearity in Figure 27? How about heteroscedas-

ticity? What about in Figure 28?

(j) If the OLS regression is ̂ln(Medalsit) = 3.01 + 0.36ln(GDPit) when GDP is measured in

trillions of US dollars, what would the OLS regression be if GDP were measured in millions

of US dollars (which is actually how the data were originally reported)? Write your answer

in the same format as the equation in the previous sentence but with the correct numbers.

(k) How does your answer to the last question help explain why logarithmic transformations

are popular with researchers?

Q5. Recall the time-series lobster data discussed in Section 5 but now supplemented with the most

recent publicly available data from Footnote 6. Figure 29 shows the annual Maine lobster

harvest (in millions of pounds) versus time (measured as years). Figure 30 shows a similar

scatter diagram but with the natural logarithm of harvest as the y variable. What is the full

interpretation of 0.065 in Figure 30?
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Figure 30: Semi-log specification

Q6. Review Figure 9: the dollar value of the Maine lobster harvest versus the price per pound over

the 1950 to 2006 period. Also review Figure 10: the same data but with the natural logarithm

of the dollar value. Since the textbook was first printed, seven more years of data have become

publicly available: Figure 31 and Figure 32 add in seven more observations.
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(a) Did the functional form change after 2006?

(b) The curved tail at low prices in Figure 10 and Figure 32 corresponds to the ten ob-

servations from 1950 to 1959. Does it also appear that the functional form changed after

1959?

(c) How does this illustrate the perils of extrapolating beyond the data? (In this case trying

to predict the volume of sales (measured in dollars) in the next year using price?)

Q7. Recall the mini-case study in Section 10. The analysis below excludes the male faculty member

with a salary in excess of $400,000.
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Figure 33: drop outlier and y not logged
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(a) Fully interpret the OLS intercept in Figure 33.

(b) Fully interpret the OLS slope in Figure 33.

(c) Fully interpret the OLS slope in Figure 34.

(d) What would the OLS intercept and slope in Figure 33 be if salary is measured in USD,

according to the average 2016 exchange rate of 1.325 (i.e. every $1 USD buys $1.325 CAN)?

What would the OLS slope in Figure 34 be?

(e) Do Figures 33 and 34 display heteroscedasticity?

12 Answers to exercises

A1. In this linear specification the constant coefficient -2.32 is an intercept but it has no interpreta-

tion because no country has a Human Development Index (HDI) below around 0.3 (on a scale
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from 0 to 1) so a value of 0 is outside the range of the x variable (HDI). Because this is a

linear specification the OLS coefficient 156.1 is a slope. In 2012, in countries where the Human

Development Index (a number between 0 and 1) is 0.1 higher the number of mobile-cellular

telephone subscriptions is 15.61 higher per 100 inhabitants on average.”

A2. (a) These data are cross-sectional as the unit of observation is a country. There are 34 member

nations in the OECD (of which one is Canada) and in these data each of these countries

in an observation (n = 34).

(b) The y variable is the female employment rate and the x variable is the male employment

rate: y is “regressed on” x. In this linear specification the constant coefficient of -16.03 is

an intercept but it has no interpretation. No OECD country has a male employment rate

(the x variable) close to zero: that is far outside the range of the data. This example makes

the perils of attempting to extrapolate beyond the range of the data very clear: obviously

a female employment rate of -16.03 is not even theoretically possible. Because this is a

linear specification the OLS coefficient 1.06 is a slope. “In 2013 amongst OECD members,

in countries where the male employment rate (age 15 - 64) is 1 percentage point higher the

female employment rate (age 15 - 64) is 1.06 percentage points higher on average.”

(c) No: having a linear specification where both variables are measured as percentages does

not correspond to a log-log specification. Remember the difference between a percent

change and a percentage point change. For example, if in 2005 47 percent of consumers

purchased an extended warranty and that decreased 20 percent that means it is now 37.6

percent (= 0.8 ∗ 47). If it decreased 20 percentage points that means it is now 27 percent

(= 47 − 20). That is a big difference. With a linear specification of variables measured

as percentages the interpretation is in percentage points. With a log-log specification

involving variables measured in any units the interpretation is in terms of percents.

(d) While there is a positive correlation between the male and female employment rates, it is

modest. The R2 is only 0.42, which means that only 42 percent of the variation in the 2013

female employment rate across OECD members can be explained by variation in the 2013

male employment rate across OECD members. The correlation is 0.65 (=
√

0.42). Some

countries must have substantially higher or lower female employment rates than would be

expected given the male employment rates: i.e. there is a fair amount of scatter.

A3. (a) No. The coefficient of correlation (like the OLS line, R2, and covariance) is based on the

assumption that there is a linear relationship between two variables. Using the coefficient

of correlation to summarize the strength of a non-linear relationship is as silly as measuring

the circumference of someone’s head to summarize her/his intelligence. Figure 21 clearly

shows a non-linear relationship with diminishing marginal returns.

(b) The fundamental problem is a violation of the linearity assumption and NOT heteroscedas-

ticity or outliers. Yes, there is heteroscedasticity and apparent outliers in Figure 21 but

these are by-products of the violation of linearity. Figure 22 shows that once the non-

linearity is addressed those other issues simply disappear.

(c) In 2012 in countries with Gross National Income that is 10 percent higher on average 2.3

more mobile-cellular subscriptions per 100 inhabitants are observed. (Note: You could

have used 1 percent and 0.23.)
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(d) The R2 of 0.47 must be interpreted in light of the logarithmic transformation: 47 percent

of the variation in mobile-cellular subscriptions per 100 inhabitants across countries is ex-

plained by variation in the natural logarithm of GNI across those countries. Unfortunately

it does get harder to understand R2 values when logarithms are involved because people

do not naturally think in terms of logarithms. The R2 does still give a good sense of the

amount of scatter in the scatter diagram of the transformed data.

(e) No, it does not affect the interpretation because GNI is logged and the interpretation relates

to a percent change, which is not affected by multiplying by a constant (i.e. changing dollar

units from thousands to tens of thousands or converting US to CAN dollars or vice versus

in a single year (i.e. at a fixed exchange rate)).

(f) It would change to Ĉellj = −984.9 + 229.3ln(GNIj). Figure 35 illustrates graphically.
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Figure 35: Changing the units of a non-logged y variable affects b0 & b1.

A4. (a) These data are panel data as the unit of observation is a country in an Olympic year.

(b) The number of observations is less than 238 (i.e. 222) because not all of the countries par-

ticipated as independent nations for all 7 of the included summer Olympics. For example,

Belarus participated as an independent nation in the summer Olympics starting in 1996.

For countries such as these there are fewer than 7 observations.

(c) It does not make sense to fit a line to a non-linear relationship. This is why the linearity

assumption is always listed FIRST. Often a violation of the linearity assumption will cause

lots of problems (e.g. heteroscedasticity or seeming outliers) but the fundamental problem

is a violation of linearity. Serious violations of linearity must be addressed before checking

other underlying conditions such as homoscedasticity (equal spread).

(d) The U.S. and China each participated in all 7 of the most recent summer Olympics. Hence,

208 = 222− 2 ∗ 7.

(e) None of the 34 major competitor nations participating in the most recent 7 summer

Olympics earned zero medals. (Can you imagine the headlines if Canada, China, U.S.,

Italy, Russa, etc. came home from the summer Olympics with zero medals!) If they did

then that would be an issue. This is one reason why the analysis focuses on only the 34

biggest competitor nations. (Of course no country has zero GDP.)

(f) For the 34 biggest competitor nations for the 1988 through 2012 summer Olympics, a real

GDP (three years earlier) that is 1 percent higher is on average associated with 0.41 percent

more Olympic metals (gold, silver and bronze combined) won.
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(g) Yes, there is some concern about a violation of the linearity assumption in Figure 25.

For very high levels of GDP (U.S. in all seven Olympics and China in the most recent

two Olympics) the line systematically does not fit well. This is similarly apparent in the

diagnostic scatter plot in Figure 26: that graph should show no pattern at all if the

underlying conditions hold. Both figures also show some heteroscedasticity (violation of

the equal spread condition). However, these violations are not severe.

(h) For the 32 biggest competitor nations excluding the U.S. and China for the 1988 through

2012 summer Olympics, on average a real GDP that is 1 percent higher is associated with

0.36 percent more Olympic metals (gold, silver and bronze combined) won.

(i) Both Figure 27 and Figure 28 show that there are no serious violations of either the

linearity assumption or the homoscedasticity (equal spread) assumption.

(j) The OLS regression would be ̂ln(Medalsit) = −1.97+0.36ln(GDPit). Why is 0.36 identical

to the regression where real GDP is measured in trillions? Remember that for log-log you

interpret the coefficient as the percent change in the y variable associated with a percent

change in the x variable: for percent changes it does not make any difference whether

units are millions or trillions of dollars. Another way to think about this is to recall

that ln(a ∗ X) = ln(a) + ln(x) where a is a positive constant. Hence multiplying by a

constant has no effect aside from a constant shift if a variable has been logged. Where

does −1.97 come from? Recall the formula for the constant term in a simple regression:

b0 = Ȳ − b1X̄. To go from GDP (trillions) to GDP (millions) means multiplying by

1,000,000. ln(1, 000, 000 ∗ GDP (trillions)) = ln(1, 000, 000) + ln(GDP (trillions)) and

ln(1, 000, 000) = 13.82. Hence the mean real GDP in millions is 13.82 larger than the

mean real GDP in trillions. Hence b0 will be −1.97 = 3.01 − 0.36 ∗ 13.82 (i.e. the old

intercept minus the change in the mean of the x variable times b1).
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Figure 36: Changing the units of measurement of a logged variable by multiplying
by a constant has no affect on b1. It affects the constant term.

(k) With logarithms you do not need to worry about multiplicative changes of units (e.g. from

trillions to millions of dollars, from inches to cm, from an index on a 0 to 1 to 0 to 100

scale). In contrast, for a simple linear specification, changing the units will change the

slope and its interpretation: you must know the units of measurement.

A5. Over the 1985 to 2013 time period the Maine lobster harvest as measured by weight increased

by about 6.5 percent per year on average. Note: You MUST specify it is measured by weight

(and not dollars) because prices have not been constant over this period so that is not a simple

21



change in units. However, it is not important to specify that it is in millions of pounds: even if

it were measured in kilograms or thousands of pounds the 6.5 percent number would hold. This

corresponds to an approximation of the geometric mean of the growth rate (compound growth

rate): see page 103 - 104 of the textbook. (Note: This is one case where the textbook directly

addresses interpretation: see page 705.)

A6. (a) Yes, the functional form has changed. With these new data, there is no way to straighten

the scatter plot with any combination of logarithms. Sometimes logarithms do not work.

(b) Yes. The semi-log functional form did not correct non-linearity for the first decade of data

(in fact it made it worse). For the 1960 - 2006 period the functional form is fairly constant:

the semi-log approach does fairly well at straightening the scatter plot. See Figure 37.
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Figure 37: Fairly constant functional form.

(c) Beyond the observed range of the data the functional form may differ. The lobster example

illustrates this well. Had you used the regression line in Figure 37 to predict past values

(1959 or earlier) or future values (2007 or later), the predictions would have been off. Even

when you learn about margins of error in prediction in the second half of the course, they

are based on the assumption that the functional form is constant: the statistical margins

of error do NOT take into account possible changes in the functional form.

A7. (a) Excluding the male faculty member with a salary in excess of $400,000, on average male

professors in U of T’s Economics Department have a 2016 salary of $184,086 CAD.

(b) Excluding the male faculty member with a salary in excess of $400,000, female professors

in U of T’s Economics Department have 2016 salaries that are on average $28,722 CAD

lower than male professors in the same department.

(c) Excluding the male faculty member with a salary in excess of $400,000, female professors

in U of T’s Economics Department have 2016 salaries that are on average approximately

15.5 percent lower than male professors in the same department.

(d) In USD, the OLS results are: salary USD-hat = 138,933 - 21,677*female. The OLS slope

with the natural log of salary (in USD) as the y variable would be unchanged (still -0.155).

(e) Yes, both display heteroscedasticity. There is clearly more scatter about the line when x

equals 0 than when x equals 1: in other words, there is more variation in salaries among

male faculty members than among female faculty members.
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13 Asiaphoria case study

The case study is “Asiaphoria Meets Regression to the Mean,” NBER Working Paper 20573, Oct.

2014, by Lant Pritchett and Larry Summers, abbreviated as “Asiaphoria” or Pritchett and Summers

(2014). This is a working paper from a prominent series: the National Bureau of Economic Research

(NBER).18 Working papers have not yet been published in scholarly peer-reviewed journals. Because

it can take years for a paper to be published in a journal, working papers are valuable sources at

the cutting edge of research. The NBER working paper series includes many empirical papers (i.e.

papers where analyses of data feature prominently). Papers from this series are frequently cited in

the popular press (e.g. The Economist and The New York Times). In fact, there is a monthly NBER

digest, which, for select working papers, includes an easy-to-read summary that captures the main

message of the paper in one page of text and single figure (graphic).19 Fortunately, Asiaphoira is one

of those select papers featured in the digest, which provides you an easy entry point into this research.

You are not responsible for the entire working paper, but rather, select portions at the level of

our course. Start with the summary of Asiaphoria in the Mar. 2015 NBER Digest (pp. 1-2,

http://www.nber.org/digest/mar15/mar15.pdf). In the paper itself, read the Abstract and Sec-

tions 1, 2.1, and 6 (pp. 1-11, 56-59, http://www.nber.org/papers/w20573.pdf). If you have any

trouble accessing these required readings or wish to access them off-campus, see Quercus.

Researchers usually presume that you understand foundational concepts/methods. Unlike your text-

book and other course materials, research papers are not written with the goal of teaching core

concepts. Instead, researchers apply concepts/tools to data to draw fresh insights about the world.

A well-written research paper will explain these insights, how these are reached, and any limitations.

However, researchers use a wide variety of terms and references, which presents a challenge to students

looking for clear links between the research and what is learned in courses. Your ECO220Y materials

include common synonyms and many examples of empirical research from a range of fields, with the

goal of building a robust understanding. But there is always at least a little leap from your course

work to a particular research paper. A goal of this case study is to help you practice making that leap.

As you may have guessed, given that Asiaphoria appears at the end of “Logarithms in Regression

Analysis,” it’s a great example of current research using logarithms and simple regression descrip-

tively. It is rare for a key message of current research to be based on simple regression (most involve

multiple regression or advanced econometrics) and to be centered around a descriptive rather than

causal question. Hence, aside from the timely and important topic of the research (economic growth

across countries and over time), it is an ideal example for ECO220Y because of the prominent use of

techniques and concepts we cover very early in the course and keep coming back to.

You are expected to carefully study the assigned portions of Pritchett and Summers (2014). We have

18The NBER describes its working paper series as “NBER researchers initially report their findings in scientific papers
aimed at other professional economists in academic institutions, business, government, and the business media around
the world. Nearly 700 NBER Working Papers are published each year, and many subsequently appear in scholarly
journals” (retrieved July 4, 2016 from http://www.nber.org/pubs.html).

19“The Digest is a monthly publication that summarizes at least four recent and newsworthy NBER Working Papers.
Professional journalists write these summaries for a non-technical audience” (retrieved July 4, 2016 from http://www.

nber.org/pubs.html) For the latest editions of the digest, visit http://www.nber.org/digest/.
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built up several important resources in ECO220Y to help you productively engage with it.

1. Section 13.1 gives a reading guide to help you make the leap. Think of this as getting hiking

boots and a trail guide, not as being carrying through the woods.

2. Section 13.2 explains how the data files in Modules B.2 and B.3 of DACM are constructed.

3. Most importantly, in DACM you spend two tutorials replicating the key results.

4. Because we have used this case study since 2015, there are abundant old test questions, which

are itemized in DACM. These give you a sense of the depth of understanding required (while

remembering that there are many potential test questions).

Additional help includes the usual course resources (e.g. office hours and TA Aid Centres).

13.1 Reading Guide for “Asiaphoria Meets Regression to the Mean”

This reading guide helps your study of Pritchett and Summers (2014). However, it does not walk you

through the paper and does not reteach concepts from lectures, required readings, and homework.

While the digest and the assigned sections of the paper are mostly straightforward, you may need

help to fully understand how Tables 1 and 2 are constructed, which is important. The methods are all

covered by our textbook, except for the rank correlation, which Section 13.1.3 teaches you. Make sure

to read this guide, the digest, and the assigned sections of the paper and to work through Modules

B.2 and B.3 in DACM.

13.1.1 The data used in the analysis for Tables 1 and 2

Tables 1 and 2 of Pritchett and Summers (2014) use high-quality publicly available data: the Penn

World Table (PWT) version 8.0. These are important data used by many researchers and an excellent

opportunity for you to see how such data are presented and documented.

PWT 8.0: You can download these data at https://www.rug.nl/ggdc/productivity/

pwt/pwt-releases/pwt8.0. “PWT version 8.0 is a database with information on relative

levels of income, output, inputs and productivity, covering 167 countries between 1950 and

2011.” Released on: July 2, 2013 (DOI: 10.15141/S5159X) and retrieved June 12, 2015.

The relevant measure of GDP (there are many) is “Real GDP at constant 2005 national prices (in

mil. 2005US$)” (rgdpna) that is described as “Real GDP using national-accounts growth rates, for

studies comparing (output-based) growth rates across countries.” This divided by population (also in

millions) yields real GDP per capita in 2005 US$. Since version 8.0, there have been several updates:

PWT 8.1: You can download these data at https://www.rug.nl/ggdc/productivity/

pwt/pwt-releases/pwt8.1. “PWT 8.1 is an updated version of PWT 8.0, covering

the same countries and period.” Released on: April 13, 2015 (DOI: 10.15141/S5NP4S)

and retrieved June 8, 2015. Also, a published scholarly journal article describes these

data: Feenstra, Robert C., Robert Inklaar and Marcel P. Timmer. 2015. “The Next

Generation of the Penn World Table.” American Economic Review, 105(10): 3150-82

(https://www.aeaweb.org/articles?id=10.1257/aer.20130954).
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PWT 9.0: You can download these data at https://www.rug.nl/ggdc/productivity/

pwt/pwt-releases/pwt9.0. “PWT version 9.0 is a database with information on relative

levels of income, output, inputs and productivity, covering 182 countries between 1950 and

2014.” Released on: June 9, 2016 (DOI: 10.15141/S5J01T and retrieved July 5, 2016.

PWT 9.1: You can download these data at https://www.rug.nl/ggdc/productivity/

pwt/. “PWT version 9.1 is a database with information on relative levels of income,

output, input and productivity, covering 182 countries between 1950 and 2017.” Released

on: April 30, 2019 (DOI: 10.15141/S50T0R) (retrieved July 31, 2019).

13.1.2 Getting from the PWT 8.0 data to Tables 1 and 2

Pritchett and Summers (2014) describe each step to replicate Tables 1 and 2. First, the PWT data

describe the levels of GDP in each country in each year, but, their research question is about growth

rates. To get the required data on growth rates they run simple regressions. In fact, the authors run

many regressions – one for each country in each time period (either a decade or two decades) – to

obtain a measure of the GDP growth rate in that country in that decade (or two decades).

Figure 38: A simple regression using time-series data on annual real GDP per
capita in Canada from 1950 - 1960 reveals a 1.9 percent growth rate. The unit of
observation is a year.

For example, Figure 38 shows the regression to obtain Canada’s growth rate from 1950 to 1960. Next

are all the OLS regression results for Canada for each of the time periods in Tables 1 and 2.

Simple regressions for Canada:

1950-1960: ln_gdp_hat = -27.664 + 0.019*year, n = 11

1960-1970: ln_gdp_hat = -58.332 + 0.035*year, n = 11

1970-1980: ln_gdp_hat = -45.625 + 0.028*year, n = 11

1980-1990: ln_gdp_hat = -28.484 + 0.019*year, n = 11

1990-2000: ln_gdp_hat = -30.747 + 0.021*year, n = 11

2000-2010: ln_gdp_hat = -7.914 + 0.010*year, n = 11

1950-1970: ln_gdp_hat = -38.907 + 0.025*year, n = 21

1960-1980: ln_gdp_hat = -51.114 + 0.031*year, n = 21

1970-1990: ln_gdp_hat = -31.441 + 0.021*year, n = 21

1980-2000: ln_gdp_hat = -18.646 + 0.014*year, n = 21

1990-2010: ln_gdp_hat = -26.730 + 0.019*year, n = 21
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This is done not just for Canada, but each country. The OLS “slope” coefficients become the raw

data for the OLS regressions reported in Tables 1 and 2. Note well: Make sure you can interpret

the OLS slope coefficients in Figure 38 and all the Canada regressions above before reading on. (If

you have trouble, review the earlier parts of this document including the exercises in Section 11.)

The regressions reported in Tables 1 and 2 look at how well growth rates from a previous time period

predict subsequent growth across countries. For example, the first row of results in Table 1 looks at

how well growth rates during the period from 1950 - 1960 predict growth rates during 1960 - 1970.

Below is the scatter plot and the OLS regression for that forecast. Note well: Make sure you can

match up the results in Figure 39 with the first row of results in Table 1.

Figure 39: Simple regression using cross-sectional data on countries’ GDP growth
rates in the 1950s to predict growth rates in the 1960s. The unit of observation is
a country.

Table A.1 gives an excerpt of the data in Figure 39. Look at the row for Canada and find the con-

nection with Figure 38. (Hint: 0.019.)

Table A.1: Excerpt of data used to estimate regression in first row of Table 1, Pritchett and Summers (2014)

country countrycode r 1950 60 r 1960 70 ...

Argentina ARG 0.013 0.022

Australia AUS 0.018 0.034

Austria AUT 0.055 0.038

Belgium BEL 0.023 0.040

Bolivia BOL -0.023 0.007

Brazil BRA 0.037 0.036

Canada CAN 0.019 0.035

Chile CHL 0.011 0.022

China CHN 0.050 0.020

...

Venezuela VEN 0.027 0.027

Zimbabwe ZWE 0.030 0.007

Tables 1 and 2 show many regressions like Figure 39: 15 regressions in total. Each of these regressions
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use data created from the results of the (many) country-level regressions (like the illustrative set

shown for Canada). That’s right: regressions are run on data that have been created by running

regressions. Note well: Make sure you can fully interpret all of the regression results in Tables 1

and 2 in Pritchett and Summers (2014).

13.1.3 Rank correlation

Tables 1 and 2 include a column labeled “Rank Correlation.” The rank correlation is simply the (reg-

ular) correlation between two rankings. The formal name for the rank correlation is the Spearman

rank correlation. In contrast, the formal name for the (regular) correlation that you have already

studied is the Pearson correlation. (If someone simply writes “correlation,” it nearly always means

the Pearson correlation.) To find the rank correlation, instead of calculating the correlation between

growth rates in 1950 - 60 with growth rates in 1960 - 70, rank countries from slowest to fastest growth

and compute the correlation of their rankings. In other words, does a country with the slowest growth

(rank 1) in one decade tend to have the slowest growth in the next decade (i.e. still stuck at rank

1)? A perfect rank correlation of 1 would mean that the rankings of countries are unchanged. (Note:

This does not mean a perfect regular correlation.)

Table A.2: Excerpt of the data used in Pritchett and Summers (2014)

country countrycode r 1950 60 r 1960 70 ... rank 1950 60 rank 1960 70 ...

Argentina ARG 0.013 0.022 16 22

Australia AUS 0.018 0.034 22 37

Austria AUT 0.055 0.038 61 48

Belgium BEL 0.023 0.040 31 49

Bolivia BOL -0.023 0.007 2 5

Brazil BRA 0.037 0.036 52 44

Canada CAN 0.019 0.035 26 40

Chile CHL 0.011 0.022 15 19

China CHN 0.050 0.020 60 18

...

Venezuela VEN 0.027 0.027 39 25

Zimbabwe ZWE 0.030 0.007 41 7

The rank correlation has two notable differences from the regular correlation: it can be used for

non-linear associations (so long as they are monotonic) and it is not sensitive to outliers (because

no matter how extremely poorly a country does, it cannot be ranked lower than 1). To illustrate,

Table A.2 gives an excerpt of data used in Pritchett and Summers (2014). The correlation between

r 1950 60 and r 1960 70 is 0.363 whereas the rank correlation is the (regular) correlation between

rank 1950 60 and rank 1960 70 and is 0.381. In Tables 1 and 2, the correlation and rank correlations

are comparable. You may feel that that makes this extra column redundant. However, it is useful

information for the reader. It makes it clear that the low (regular) correlations are not being caused

by an outlier or a violation of the linearity assumption.

In replicating the Spearman rank correlation results, be careful with missing values in the early time
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periods. Specifically, you must compare the same group of countries in two different periods. If

a particular country has missing data for either of the two periods it must be dropped completely

before you rank the countries in each period.

13.2 Replicating Tables 1 and 2 in Pritchett and Summers (2014)

Replication means carefully reading the paper and reproducing the exact reported results. For

DACM, Modules B.2 and B.3, the PWT data have been cleaned up for you to match the analysis

data in Pritchett and Summers (2014). Next is a summary of how the DACM data are produced to

get you ready for replication.

1. To replicate Pritchett and Summers (2014) we use version 8.0 of the PWT data. (This was the

newest version available as of 2014.)

2. The relevant real GDP per capita measure is created as real GDPPC = rgdpna/pop, where

rgdpna and pop are each variables in the PWT data. (The PWT data include more than one

measure of GDP. The PWT documentation gives the exact variable definitions.)

3. In footnote 5 (p. 8) Pritchett and Summers (2014) write “we exclude countries with less than

25 years of data” and “we exclude Equatorial Guinea because it has a small population and is

frequently a massive outlier.” Hence, we drop those countries.

4. When finding the decade growth rate for a country, include the endpoints. Notice that Figure

38 includes both 1950 and 1960. Further, in footnote 5 (p. 8) Pritchett and Summers (2014)

write “we calculate a growth rate if there is more than 7 years of data for the 10-year growth

rates.” However, to be precise and to exactly replicate the results in Tables 1 and 2 this should

say “we calculate a growth rate if there is 7 or more years of data for the 10-year growth rates.”

(In other words, decades with exactly 7 years of data for a country are included.) (Similarly, for

the 20-year periods, periods with exactly 14 years of are included.) Hence, we drop observations

where there are insufficient years of data for a country for a one or two decade period.

28


	Required supplement to the textbook
	Logarithms in simple regression, descriptive statistics
	Motivating example: Human Development Index (HDI)
	Natural logarithm versus base 10 logarithm

	Logarithm of the x variable but not the y variable: "0362yi = b0 + b1ln(xi)
	Logarithm of the y variable but not the x variable: "0362ln(yi) = b0 + b1xi
	Logarithm of both the x and the y variables: "0362ln(yi) = b0 + b1ln(xi)
	Interpretation summary
	Descriptive versus causal interpretations: you must take a stand
	Percent changes versus percentage point changes
	When logs are involved, coefficient interpretations are approximations
	But what about a non-marginal change (i.e. when the approximation fails)?


	Sneaky non-linearities
	Limitations of logarithmic transformations
	Using the natural log for convenience, not necessity
	Exercises
	Answers to exercises
	Asiaphoria case study
	Reading Guide for ``Asiaphoria Meets Regression to the Mean''
	The data used in the analysis for Tables 1 and 2
	Getting from the PWT 8.0 data to Tables 1 and 2
	Rank correlation

	Replicating Tables 1 and 2 in Pritchett and Summers (2014)


