
Quadratic Terms
In the women’s downhill ski racing event at the Winter Olympic Games in Salt 
Lake City, Picabo Street of the U.S. team was disappointed with her 16th-place 
finish after she’d posted the fastest practice time. Changing snow conditions can 
affect finish times, and in fact the top seeds can choose their starting positions and 
try to guess when the conditions will be best. But how much impact was there? On 
the day of the women’s downhill race, it was unusually sunny. Skiers expect condi-
tions to improve and then, as the day wears on, to deteriorate, so they try to pick the 
optimum time. But their calculations were upset by a two-hour delay. Picabo Street 
chose to race in 26th position. By then conditions had turned around, and the slopes 
had begun to deteriorate. Was that the reason for her disappointing finish?

The regression in Table 1 seems to support her point. Times did get slower as 
the day wore on.
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Dependent variable is: Time

R squared = 37.9, R squared (adjusted) = 36.0,
s = 1.577 with 35 - 2 = 33 degrees of freedom

Variable Coeff SE(Coeff) t-ratio P-Value

Intercept  100.069 0.5597 179 60.0001

StartOrder 0.108563 0.0242 4.49 60.0001

Table 1 Time to ski the women’s downhill event at the 2002  
Winter Olympics depended on starting position.

But a plot of the residuals (Figure 1) warns us that the Linearity Assumption 
isn’t met.
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Figure 1 The residuals reveal a bend.

If we return to plot the data, we can see that re-expression can’t help us because 
the times first trend down and then turn around and increase (Figure 2).
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Figure 2 The original data trend down and then up. That 
kind of bend can’t be improved with re-expression.
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Dependent variable is: Time
R squared = 83.3, R squared (adjusted) = 82.3,
s = 0.8300 with 35 - 3 = 32 degrees of freedom

Source Sum of Squares df Mean Square F-ratio

Regression 110.139  2 55.0694 79.9

Residual 22.0439 32 0.688871  

Variable Coeff SE(Coeff) t-ratio P-Value

Intercept 103.547 0.4749 218 60.0001

StartOrder -0.367408 0.0525 -6.99 60.0001

StartOrder2 0.011592 0.0012 9.34 60.0001

Table 2 A regression model with a quadratic term fits these data better.

How can we use regression here? We can introduce a squared term to the 
model:

yn = b0 + b1 startorder + b2 startorder 2

The fitted function is a quadratic, which can follow bends like the one in these 
data. Here is the regression table (Table 2).

This model fits the data better. Adjusted R2 is 82.3%, up from 36.0% for the 
linear version. And the residuals look generally unstructured (Figure 3).
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Figure 3 The residuals from the quadratic model show 
no structure.

However, one problem remains. In the new model, the coefficient of Start 
Order has changed from significant and positive to significant and negative. As 
we’ve just seen, that’s a signal of possible collinearity. Quadratic models often have 
collinearity problems because for many variables, x and x2 are highly correlated. In 
these data, Start Order and Start Order2 have a correlation of 0.97.

There’s a simple fix for this problem. Instead of using Start Order2, we can use 
(Start Order - Start Order)2. The form with the mean subtracted has a zero cor-
relation with the linear term. Here’s the resulting regression (Table 3).
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The predicted values and residuals are the same for these two models (this can 
be shown algebraically for any quadratic model with a centred squared term), but 
the coefficients of the second one are easier to interpret.

So did Picabo Street have a valid complaint? Well, times did increase with 
start order, but (from the quadratic term) they decreased before they turned 
around and increased. Picabo’s start order of 26 has a predicted time of 101. 
83 seconds. Her performance at 101.17 was better than predicted, but her resid-
ual of -0.66 is not large in magnitude compared with that of some of the other 
skiers. Skiers who had much later starting positions were disadvantaged, but 
Picabo’s start position was only slightly later than the best possible one (about 
16th according to this model), and her performance was not extraordinary by 
Olympic standards.

One final note: Quadratic models can do an excellent job of fitting curved pat-
terns such as this one. But they are particularly dangerous to extrapolate beyond 
the range of the x-values. So you should use them with care.

Dependent variable is: Time
R squared = 83.3, R squared (adjusted) = 82.3,
s = 0.8300 with 35 - 3 = 32 degrees of freedom

Source Sum of Squares df Mean Square F-ratio

Regression 110.139  2 55.0694 79.9

Residual   22.0439 32 0.688871  

Variable Coeff SE(Coeff) t-ratio P-Value

Intercept 98.7493 0.3267 302 60.0001

StartOrder 0.104239 0.0127 8.18 60.0001

(SO-mean)2 0.011592 0.0012 9.34 60.0001

Table 3 Using a centred quadratic term alleviates the collinearity.

FOR EXAMPLE Quadratic terms for diamond prices

We’ve fit a model of Log10Price to Carat Weight, Colour, Cut, and Clarity 
(see For Example: “Stepwise regression for diamond prices”.) The R2 is an 
impressive 94.46%. The 749 diamonds are a random sample of diamonds 
of three Colour levels and of Weight between 0.3 and 1.5 carats. We trans-
formed Price using the log (base 10) to linearize the relationship with Carat 
Weight. However, a plot of residuals vs. predicted values reveals:
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There appears to be a curved relationship between residuals and predicted 
 values. What happens if we add (Carat Weight)2 as a predictor?
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Here’s the regression output:

Response Variable: Log10 Price
R2 - 97.31, Adjusted R2 - 97.27,
s = 0.04741 with 749 - 14 = 735 degrees of freedom

Variable Coeff SE(Coeff) t-ratio P-Value

Intercept    2.040547 0.017570  116.138 60.0001

Carat.Weight    2.365036 0.042400    55.780 60.0001

Carat.Weight2 -0.699846 0.025028 -27.962 60.0001

ColourD    0.347479 0.006346  54.755 60.0001

ColourG    0.252336 0.005683   44.398 60.0001

CutGood -0.038896 0.007763   -5.010 60.0001

CutIdea1    0.016165 0.006982  2.315 0.020877

CutVery Good -0.014988 0.003834  -3.910 0.000101

ClaritySI1 -0.286641 0.008359 -34.292 60.0001

ClaritySI2 -0.353371 0.008800 -40.155 60.0001

ClarityVSl -0.161288 0.008513 -18.947 60.0001

ClarityVS2 -0.215559 0.008246 -26.141 60.0001

ClarityVVSl -0.077703 0.008682   -8.950 60.0001

ClarityVVS2 -0.103078 0.008327 -12.378 60.0001

The residuals—together with their Normal Probability plot, boxplot, and 
 histogram—look like this:
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(continued )
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 QUESTION  Summarize this regression and comment on its appropriateness for 
predicting the price of diamonds (of this Carat Weight).

 ANSWER  The model for Log10Price is based on Carat Weight, Carat Weight2, 
Colour (three levels), Cut (four levels), and Clarity (seven levels). The R2 for this 
model is 97.31% (97.27% adjusted), and the residual standard deviation is only 
0.047 (in Log10Price). Every term included in the model is statistically significant. 
The assumptions and conditions of multiple regression are all met. The residuals 
appear to be symmetric and roughly Normal. The inclusion of the squared term 
for Carat Weight has eliminated the pattern in the plot of residuals vs. predicted 
values. This model seems appropriate to use for other diamonds of this Carat 
Weight.

Regression Roles
We build regression models for a number of reasons. One reason is to model 
how variables are related to each other in the hope of understanding the rela-
tionships. Another is to build a model that might be used to predict values for a 
response variable when given values for the predictor variables. When we hope to 
understand, we’re often particularly interested in simple, straightforward models 
in which predictors are as unrelated to each other as possible. We’re especially 
happy when the t-statistics are large, indicating that the predictors each contrib-
ute to the model.

By contrast, when prediction is our goal, we’re more likely to care about the 
overall R2. Good prediction occurs when much of the variability in y is accounted 
for by the model. We might be willing to keep variables in our model that have 
relatively small t-statistics simply for the stability that having several predictors can 
provide. We care less whether the predictors are related to each other because we 
don’t intend to interpret the coefficients anyway, so collinearity is less of a concern.

In both roles, we may include some predictors to “get them out of the way.” 
Regression offers a way to approximately control for factors when we have obser-
vational data because each coefficient estimates a relationship after removing the 
effects of the other predictors. Of course, it would be better to control for factors 
in a randomized experiment, but in the real world of business that’s often just not 
possible.

Copyright © 2018 Pearson Education Canada




