ECO220Y, Term Test #2

December 4, 2015, 9:10 - 11:00 am

U of T e-mail:	@mail.utoronto.ca												
Surname (last name):													
Given name (first name):													
UTORID: (e.g. lihao8)													

Instructions:

- You have 110 minutes. Keep these test papers closed on your desk until the start of the test is announced.
- You may use a non-programmable calculator.
- There are 6 questions (some with multiple parts) with varying point values worth a total of 84 points.
- Write your answers clearly, completely and concisely in the designated space provided immediately after
 each question. No extra space/pages are possible. You cannot use blank space for other questions nor can
 you write answers on the Supplement. Your entire answer must fit in the designated space provided
 immediately after each question.
 - Write in pencil and use an eraser as needed. This way you can make sure to fit your final answer (including work and reasoning) in the appropriate space.
 - Most questions give more blank space than is needed to answer. Follow the answer guides and avoid excessively long answers.
- Clearly show your work. Make your reasoning clear.
- Apply your understanding to the specific questions asked. Offer context-specific explanations rather than
 generic definitions or quotes from class or the book. Show that you can successfully apply your
 understanding to the specific circumstances presented.
- A guide for your response ends each question. The guide lets you know what is expected: e.g. a quantitative analysis, a graph, and/or sentences. If the question and/or guide ask for a fully-labeled graph, it is required.
- For questions with multiple parts (e.g (a) (c)), attempt each part even if you had trouble with earlier parts.
- This test has 8 pages plus the *Supplement*. The *Supplement* contains the aid sheets (formula sheets and Standard Normal table) as well as graphs, tables, and other information needed to answer the test questions. Anything written on the *Supplement* will *not* be graded. You must write your answers in the designated space provided immediately after each question.

(1) [14 pts] Elevators use substantial electricity and climbing stairs is good exercise. A researcher puts a video screen next to an elevator. As each non-mobility-impaired person approaches, it randomly displays one of two messages "Get fit: use the stairs and exercise" or "Help stop global warming: use the stairs and save electricity." Of the 180 people who saw the "exercise" message, 42 used the stairs.

Page Pts:

Of the 177 people who saw the "electricity" message, 89 used the stairs. Compute and interpret the relevant 95% CI estimate for comparing the effectiveness of these messages. Answer with a quantitative analysis and 1-2 sentences.

(2) [26 pts] Recall "Asiaphoria Meets Regression to the Mean."

Page Pts:

(a) [10 pts] How should you *interpret* the four graphs and OLS results in the *Supplement for Question* (2) (a)? Specifically reference the graphs and the OLS results in your answer. Which seemingly obvious conclusions do Pritchett and Summers (the authors of "Asiaphoria Meets Regression to the Mean") say we should *not* make from these graphs and OLS results? Answer with 4 – 6 sentences.

(b) [8 pts] Use the graphs and OLS results in the <i>Supplement for Question (2) (b)</i> to strengthen and illustrate your arguments in Part (a) (regarding the conclusions that we should <i>not</i> make)? <i>Specifically</i> reference the relevant numbers that support your points. Answer with 3 – 5 sentences.	Page Pts:
(c) [8 pts] In the Supplement for Question (2) (c), what do the results in PANEL A mean? For one row of r interpret all numbers. Use these results to strengthen your position in Parts (a) and (b). Answer with 3 –	

(3) [10 pts] A farmer raising hens knows that there is natural variation in the size of eggs and that the distribution is Normal. If a farmer finds that 2.9% of the eggs weigh less than 42 grams (the minimum to be labelled "Small") and 4.1% of the eggs weigh more than 70 grams (the minimum to be labelled "Jumbo") then what is the mean and standard deviation of egg weights? Answer with a quantitative analysis that shows your work and reasoning and illustrate your answer with a fully-labelled graph where the x-axis is egg weight (grams).

(4)	[10 pts]	Read the	Supplement	for	Question (4).
-----	----------	----------	------------	-----	------------	-----

Page Pts:

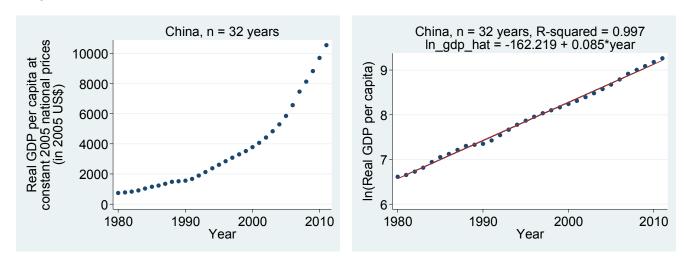
(a) [5 pts] Given the *Supplement for Question (4) (a)*, what is the coefficient of correlation between annual GDP growth in the 90's (i.e. 1990-2000) with annual GDP growth the 00's (i.e. 2000-2010) for OECD countries? Answer with a quantitative analysis.

(b) [5 pts] Given the *Supplement for Question (4) (b)*, what is the mean and s.d. of the *change* in annual GDP growth from the 80's (i.e. 1980-1990) versus the 90's (i.e. 1990-2000) for non-OECD countries? Answer with a quantitative analysis.

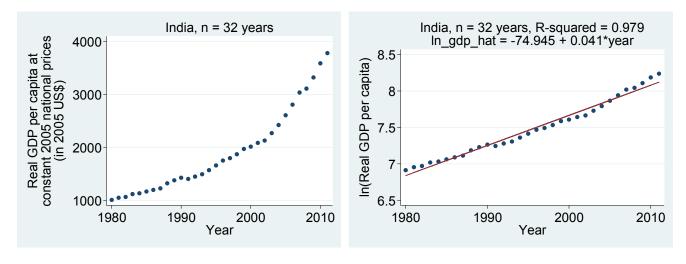
(5) [12 pts] In June 2014 Starbucks announced the "Starbucks College Achievement Plan." It helps pay for eligible employees to complete a university degree online. Starbucks employs about 191,000 people worldwide (2014 Annual Report). Suppose among all employees, 50 percent are eligible and that an analyst forecast that 20 percent of eligible employees would take advantage of the program.

Page Pts:

(a) [6 pts] If you randomly sampled 12 eligible employees, how surprising would it be if as few as 2 plan to take advantage (only 16.7%) if the claim of 20% were true? Answer with a quantitative analyses and 1 sentence.

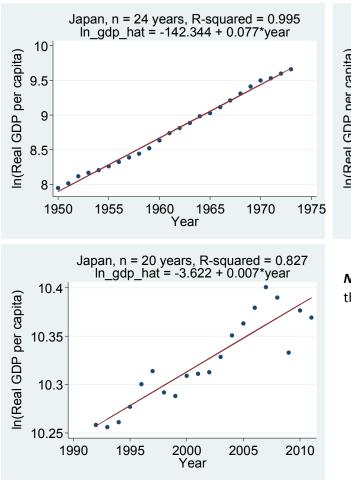

(b) [6 pts] If you randomly sampled 1,200 eligible employees, how surprising would it be if as few as 200 plan to take advantage (only 16.7%) if the claim of 20% were true? Answer with a quantitative analyses and 1 sentence.

(6) [12 pts] The Supplement for Question (6) describes a population and a Monte Carlo simulation.	Page Pts:
(a) [6 pts] If you randomly selected 30 employees, what is the probability that the sample median is less than \$105,000? Would that be surprising or is sampling error a plausible explanation for such a	
low sample median? Answer with 2 – 3 sentences that show your work/reasoning.	
(b) [2 pts] How would you expect the answer to Part (a) to differ if the simulation had used 1,000,000 sim draws instead of 500,000? Why? Answer with $1-2$ sentences.	nulation
(c) [4 pts] How would you expect the answer to Part (a) to differ if the simulation had used sample sizes of 30? Why? Answer with 2 – 3 sentences.	of 60 instead


This *Supplement* contains the aid sheets (formula sheets and Standard Normal table) as well as graphs, tables, and other information needed to answer the test questions. For each question directing you to this *Supplement*, make sure to carefully review all relevant materials. Remember, <u>only</u> your answers written on the test papers (in the designated space immediately after each question) will be graded. Any writing on this *Supplement* will not be graded.

Supplement for Question (2): Recall the readings and study materials assigned prior to this test for "Asiaphoria Meets Regression to the Mean," *NBER Working Paper 20573*, Oct. 2014, by Lant Pritchett and Larry Summers. All results in this Supplement use the more recent PWT 8.1 data.¹

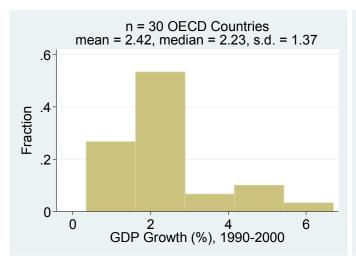
Supplement for Question (2) (a):


OLS results: $\ln(qdp) - hat = -162.219 + 0.085*year, R-squared = 0.997, n = 32$

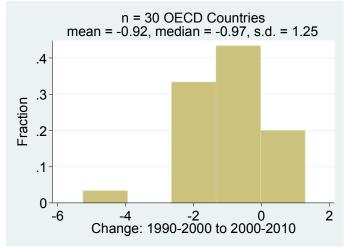
OLS results: ln(qdp) - hat = -74.945 + 0.041*year, R-squared = 0.979, n = 32

¹ Feenstra, Robert C., Robert Inklaar and Marcel P. Timmer (2015), "The Next Generation of the Penn World Table" forthcoming *American Economic Review*, available for download at www.ggdc.net/pwt. PWT 8.1 is an updated version of PWT 8.0, covering the same countries and period. Released on: April 13, 2015. (DOI: 10.15141/S5NP4S, Retrieved June 8, 2015.)

Supplement for Question (2) (b):


Note: Be sure to review the OLS results given in the title of each of these graphs.


Supplement for Question (2) (c):


Table 1: Little persistence in cross-national growth rates across decades									
Period 1	Period 2	Regression Coefficient	R-squared	N					
PANEL A: Adjacent decades									
1950 – 60	1960 – 70	0.3375783	0.1236	66					
1960 – 70	1970 – 80	0.4084345	0.1234	108					
1970 – 80	1980 – 90	0.3225473	0.1138	142					
1980 – 90	1990 – 00	0.2884994	0.1304	142					
1990 – 00	2000 – 10	0.2051206	0.0562	142					
Source: Calculations based on PWT 8.1.									

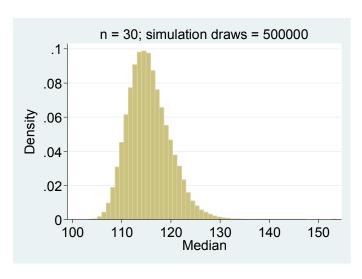
Supplement for Question (4): Recall the PWT 8.1 data discussed in the Supplement for Question (2).

Supplement for Question (4) (a): Below are three graphs for the 30 OECD countries in these data.

Supplement for Question (4) (b): Below are summary statistics for the 112 non-OECD countries in these data.

. summarize pct_2000_10 pct_1990_00 pct_1980_90 pct_1970_80 pct_1960_70 if oecd~=1;

Variable	Obs	Mean	Std. Dev.	Min	Max
pct_2000_10 pct_1990_00 pct_1980_90 pct_1970_80	112 112 112 112	2.915649 1.583804 .660269 2.060368	2.555775 3.169517	-2.086586 -9.341296 -6.393413 -8.434716	9.735052 9.092055 8.251417 10.38726


. correlate pct_2000_10 pct_1990_00 pct_1980_90 pct_1970_80 if oecd~=1;
(obs=112)

	pct_2(000_10 pct __	_1990_00	pct_1980 ₋	_90 pct_	1970_80
pct_2000_10 pct_1990_00 pct_1980_90 pct_1970_80	(1.0000 0.2806 0.2979 0.0124	1.0000 0.3422 0.2047	1.00		1.0000

Supplement for Question (6): Recall the salary data for ON public sector employees with salaries of \$100,000 or more (http://www.fin.gov.on.ca/en/publications/salarydisclosure/pssd/). Consider the 98,942 employees in the 2014 disclosure that make \$300,000 or less. A STATA summary shows the distribution of salaries (measured in \$1,000s).

	Salary		
Percentiles	Smallest		
100.2091	100		
100.9725	100		
102.0857	100	Obs	98942
105.7196	100	Sum of Wgt.	98942
115.1083		Mean	125.3419
	Largest	Std. Dev.	29.96436
132.4765	299.9739		
162.9707	300	Variance	897.863
187.7392	300	Skewness	2.382879
254.231	300	Kurtosis	10.12159
	100.2091 100.9725 102.0857 105.7196 115.1083 132.4765 162.9707 187.7392	Percentiles Smallest 100.2091 100 100.9725 100 102.0857 100 105.7196 100 115.1083 Largest 132.4765 299.9739 162.9707 300 187.7392 300	Percentiles Smallest 100.2091 100 100.9725 100 102.0857 100 Obs 105.7196 100 Sum of Wgt. 115.1083 Mean Largest Std. Dev. 132.4765 299.9739 162.9707 300 Variance 187.7392 300 Skewness

Consider a Monte Carlo simulation. In each simulation draw, a random sample of 30 employees is drawn from the population of 98,942 employees. For each random sample, the sample median is computed. 500,000 simulation draws are used. A histogram and STATA summary show the simulation results.

Sample median

	Percentiles	Smallest		
1%	107.3953	103.2731		
5%	109.3153	103.4182		
10%	110.4721	103.4636	Obs	500000
25%	112.562	103.4783	Sum of Wgt.	500000
50%	115.1357		Mean	115.5542
		Largest	Std. Dev.	4.250755
75%	118.1434	144.8759		
90%	121.2057	146.0857	Variance	18.06892
95%	123.0212	147.2199	Skewness	.6106821
99%	127.3034	153.6206	Kurtosis	3.77098

Sample mean:
$$\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n}$$
 Sample variance: $s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{X})^2}{n-1} = \frac{\sum_{i=1}^{n} x_i^2}{n-1} - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n(n-1)}$ Sample s.d.: $s = \sqrt{s^2}$

Sample coefficient of variation:
$$CV = \frac{s}{\bar{x}}$$
 Sample covariance: $s_{xy} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{Y})}{n-1} = \frac{\sum_{i=1}^n x_i y_i}{n-1} - \frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n(n-1)}$

Supplement

Sample interquartile range: IQR = Q3 - Q1 Sample coefficient of correlation: $r = \frac{s_{xy}}{s_{xsy}} = \frac{\sum_{i=1}^{n} z_{x_i} z_{y_i}}{n-1}$

SIMPLE REGRESSION: OLS line: $\hat{y}_i = b_0 + b_1 x_i$ $b_1 = \frac{s_{xy}}{s_x^2} = r \frac{s_y}{s_x}$ $b_0 = \bar{Y} - b_1 \bar{X}$

Residuals: $e_i = y_i - \hat{y}_i$ Standard deviation of residuals: $s_e = \sqrt{\frac{SSE}{n-2}} = \sqrt{\frac{\sum_{i=1}^{n}(e_i-0)^2}{n-2}}$

 $SST = \sum_{i=1}^{n} (y_i - \bar{Y})^2 = SSR + SSE$ $SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{Y})^2$ $SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

 $s_y^2 = \frac{SST}{r-1}$ Coefficient of determination: $R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} = (r)^2$

Addition rule: $P(A \ or \ B) = P(A) + P(B) - P(A \ and \ B)$ Conditional probability: $P(A|B) = \frac{P(A \ and \ B)}{P(B)}$

Complement rules: $P(A^{C}) = P(A') = 1 - P(A)$ $P(A^{C}|B) = P(A'|B) = 1 - P(A|B)$

Multiplication rule: P(A and B) = P(A|B)P(B) = P(B|A)P(A)

Expected value: $E[X] = \mu = \sum_{all \ x} xp(x)$ Variance: $V[X] = E[(X - \mu)^2] = \sigma^2 = \sum_{all \ x} (x - \mu)^2 p(x)$

Covariance: $COV[X,Y] = E[(X - \mu_X)(Y - \mu_Y)] = \sigma_{XY} = \sum_{all\ x} \sum_{all\ y} (x - \mu_X)(y - \mu_Y)p(x,y)$

Laws of variance: Laws of expected value: Laws of covariance:

E[c] = cV[c] = 0COV[X,c] = 0

V[X+c] = V[X] COV[a+bX,c+dY] = bd * COV[X,Y]E[X+c] = E[X] + c

 $V[cX] = c^2 V[X]$ E[cX] = cE[X]

E[a + bX + cY] = a + bE[X] + cE[Y] $V[a + bX + cY] = b^2V[X] + c^2V[Y] + 2bc * COV[X, Y]$

 $V[a + bX + cY] = b^2V[X] + c^2V[Y] + 2bc * SD(X) * SD(Y) * \rho$

where $\rho = CORRELATION[X, Y]$

Combinatorial formula: $C_x^n = \frac{n!}{x!(n-x)!}$ Binomial probability: $p(x) = \frac{n!}{x!(n-x)!}p^x(1-p)^{n-x}$ for x = 0,1,2,...,n

If X is Binomial $(X \sim B(n, p))$ then E[X] = np and V[X] = np(1-p)

If X is Uniform $(X \sim U[a,b])$ then $f(x) = \frac{1}{b-a}$ and $E[X] = \frac{a+b}{2}$ and $V[X] = \frac{(b-a)^2}{12}$

Sampling distribution of $(\widehat{P}_2 - \widehat{P}_1)$: Sampling distribution of \overline{X} : Sampling distribution of \hat{P} :

 $\begin{array}{lll} \mu_{\bar{X}} = E[\bar{X}] = \mu & \mu_{\hat{P}} = E[\hat{P}] = p & \mu_{\hat{P}_2 - \hat{P}_1} = E[\hat{P}_2 - \hat{P}_1] = p_2 - p_1 \\ \sigma_{\bar{X}}^2 = V[\bar{X}] = \frac{\sigma^2}{n} & \sigma_{\hat{P}}^2 = V[\hat{P}] = \frac{p(1-p)}{n} & \sigma_{\hat{P}_2 - \hat{P}_1}^2 = V[\hat{P}_2 - \hat{P}_1] = \frac{p_2(1-p_2)}{n_2} + \frac{p_1(1-p_1)}{n_1} \\ \sigma_{\bar{X}} = SD[\bar{X}] = \frac{\sigma}{\sqrt{n}} & \sigma_{\hat{P}} = SD[\hat{P}] = \sqrt{\frac{p(1-p)}{n}} & \sigma_{\hat{P}_2 - \hat{P}_1}^2 = SD[\hat{P}_2 - \hat{P}_1] = \sqrt{\frac{p_2(1-p_2)}{n_2} + \frac{p_1(1-p_1)}{n_1}} \end{array}$

<u>Inference about a population proportion</u>: CI estimator: $\hat{P} \pm z_{\alpha/2} \sqrt{\frac{\hat{P}(1-\hat{P})}{n}}$

Inference about comparing two population proportions: CI estimator: $(\hat{P}_2 - \hat{P}_1) \pm z_{\alpha/2} \sqrt{\frac{\hat{P}_2(1-\hat{P}_2)}{n_2} + \frac{\hat{P}_1(1-\hat{P}_1)}{n_2}}$

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1143 0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1513 0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2853 0.8 0.2881 0.2910											
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1143 0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517 0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 0.6 0.2257 0.2291 0.2324	Norr	nal Prol	babilitie	s:						0	Z
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1143 0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1513 0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2853 0.8 0.2881 0.2910					0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1143 0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1513 0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2853 0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3340 0.3365 0.3389 0.9 0.3159 0.3186	0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517 0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852 0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389	0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2853 0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389	0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2855 0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389	0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2853 0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389	0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2855 0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389	0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389	0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389	0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
	0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
10 09419 09490 09461 09404 09500 09501 09554 09555 09500 0960	0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
- 1.0 0.5415 0.5458 0.5401 0.3485 0.3508 0.3551 0.3554 0.3577 0.3599 0.362.	1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830	1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4013	1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.417	1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319	1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.444	1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545	1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633	1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706	1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767	1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4813	2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857	2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890	2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916	2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936	2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4955	2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964	2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974	2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4983	2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986	2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990	3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993	3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995	3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4999	3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998	3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998
3.5 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998	3.5	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998
3.6 0.4998 0.4998 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999	3.6	0.4998	0.4998	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999