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Introduction

Introduction

Estimation of demand equations is a fundamental component to
answer many empirical questions in economics.

[1] Determination of firms’optimal prices or quantities:
Optimal price or quantity implies MR = MC. To know the MR, we
need to know the demand elasticity.

[2] Measuring firms’market power (P - MC):
In the absence of data on firms MCs, demand estimation give us MR
and therefore (under profit maximization) the MC.

[3] Measures of consumer welfare.
Demand is a representation of consumers’valuations for products. As
such, it is fundamental in the evaluation of the consumer welfare
gains or losses associated to taxes, subsidies, the introduction of a
new product, mergers, etc.
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Introduction

Introduction: Demand systems

Consumers do not demand a single product.

In most industries, firms sell different varieties of a differentiated
product.
- Airlines; Tablets; Smartphones; Restaurants; Movies; etc

Demands of different products are inter-connected in a demand
system. With two products:

q1 = f1(p1, p2, y) and q2 = f2(p1, p2, y)

Firms (and researchers) are interested in the estimation of elasticities
(own and cross) in demand systems.
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Demand systems in product space: Model

Demand systems in product space: Products

There are J different products that a consumer can buy. We index
products by j ∈ {1, 2, ..., J}.

These J products may include all the product categories that an
individual may consume (e.g., food, transportation, clothing,
entertainment, etc) and all the specific variety products within each
category (e.g., every possible variety of computers, or of automobiles).

This means that the J can be of the order of millions of products.
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Demand systems in product space: Model

Demand systems in product space: Products [2]

We will see later how, under some conditions, we can aggregate the
demand of a group of products "as if" they were a single product.
This can reduce the dimensionality of this large product space.

For this purpose, it is convenient to introduce "product zero" that
we denote as "the outside product" and it represents the
aggregation of all the other products which are nor product 1 to J.

Example: Products 1 to J are all the models/brands of automobiles in
the market (hundreds of models). Product 0 represents all the other
goods in the economy.
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Demand systems in product space: Model

Consumer preferences

Let qj be the amount of product j that a consumer buys and
consumes. And let c be the amount of the outside product.

The utility function is: U(c , q1, q2, ..., qJ ).

If we could observe the utility that a consumer obtains from
consuming a bundle of products (c , q1, q2, ..., qJ ), then we could
estimate the utility function using a direct approach as we have
done with the estimation of the production function.

For instance, given a Cobb-Douglas utility, U = c qα1
1 qα2

2 ... q
αJ
J , and

a sample of individuals with consumptions bundles (ci , q1i , q2i , ..., qJi )
and utils Ui , we could estimate the α parameters using the linear
regression model:

lnUi = α1 ln q1i + α2 ln q2i + ...+ αJ ln qJi + ln ci
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Demand systems in product space: Model

Consumer problem

However, we cannot use this direct approach because (typically) we
do not have direct observations of consumers’utility, or satisfaction.

Instead, we will estimate consumer preferences by estimating
demand equations: i.e., by measuring how changes in prices affect
the purchased quantities of products.

For this purpose, we need to solve the consumer problem to obtain
demand equations.
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Demand systems in product space: Model

Consumer problem [2]

Consumer problem:

max
{c ,q1,q2,...,qJ }

U(c, q1, q2, ..., qJ )

subject to : c + p1 q1 + p2 q2 + ...+ pJ qJ ≤ y

Note that the price of the outside good is normalized to 1, such that
c represents the $ expenditure in goods other than 1 to J.
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Demand systems in product space: Model

Consumer problem [3]

We can define the Lagrange problem:

max
{c ,q1,q2,...,qJ }

U(c, q1, q2, ..., qJ ) + λ [y − c − p1 q1 − ...− pJ qJ ]

The first order conditions are:

Uj − λ pj = 0 for j = 1, 2, ..., J

U0 − λ = 0

y − c − p1 q1 − ...− pJ qJ = 0

where Uj represents the marginal utility of product j .
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Demand systems in product space: Model

Solving consumer problem

The solution to this system of equations give us the System of
Marshallian demand equations:

q1 = f1 (p1, p2, ..., pJ , y)
q2 = f2 (p1, p2, ..., pJ , y)
...

...
qJ = fJ (p1, p2, ..., pJ , y)
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Demand systems in product space: Model

Demand systems

Different utility functions imply different demand systems.

Not every system of equations that relates quantities and prices is a
demand system. We should be able to derive it as the solution of the
consumer problem for a given utility function (invertibility of a
demand system).

A substantial part of the empirical literature on demand is based on
finding utility functions which imply demand systems with the
following properties:

- Simple enough to be estimable using standard econometric
methods such as linear regression.

- Flexible enough such that it allows for flexible patterns in the
elasticities of substitution between products.
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Demand systems in product space: Model

Demand systems [2]

For consumer demand models in product space, we are going to
consider three different demand systems.

[1] Linear expenditure (or Stone-Geary) demand system.

[2] Constant Elasticity of Substitution (CES) demand system.

[3] Deaton-Muellbauer (or ’Almost Ideal’) demand system.

They are shorted and chronological order.
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Demand systems in product space: Model

Linear Expenditure (Stone-Geary) Demand System

Consider the utility function:

U = c (q1 − γ1)
α1 (q2 − γ2)

α2 ... (qJ − γJ )
αJ

where α’s and γ’s are positive parameters.

γj ≥ 0 can be interpreted as the minimum amount of consumption of
good j that a consumer needs to "survive" (U > 0).

αj > 0 represents the "intensity" of product j in generating utility.

The marginal utilities are:

Uj = αj
U

qj − γj
and U0 =

U
c

Note that all the products are complements in this utility function:

Ujk = αjαk
U

(qj − γj )(qk − γk )
> 0

Victor Aguirregabiria () Demand October 7, 2019 15 / 48



Demand systems in product space: Model

Linear Expenditure Demand System [2]

U0 − λ = 0 implies that
U
c
− λ = 0, and c =

U
λ

Uj − λ pj = 0 implies that αj
U

qj − γj
= λ pj , and αj

1
qj − γj

U
λ
= pj .

Combining these equations, we the Linear Expenditure System:

qj = γj + αj
c
pj

for j = 1, 2, ..., J

and c =
y −∑J

j=1 pj γj

1+∑J
j=1 αj

.

Note that for any j 6= k , we have that:
∂qj
∂pk

=
αj
pj

∂c
∂pk

=
−αjγk

pj
[
1+∑J

i=1 αi

] < 0. All the products are
complements.
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Demand systems in product space: Model

Linear Expenditure Demand System [3]

It is very convenient because its simplicity.

Suppose that we have data of individual purchases and prices over T
periods of time (t = 1, 2, ...,T ): {ct , q1t , q2t , ..., qJt} and {p1t , p2t ,
..., pJt}.

The model implies a system of J linear regressions. For product j :

qjt = γj + αj xjt + ξ jt

with xjt = ct/pjt , and the error term ξ jt could be measurement error
in qjt .

But it is very restrictive. It imposes the restriction that all the goods
are complements in consumption.

This is not realistic in most applications, particularly when the goods
under study are varieties of a differentiated product.
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Demand systems in product space: Model

CES Demand System

Consider the CES utility function:

U = c

(
J

∑
j=1
qσ
j

)1/σ

where σ ∈ [0, 1] is a parameter that represents the degree of
substitution between the J products.

The marginal utilities are:

Uj = qσ−1
j

U
QΣ

and U0 =
U
c

where QΣ ≡ ∑J
i=1 q

σ
i .

It is simple to verify that for any two pairs of products, j and k, we

have that
∂2U

∂qj∂qk
≡ ∂Uj

∂qk
< 0. All the products are substitutes in

consumption.
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Demand systems in product space: Model

CES Demand System [2]

U0 − λ = 0 implies that
U
c
− λ = 0, and c =

U
λ

Uj − λ pj = 0 implies that qσ−1
j

U
QΣ

= λ pj , and
qσ−1
j

QΣ

U
λ
= pj .

Combining these equations, we the CES System:

qj =
[

c
pj QΣ

] 1
1− σ for j = 1, 2, ..., J

For any pair of products, j and k, we have that:

ln
(
qj
qk

)
=
−1
1− σ

ln ln
(
pj
pk

)
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Demand systems in product space: Model

CES Demand System [3]

The CES is also very convenient because its simplicity.

Suppose that we have data of individual purchases and prices over T
periods of time: {ct , q1t , q2t , ..., qJt} and {p1t , p2t , ..., pJt}.

The model implies a system of J linear regressions. For product j > 1:

ln(qjt/q1t ) = β ln(pjt/p1t ) + ξ jt

where β =
−1
1− σ

, and the error term ξ jt could be measurement error

in ln qjt .

But it is very restrictive. It imposes the restriction that the
substitution between any pair of products is exactly the same..

Victor Aguirregabiria () Demand October 7, 2019 20 / 48



Demand systems in product space: Model

Demand System [4]

The CES system imposes strong restrictions on cross-price elasticities.
For any three varieties, say j , k, and l :

Elasticityk ,j =
∂ ln qk
∂ ln pj

=
∂ ln ql
∂ ln pj

= Elasticityl ,j

Suppose that we use this system to study the demand of different
varieties of automobiles.

Suppose that products j and k are "similar" luxury cars, and product
l is an basic and expensive variety.

The CES model implies that a reduction in the price of the luxury car
j implies the same proportional increase in the demand of the other
luxury car k and the basic car l .

This is very unrealistic.
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Demand systems in product space: Model

Deaton-Muellbauer (‘Almost Ideal’) Demand System

They propose the utility function:

U = c

[
J

∏
j=1

(
qj − γj

)αj

]
+

J

∑
j=1

J

∑
k=1

δjk qj qk

where γ′s, α′s and δ′s are parameters. α′s and γ′s are positive, but
δ′s can be positive or negative.

This utility allows for complementarity and substitutability between
products, and for a flexible pattern of substitution between different
products.

The marginal utilities are:

Uj = αj
U∗

qj − γj
+

J

∑
k=1

δjk qk and U0 =
U∗

c

where U∗ ≡ c ∏J
i=1 (qi − γi )

αi .
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Demand systems in product space: Model

‘Almost Ideal’Demand System [2]

For any pair of products, j and k, we have that:

Ujk = αjαk
U∗(

qj − γj
)
(qk − γk )

+ δjk T 0

that can be positive (complements) or negative (substitutes) and take
different values for each pair of products.
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Demand systems in product space: Model

‘Almost Ideal’Demand System [4]

U0 − λ = 0 implies that
U∗

c
− λ = 0, and c =

U∗

λ

Uj − λ pj = 0 implies that αj
U∗

qj − γj
+

J

∑
k=1

δjk qk − λpj = 0, and

αj
c

qj − γj
+

J

∑
k=1

δ∗jk qk = pj .

Combining these equations, it is possible to derive the following
system of Marshallian demand equations:

wj = β
(0)
j + β

(y )
j ln(y) +

J

∑
k=1

β
(p)
jk ln(pk )

- wj ≡
pjqj
y

is the expenditure share of product j ;

- {β(0)j , β
(y )
j , β

(p)
jk } are parameters which are known functions of the

utility parameters {αj ,γj , δjk}.
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Demand systems in product space: Model

‘Almost Ideal’Demand System [5]

wj = β
(0)
j + β

(y )
j ln(y) +

J

∑
k=1

β
(p)
jk ln(pk )

The model implies the symmetry conditions β
(p)
jk = β

(p)
kj (Slutsky’s

symmetry condition).

Therefore, the number of free parameters is: 2J + J (J+1)
2 , that

increases quadratically with the number of products.
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Demand systems in product space: Model

‘Almost Ideal’Demand System [6]

Suppose that we have data on individual purchases, income, and
prices over T periods of time: {ct , q1t , q2t , ..., qJt}, yt , and {p1t ,
p2t , ..., pJt}.

For each product j , we can estimate the regression equation:

wjt = β
(0)
j + β

(y )
j ln(yt ) + β

(p)
j1 ln(p1t ) + ...+ β

(p)
jJ ln(pJt ) + ξ jt

where the error ξ jt can be interpreted as measurement error in wjt .
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Demand systems in product space: Model

Multi-stage Budgeting

For products with many (> 100) varieties (automobiles, smartphones,
cereals, beer, etc) the number of parameters to estimate in the AI
demand system can be very large, even larger than the #observations.

Deaton and Muellbauer propose using a multi-stage budgeting
approach.

Suppose that the utility function is separable in the utility from G
groups of products:

U = v1 (q̃1) + v2 (q̃2) + ...+ vG (q̃G )

q̃g = Vector of quantities of varieties in group g ;
vg (q̃g ) = Sub-utility from group g
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Demand systems in product space: Model

Multi-stage Budgeting (under AIDS)

Then, the demand system at the lower stage (within-group stage) is:

wjt = β
(0)
j + β

(y )
j ln

(
ygt
Pgt

)
+ ∑
k∈Jg

β
(p)
jk ln(pkt )

ygt = Expenditure in group g ;
Pgt = Price index for group g .

According to the model, this price index depends on the parameters
of the model in group g . Non-linear system. Typically applications
use "short-cuts": e.g., lnPgt = ∑j∈Jg wjt ln(pjt ).

Number of parameters increases quadratically with Jg but not with J.
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Demand systems in product space: Model

Multi-stage Budgeting (under AIDS) [2]

The demand system at the group stage is:

ygt
y ∗t
= β(0,2)g + β(y ,2)g ln

(
y ∗t
P∗t

)
+

G

∑
g ′=1

β
(p,2)
g ,g ′ ln(Pgt )

y ∗t = Total expenditure in the large category (e.g., cereals);
P∗t = Price index for the large category (e.g., cereals).

Finally, at the top-stage, the demand for the category is:

y ∗t
yt
= β(0,3) + β(y ,3) ln (yt ) + β(p,3) ln(P∗t )
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Demand systems in product space: Data & Estimation
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Demand systems in product space: Data & Estimation

Data

Ideally, we would like to have data on consumer decisions at the
consumer or household level.

This type of data is available from consumer surveys but at the level
of large product categories:
- e.g., clothing (different types), food (different types).

In Empirical IO, we are interested in estimating demand system
between very specific type of products: e.g.,
- the cross demand elasticity between Iphone-7 and Iphone-8; or
between Iphone-8 and Samsung Galaxy;
- or between a Toyota Corolla and VW Jetta (or for that matter, with
any other automobile product).

For these specific purchases, consumer level data is not so commonly
available.
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Demand systems in product space: Data & Estimation

Data [2]

The most common type of data available for the estimation of
demand systems is aggregate market level data.

Data on aggregate quantities and prices from all the consumers in a
particular period t (year, month):

qjt , pjt for j = 1, 2, ..., J and t = 1, 2, ...,T

In some cases, we have this information for M different geographic
markets (e.g., cities), that we index by m:

qjmt , pjmt for j = 1, 2, ..., J, t = 1, 2, ...,T , and m = 1, 2, ...,M

This is the type of data that we will consider for most of this topic.
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Demand systems in product space: Data & Estimation

Estimation: OLS

Given the linear regression:

wjt = β
(0)
j + β

(y )
j ln(yt ) + β

(p)
j1 ln(p1t ) + ...+ β

(p)
jJ ln(pJt ) + ξ jt

We can estimate the model parameters using OLS, separately for each
product j (using the T observations for this product).

Under the assumption that the error terms is ξ jt just measurement
error in the dependent variable, wjt , and this measurement error is not
correlated with prices or income, then the OLS estimator is consistent
(unbiased as T is large).

However, these conditions are very restrictive / unrealistic.
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Demand systems in product space: Data & Estimation

Endogeneity (Simultaneity)

wjt = β
(0)
j + β

(y )
j ln(yt ) + β

(p)
j1 ln(p1t ) + ...+ β

(p)
jJ ln(pJt ) + ξ jt

At least part of the error term ξ jt represents consumers’
taste/preference for product j that is known to consumers but
unknown to us as researchers.

Advertising, promotions, changes in taste over time, changes in utility
parameters are behind the error term ξ jt .

We will represent all these factors under the term: unobserved
demand shock (for product j).

This unobserved demand shock is known to consumers but unknown
to us as researchers.
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Demand systems in product space: Data & Estimation

Endogeneity (Simultaneity) [2]

wjt = β
(0)
j + β

(y )
j ln(yt ) + β

(p)
j1 ln(p1t ) + ...+ β

(p)
jJ ln(pJt ) + ξ jt

The unobserved demand shock (or part of it) can be also known by
firms selling product j .

Therefore, they will take into account ξ jt when making their pricing
decision.

A higher ξ jt implies a higher Marginal Revenue and therefore a higher
price.

We expect ξ jt to be correlated with ln(pjt ).

The OLS estimator is inconsistent because the regressors are
correlated with the error term.
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Demand systems in product space: Data & Estimation

Endogeneity (Simultaneity) [3]

wjt = β
(0)
j + β

(y )
j ln(yt ) + β

(p)
j1 ln(p1t ) + ...+ β

(p)
jJ ln(pJt ) + ξ jt

We expect prices of products other than j also being correlated with
ξ jt .

This is (mainly) because the demand shocks ξ ′s of the different
products can be correlated with each other: ξkt is correlated with pkt ,
and ξkt is correlated with ξ jt ; typically, ξ jt will be correlated with pkt .

Also firms other than j can observe ξ jt and respond strategically to
this shock in their pricing decisions.

We will see in more detail in the context of models of price
competition.
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Demand systems in product space: Data & Estimation

Endogeneity of prices: Solutions

wjt = β
(0)
j + β

(y )
j ln(yt ) + β

(p)
j1 ln(p1t ) + ...+ β

(p)
jJ ln(pJt ) + ξ jt

We need to deal with the endogeneity problem due to E (ln(pt )
ξ jt ) 6= 0.

The most common approaches: (1) Instrumental variables; (2)
Control function.

[1] Instrumental variables:
(a) Input prices, costs
(b) Arellano-Bond (Dynamic Panel Data)
(c) Hausman-Nevo

[2] Control Function
(a) Fixed effects
(b) Fixed effects - Cochrane-Orcutt
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Empirical Application: Hausman on Cereals
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Empirical Application: Hausman on Cereals

An Application: Hausman (1996) on cereals

Hausman (1996) presents an application of demand in product space
to an industry with many varieties: ready-to eat (RTE) cereals in US.

This industry has been characterized by the proliferation of many
varieties. Period 1980-92: 190 new brands were added to the pool of
existing 160 brands.

He deals with the limitations mentioned above by using:
(a) Multi-stage budgeting (and focusing on most popular varieties);
(b) Data from many periods (weekly data) and multiple geographic
markets (cities), and assuming that parameters are constant across
weeks-markets (up to fixed effects in the intercepts).
(c) Exploiting assumptions on the geographic structure of
demand/supply shocks to generate instruments for prices.
(d) Evaluates the introduction of a new brand (Cheerios).
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Empirical Application: Hausman on Cereals

Hausman (1996) on cereals: Data

Supermarket scanner data: period 1990-1992.

137 weeks (T = 137); 7 geographic markets (M = 7) or standard
metropolitan statistical areas (SMSAs), including Boston, Chicago,
Detroit, Los Angeles, New York City, Philadelphia, and San Francisco.

Though the data includes information from hundred of brands, the
model and the estimation concentrates in 20 brands classified in three
segments: adult (7 brands), child (4 brands), and family (9 brands).

{pjmt , qjmt : j = 1, 2, ..., 20; m = 1, 2, ..., 7; t = 1, 2, ..., 137}.

Quantities are measured is physical units.

There are not observable cost shifters.
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Empirical Application: Hausman on Cereals

Hausman (1996) on cereals: Model

Almost-Ideal-Demand-System

wjmt = αjm + γt + β
(y )
j ln

(
ygmt
Pgmt

)
+ ∑
k∈Jg

β
(p)
jk ln(pkmt ) + ξ jmt

The terms αjm + γt represent brand-city and time "fixed effects".

Possible instruments:
- Arellano-Bond instruments
- Hausman-Nevo instruments
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Empirical Application: Hausman on Cereals

Hausman (1996) on cereals: Instruments

The identification assumption is that demand shocks are not
(spatially) correlated across markets: for any pair of markets m 6= m
it is assumed that:

E (ξ jmt ξ jm ′t ) = 0 for any m,m′

After controlling for brand-city fixed effects, all the correlation
between prices at different locations comes from correlation in costs,
and not from spatial correlation in demand shocks.

Under these assumptions we can use average prices in other local
markets, P j(−m)t , as instruments, where:

P j(−m)t =
1

M − 1 ∑
m ′ 6=m

pjm ′t
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Some Limitations of Demand Systems in Product Space
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Some Limitations of Demand Systems in Product Space

Some Limitations of Demand Systems in Product Space

For the type of empirical questions in which we are interested in
Empirical IO, demand systems in product space have several practical
limitations.

1. Representative consumer assumption.

2. Too many parameters.

3. Finding instruments for prices.

4. Problems to predict demand of new varieties.
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Some Limitations of Demand Systems in Product Space

[1] Representative consumer assumption

Very unrealistic. Propensity to substitute between different products
is very heterogeneous across consumers.

Ignoring this heterogeneity can generate substantial biases.

In principle, the model can be applied to consumer/household level
data. However:
- Household-level data is often not available for some products /
industries.
- At the lower-stage, observed household choices seem discrete (only
one variety) and this is at odds with this "continuous choice" model.
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Some Limitations of Demand Systems in Product Space

[2] Too many parameters

The number of parameters is 2J + J (J+1)
2 , i.e., J intercept parameters

(α); J income elasticities (γ); and J (J+1)
2 free price elasticities (β).

It is not possible to estimate demand systems for differentiated
products with many varieties.

For instance, demand system for car models. With J = 100, the
#parameters = 5, 250.

We need many thousands of observations (markets or/and time
periods) to estimate this model. This type of data is typically not
available.
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[3] Finding instruments for prices

Most applications of this class of models have ignored the potential
endogeneity of prices.

However, it is well known and simultaneity and endogeneity are
potentially important issues in any demand estimation.

The typical solution to this problem is using instrumental variables.

In this model, the researcher needs at least as many instruments as
prices, that is J.

The ideal case is when we have information on production costs for
each individual good. However, that information is very rarely
available.
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[4] Problems to predict demand of new varieties

A problem that has received substantial attention is the prediction of
the demand of a new product.

Trajtenberg (1989), Hausman (1996), and Petrin (2002) are some
prominent applications.

In a demand system in product space, estimating the demand of a
new good, say J + 1, requires estimates of the parameters associated
with that good: β

(0)
J+1, β

(y )
J+1 and {β

(p)
J+1,j : j = 1, 2, ..., J + 1}.

This makes it impossible to make counterfactual predictions, i.e.,
predict the demand of a product that has not been introduced in any
market yet.

It also limits the applicability of this model in cases where the new
product has been introduced very recently or in very few markets,
because we may not have enough data to estimate these parameters.
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