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Input prices as IVs

– – – – – – – – – – – – – – – – – – – – – – – – – – – –

1. Input Prices as Instruments
– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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Input prices as IVs

Input prices as IVs

If input prices rit are observable (wages, cost of capital, fuel and
energy prices), then under the assumption that they are not correlated
with TFP, E (ωit rit ) = 0, we can use them as instruments.

This approach has several limitations/problems.

Problem (1). Firms in the same industry typically use very similar
type of inputs (labor, capital equipment, energy, materials) and they
buy these inputs in the same input markets. If these input markets
are competitive, the input prices are the same for all the firms in the
industry:

rit = rt for every firm i

If input prices vary only over time, they are perfectly collinear with
time-dummies in the PF. No valid instruments.
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Input prices as IVs

Input prices as IVs (2)

Problem (2). When input prices have cross-sectional variation, it
could be because endogenous reasons.

(a) Inputs markets are not competitive and firms with higher
productivity pay higher prices. Then, cov (ωit , rit ) 6= 0, making input
prices not a valid instrument.

(b) Firms may be using different types of labor or capital inputs, with
different qualities. This difference in the quality of inputs is part of
the log-TFP. Then, cov (ωit , rit ) 6= 0, making input prices not a valid
instrument.
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Input prices as IVs

Input prices as IVs (3)

An ideal situation for using input prices as IVs is when firms in the
same industry product in different geographic markets where the
input markets are competitive.

The variation in input prices over gegraphic market is due to different
conditions on the supply of inputs (e.g., labor supply, better access to
materials) and not to differences in productivity.
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Fixed Effects Estimator

– – – – – – – – – – – – – – – – – – – – – – – – – – – –

2. Fixed Effects estimator
– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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Fixed Effects Estimator

Fixed-Effects (FE) estimator

Consider the PF:

yit = αL `it + αK kit +ωit (1)

Let’s first define the FE (or Within-Groups) estimator and then
we will show under which conditions this estimator provides unbiased
(consistent) estimates of parameters αL and αK .

If, for each firm i , we average equation (1) considering all the years
observations, we have the equation:

ȳi = αL `i + αK k i +ωi (2)

where:

ȳi =

T
∑
t=1
yit

T
; `i =

T
∑
t=1
`it

T
; k i =

T
∑
t=1
kit

T
; ωi =

T
∑
t=1

ωit

T
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Fixed Effects Estimator

FE estimator (2)

If we subtract equation (2) to equation (1), we have:

(yit − ȳi ) = αL

(
`it − `i

)
+ αK (kit − k̄i ) + (ωit −ωi ) (3)

This equation is named the Fixed-Effects (or the Within-Groups)
transformation of the model.

The FE estimator is OLS applied to FE transformed model.

For instance, if we had only one input, say labor, the FE estimator of
αL would be:

α̂OLSL =
∑N
i=1 ∑T

t=1 (yit − y i )
(
`it − `i

)
∑N
i=1 ∑T

t=1

(
`it − `i

)2
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Fixed Effects Estimator

FE estimator in Stata: Implementation 1

Let logy, logn, logk, id, year, be the variables.

First, we construct the within-group transformation of the variables:

egen mlogy = mean(logy), by(id)
gen wlogy = logy - mlogy

egen mlogn = mean(logn), by(id)
gen wlogn = logn - mlogn

egen mlogk = mean(logk), by(id)
gen wlogn = logn - mlogn
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Fixed Effects Estimator

Implementation 1

Then, run OLS using within-groups transformed variables.

reg wlogy wlogn wlogk
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Fixed Effects Estimator

FE estimator: Implementation 2

Define i and t in panel data. Then, we apply FE estimator:

xtset id year
xtreg logy logn logk, fe
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Fixed Effects Estimator

FE estimator: Implementation 2

We can also include year dummies:

xtreg logy logn logk i.year, fe
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Fixed Effects Estimator

Consistency of FE estimator

The FE estimator is OLS in the regression equation

(yit − ȳi ) = αL

(
`it − `i

)
+ αK (kit − k̄i ) + (ωit −ωi ) (3)

As any OLS estimator, it is consistent if the error term is not
correlated with the regressors. In this case, this implies:

E
[
(ωit −ωi )

(
`it − `i

)]
= E

[
(ωit −ωi )

(
kit − k i

)]
= 0

We now present two assumptions on the unobserved log-TFP that
imply consistency of the FE estimator (with time dummies).
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Fixed Effects Estimator

Consistency of FE estimator (2)

Assumption FE-1. Log-TFP has the following structure:

ωit = ηi + δt + uit

ηi is interpreted as managerial ability, or a different technology that is
constant over time.

δt represents productivity that affect in the same way to all the firms
in the industry.

uit is a firm-specific transitory shock.
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Fixed Effects Estimator

Consistency of FE estimator (3)

Assumption FE-2. The firm-specific transitory shock, uit , is not
correlated over time and it is realized after the firm chooses the
amount of inputs at period t.

uit is a "surprised" that is realized after the firm has chosen inputs.
For any two periods t and s, uit is not correlated with inputs `is and
kis .
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Fixed Effects Estimator

Consistency of FE estimator (4)

Under assumptions FE-1 we have that:

ωi = ηi + δ+ ui

such that:
ωit −ωi = δt − δ+ uit − ui

If we control for δt − δ using time dummies, the remaining error term
is uit − ui .

Under Assumption FE-2, the error term uit − ui is not correlated with
the regressors

(
`it − `i

)
and

(
kit − k i

)
because, for any two periods

t and s, uit is not correlated with inputs `is and kis .

Under FE-1 and FE-2, the FE estimator is unbiased / consistent.
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Cochrane—Orcutt estimator

– – – – – – – – – – – – – – – – – – – – – – – – – – – –

3. Cochrane—Orcutt estimator
– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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Cochrane—Orcutt estimator

Cochrane—Orcutt estimator

The assumption that the firm-specific transitory shock is not serially
correlated (and fully unknown to the firm at period t) is quite strong.

This assumption is testable (Arellano-Bond test for serial correlation).
If rejected, this assumption can be relaxed.

Suppose that we maintain assumption FE-1 but we replace
assumption FE-2 with the following.

Assumption FE-CO. The firm-specific transitory shock, uit , follows
an Autorregressive-1 process, AR(1):

uit = ρ ui ,t−1 + ait

where ρ is a parameter, and ait is not correlated over time and it is
realized after the firm chooses the amount of inputs at period t.
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Cochrane—Orcutt estimator

Cochrane—Orcutt estimator (2)

In this model where uit is serially correlated, the standard FE
estimator is inconsistent (biased) because uit − ui is correlated with
the regressors.

However, we can define a new version of the FE estimator
(Cochrane-Orcutt FE) that is consistent under these conditions and
the additional condition that the number of periods T is large.
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Cochrane—Orcutt estimator

Cochrane—Orcutt estimator (3)

Consider the PF at periods t and t − 1 under assumption FE-1:

yit = αL `it + αK kit + ηi + δt + uit
yit−1 = αL `it−1 + αK kit−1 + ηi + δt−1 + uit−1

Multiplying the equation at t − 1 by ρ and subtracting it to the
equation at period t, we get:

yit − ρ yit−1 = αL [`it − ρ `it−1] + αK [kit − ρ kit−1]
+ [1− ρ] ηi + [δt − ρ δt−1] + ait

because uit − ρ uit−1 = ait .

This is called a quasi-difference transformation.

Victor Aguirregabiria () Production Functions September 30, 2019 21 / 62



Cochrane—Orcutt estimator

Cochrane—Orcutt estimator (4)

The quasi-difference transformation can be written as:

yit = β1 yi ,t−1 + β2 `it + β3 `it−1 + β4 kit + β5 kit−1
+ η∗i + δ∗t + ait

(4)

with β1 = ρ, β2 = αL, β3 = −ραL, β4 = αK , β5 = −ραK , and
η∗i = [1− ρ] ηi , and δ∗t = δt − ρ δt−1.

Note that given the β parameters we can obtain the parameters ρ, αL,
and αK . In fact, there are additional (over-identifying restrictions):

−β3/β2 = −β5/β4 = β1

Now, under assumption FE-CO, in equation (2), the transitory shock
ait is not correlated with the inputs.
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Cochrane—Orcutt estimator

Cochrane—Orcutt estimator (5)

Consider equation (4) in firm-specific means:

y i = β1 y i (−1) + β2 `i + β3 `i (−1) + β4 k i + β5 k i (−1)
+ η∗i + δ

∗
+ ai

And in deviations with respect to firm-specific means:

yit − y i = β1

[
yit−1 − y i (−1)

]
+ β2

[
`it − `i

]
+ β3

[
`it−1 − `i (−1)

]
+ β4

[
kit − k i

]
+ β5

[
kit−1 − k i (−1)

]
+ (δ∗t − δ

∗
) + (ait − ai )

The FE-Cocharne-Orcutt estimator is applying OLS to this equation.
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Cochrane—Orcutt estimator

Cochrane—Orcutt estimator: Implementation

xtreg logy logn logk l.logy l.logn l.logk i.year, fe
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Cochrane—Orcutt estimator

Cochrane—Orcutt estimator: Large T condition

IMPORTANT NOTE: The FE-Cochrane-Orcutt is consistent
(asymp. unbiased) only when T is large, e.g., larger than 30 or 40
periods.

Note that under condition FE-OC, we have that (ait − ai ) is not
correlated with regressors

[
`it − `i

]
,
[
`it−1 − `i (−1)

]
,
[
kit − k i

]
, and[

kit−1 − k i (−1)
]
.

However, even under this condition, we have that (ait − ai ) is
correlated with regressor (yit−1 − y i (−1)).

Note that yit−1 depends on ai ,t−1 and that ai ,t−1 is part of ai .

This correlation goes to zero as T becomes large.
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Arellano-Bond estimator

– – – – – – – – – – – – – – – – – – – – – – – – – – – –

4. Arellano-Bond estimator
– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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Arellano-Bond estimator

Arellano-Bond estimator

Assumption FE-2 (or for that matter FE-CO) has two parts:
- FE-2(a): uit is not serially correlated.
- FE-2(b): uit is not known to the firm when it decides the

amounts of inputs.

In most applications, the stronger of the two assumptions is FE-2(b).

We now present a panel data estimator that relaxes assumption
FE-2(b).
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Arellano-Bond estimator

Arellano-Bond estimator (2)

We maintain assumptions FE-1, ωit = ηi + δt + uit , and FE-2(a), uit
is not serially correlated.

Define the variables in first differences: ∆yit = yit − yit−1;
∆`it = `it − `it−1; etc.

And consider the PF in first differences (equation at period t minus
equation at period t − 1):

∆yit = αL ∆`it + αK ∆kit + ∆δt + ∆uit

We have removed the term ηi from the error term, and we can
control for the term ∆δt by including time-dummies.

But we still have the term ∆uit that is correlated with the regressors
∆`it and ∆kit .
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Arellano-Bond estimator

Arellano-Bond estimator (3)

∆yit = αL ∆`it + αK ∆kit + ∆δt + ∆uit

Consider the following general models for demand of capital and labor
inputs:

(LD) `it = fL(`i ,t−1, ki ,t−1,ωit , rit )

(KD) kit = fK (`i ,t−1, ki ,t−1,ωit , rit )

This means that `it and kit depends on the current and the past
histories of the transitory shocks: uit , uit−1, ui ,t−2, ....;

But not on future shocks: uit+1, uit+1, ....
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Arellano-Bond estimator

Arellano-Bond estimator (4)

∆yit = αL ∆`it + αK ∆kit + ∆δt + ∆uit

This implies that `i ,t−2 and ki ,t−2 are valid instruments in this
equation.

They are Relevant: ∆`it and ∆kit are correlated with `i ,t−2 and
ki ,t−2.

They are not correlated with the error term:

E [`it−2 ∆uit ] = E [`it−2 uit ]−E [`it−2 uit−1] = 0
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Arellano-Bond estimator

Arellano-Bond estimator (5)

This idea implies many moment restrictions that can be used to
estimate αL, αK , and ∆δt :

E (`i ,t−j ∆uit ) = 0 for t = 3, ...,T ; and j ≤ t − 2

E (ki ,t−j ∆uit ) = 0 for t = 3, ...,T ; and j ≤ t − 2

E (yi ,t−j ∆uit ) = 0 for t = 3, ...,T ; and j ≤ t − 2

The Arellano-Bond estimator exploits all these restrictions optimally:
optimal weighting; optimal Generalized Method of Moments (GMM)
estimator.
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Arellano-Bond estimator

Arellano-Bond estimator: Implementation

The command xtabond2 in Stata implements the Arellano-Bond
estimator.

It can be applied also to the model where uit follows an
autorregressive process.
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System GMM estimator

– – – – – – – – – – – – – – – – – – – – – – – – – – – –

5. System GMM estimator
– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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System GMM estimator

System GMM

When labor and capital inputs are strongly correlated, the
Arellano-Bond estimator suffers of a weak instruments problem:
low correlation between instruments and endogenous variables, and
imprecise estimates.

Note that if `it and kit follow "random walks" then ∆`it and ∆kit are
not serially correlated and therefore they are not correlated with the
instruments `it−2 and kit−2.

For these cases, Blundell-Bond derive additional restrictions that help
to identify the PF.
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System GMM estimator

Blundell and Bond (2001)

They show that if the model is stationary, then ∆`it and ∆kit are not
correlated with ηi .

Therefore, in the PF in levels:

yit = αL `it + αK kit + δt + ηi + uit

we have that ∆`it−1 and ∆kit−1 are not correlated with error term
ηi + uit .

This implies that ∆`it−1 and ∆kit−1 are valid instruments in the
equation in levels.

Relevant. `it and kit are correlated with ∆`it−1 and ∆kit−1 (even
when inputs follow random walks).

No correlation with error:
E (∆`it−1 [ηi + uit ]) = E (∆kit−1 [ηi + uit ]) = 0
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System GMM estimator

Blundell and Bond (2001)

The Blundell-Bond System GMM estimator combines these
moment restrictions and Arellano-Bond moment restrictions in an
optimal way to obtain an effi cient estimator.
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System GMM estimator

Blundell and Bond (2001): Results

509 manufacturing firms; 1982-89
Parameter OLS-Levels WG AB-GMM SYS-GMM

αL 0.538 0.488 0.515 0.479
(0.025) (0.030) (0.099) (0.098)

αK 0.266 0.199 0.225 0.492
(0.032) (0.033) (0.126) (0.074)

ρ 0.964 0.512 0.448 0.565
(0.006) (0.022) (0.073) (0.078)

Sargan (p-value) - - 0.073 0.032
m2 - - -0.69 -0.35

Constant RS (p-v) 0.000 0.000 0.006 0.641
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System GMM estimator Control Function: Olley and Pakes estimator

– – – – – – – – – – – – – – – – – – – – – – – – – – – –

7. Control Function:
Olley and Pakes estimator

– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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System GMM estimator Control Function: Olley and Pakes estimator

Control Function Methods

Olley & Pakes (1996; OP) and Levinsohn & Petrin (2003; LP) are
control function methods.

Instead of looking for instruments for K and L, we look for observable
variables that can "control for" (or proxy) unobserved TFP.

The control variables should come from a model of firm behavior.

Note: Both OP and LP assume that labor is perfectly flexible input.
This assumption is completely innocuous for their results. To
emphasize this point, I present here versions of OP and LP that treat
labor as a potentially dynamic input.
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System GMM estimator Control Function: Olley and Pakes estimator

Olley and Pakes (OP)

Consider the following model of simultaneous equations:

(PF ) yit = αL `it + αK kit +ωit + eit

(LD) `it = fL (`i ,t−1, kit ,ωit , rit )

(ID) iit = fK (`i ,t−1, kit ,ωit , rit )

(LD) & (ID): firms’optimal labor and investment given state
variables (`i ,t−1, kit ,ωit , rit ); rit = input prices.

OP consider the following assumptions:

(OP − 1) fK (`i ,t−1, kit ,ωit , rit ) is invertible in ωit

(OP − 2) No cross-sectional variation in rit : rit = rt .
(OP − 3) ωit follows a first order Markov process.
(OP − 4) kit is decided at t − 1: kit = (1− δ)ki ,t−1 + ii ,t−1
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System GMM estimator Control Function: Olley and Pakes estimator

Olley and Pakes (2)

OP method deals both with the simultaneity problem and with the
selection problem due to endogenous exit.

It doesn’t deal with potential measurement error in inputs.

OP method proceeds in two stages.

First stage: estimates αL [Assumptions (OP-1) and (OP-2) are key];
and the second stage estimates αK [Assumptions (OP-3) and
(OP-4) are key].
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System GMM estimator Control Function: Olley and Pakes estimator

Olley and Pakes First Stage

Assumptions (OP-1) and (OP-2) imply that the investment equation
is invertible in ωit :

ωit = f −1K (`i ,t−1, kit , iit , rt )

Solving this equation in the PF we have:

yit = αL `it + αK kit + f −1K (`i ,t−1, kit , iit , rt ) + eit

= αL `it + φt (`i ,t−1, kit , iit ) + eit

This is a partially linear model. Parameter αL and functions φ1(.),
..., φT (.) can be estimated using semiparametric methods.

A possible method is Robinson’s method (1988). OP use an n− th
order polynomial to approximate the φt functions.
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System GMM estimator Control Function: Olley and Pakes estimator

Olley and Pakes First Stage

This first stage is a "Control Function" method: instead of
instrumenting the endogenous regressors, we include additional
regressors that capture the endogenous part of the error term.

We are controlling for endogeneity by including (`i ,t−1, kit , iit ) as
"proxies" of ωit .

Key assumptions for the identification of αL:

(a) Invertibility of fK (`i ,t−1, kit ,ωit , rt ) w.r.t ωit .

(b) rit = rt , i.e., no cross-sectional variability in unobservables,
other than ωit , affecting investment.

(c) Given (`i ,t−1, kit , iit , rt ), labor `it still has sample variability.
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System GMM estimator Control Function: Olley and Pakes estimator

Olley and Pakes First Stage

Example (with parametric linear investment func.):

(PF ) yit = αL `it + αK kit +ωit + eit

(Inverse ID) ωit = γ1 iit + γ2 `i ,t−1 + γ3 kit + γ4 rit

Then,

yit = αL `it + (αK + γ3) kit + γ1 iit + γ2 `i ,t−1 + (γ4rit + eit )

Note that `it is correlated with rit . Therefore, we need rit = rt and
include time dummies to control for rt in order to have consistency of
the OLS estimator in this regression.

Note also that to identify `it with enough precision we need not high
collinearity between this variable and (kit , iit , `i ,t−1).
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System GMM estimator Control Function: Olley and Pakes estimator

Olley and Pakes Second Stage

Estimation of αK . It is based on the other two assumptions:

(OP − 3) ωit follows a first order Markov process.
(OP − 4) kit is decided at t − 1: kit = (1− δ)ki ,t−1 + ii ,t−1

Since ωit is first order Markov, we can write:

ωit = E [ωit | ωi ,t−1] + ξ it = h (ωi ,t−1) + ξ it

where ξ it is an innovation which is mean independent of any
information at t − 1 or before. And h(.) is some unknown function.

φit is identified from 1st step; and φit = αK kit +ωit . Then,

φit = αK kit + h
(
φi ,t−1 − αK ki ,t−1

)
+ ξ it
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System GMM estimator Control Function: Olley and Pakes estimator

Olley and Pakes Second Stage

We estimate h(.) and αK by applying recursively the same type of
semiparametric method as in the first stage of OP.

φit = αK kit + h
(
φi ,t−1 − αK ki ,t−1

)
+ ξ it

Suppose that we consider a quadratic function for h(.): i.e.,
h(ω) = π1ω+ π2ω

2. Then:

φit = αK kit +π1
(
φi ,t−1 − αK ki ,t−1

)
+π2

(
φi ,t−1 − αK ki ,t−1

)2
+ ξ it

It is clear that αK , π1 and π2 are identified in this equation.
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System GMM estimator Control Function: Olley and Pakes estimator

Olley and Pakes Second Stage

Time-to build is a key assumption for the consistency of this method.
If investment at period t is productive, then the equation becomes:

φit = αK ki ,t+1 + h
(
φi ,t−1 − αK kit

)
+ ξ it

ki ,t+1 depends on investment at period t and therefore it is correlated
with the innovation ξ it .
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System GMM estimator Control Function: Olley and Pakes estimator

OP: Empirical Application

US Telecom. equipment industry: 1974-1987.

Technological change and deregulation.
- Elimination of barriers to entry;
- Antitrust decisions against AT&T: The Consent Decree
(implemented in 1984) —> divestiture of AT&T.
- Substantial entry/exit of plants.

Data: US Census of manufacturers.
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System GMM estimator Control Function: Olley and Pakes estimator

OP: Empirical Application
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System GMM estimator Control Function: Olley and Pakes estimator

OP: Empirical Application

Going from OLS balanced panel to OLS full sample almost doubles
αK and reduces αL by 20%. [Importance of endogenous exit].

Controlling for simultaneity further increases αK and reduces αL.
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System GMM estimator Control Function: Olley and Pakes estimator

OP: Empirical Application
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System GMM estimator Control Function: Levinsohn-Petrin estimator

– – – – – – – – – – – – – – – – – – – – – – – – – – – –

8. Control Function:
Levinsohn-Petrin estimator

– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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System GMM estimator Control Function: Levinsohn-Petrin estimator

Levinshon & Petrin (2003)

The main difference with OP method is that LP use the demand
function for intermediate inputs instead of the investment equation to
invert out unobserved productivity.

Two main motivations:
- Investment can be responsive to more persistent shocks in TFP;
materials is responsive to every shock in TFP.
- In some datasets Zero Investment accounts for a large fraction of
the data. At iit = 0 (corner solution / extensive margin) there is not
invertibility between iit and ωit . Problems: loss of effi ciency; missing
estimates of TFP for many observations.
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Levinshon & Petrin (2003)

They consider a Cobb-Douglas production function in terms of labor,
capital, and intermediate inputs (materials):

yit = αL `it + αK kit + αM mit +ωit + eit

Investment equation is replaced with demand for materials:

mit = fM (`i ,t−1, kit ,ωit , rit )

Assumption LP-1: fM (`i ,t−1, kit ,ωit , rit ) is invertible in ωit .

They maintain OP-2 [No other unobservables; rit = rt ], OP-3
[Markov TFP], and OP-4 [Time-to-build].
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Levinshon & Petrin: First Step

Least squares estimation of parameter αL and the nonparametric
functions {φt (.) : t = 1, 2, ...,T} in regression equation:

yit = αL `it + φt (`i ,t−1, kit ,mit ) + eit

φt (`i ,t−1, kit ,mit ) = αK kit + αMmit + f −1M (`i ,t−1, kit ,mit , rt ) and
f −1M is the inverse function of fM with respect to ωit .
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Levinshon & Petrin: Second Step

The second step is also similar to OP’s second step but in the model
with the intermediate input.

φit is estimated in 1st step; and φit = αK kit + αM mit +ωit . Then,

φit = αK kit + αM mit + h
(
φi ,t−1 − αK ki ,t−1 − αM mi ,t−1

)
+ ξ it

Important difference with OP: In this second step E (mit ξ it ) 6= 0, i.e.,
materials mit is endogenous.

LP propose two approaches:
- "unrestricted method": instrument mit with its lagged values

[see GNR (2013) criticism];
- "restricted method": under static input, price-taking: αM =

Cost of materials/Revenue.
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LP: Empirical application

Plant-level data from 8 different Chilean manufacturing industries:
1979-1985 [Pinochet period].
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LP: Empirical Application. Var input shares
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LP: Empirical Application: Zeroes

Victor Aguirregabiria () Production Functions September 30, 2019 59 / 62



System GMM estimator Control Function: Levinsohn-Petrin estimator

LP: Empirical Application: Zeroes
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Using first order conditions

First order conditions for flexible inputs

Suppose that labor is a perfectly flexible input and the firm is a
price-taker in output and labor markets. Then, F.O.C. imply:

Pit
∂Yit
∂Lit

= Wit

For the Cobb-Douglas PF, this condition becomes:

αL =
Wit Lit
Pit Yit

i.e., αL is identified by the wage bill-to-revenue ratio.

In fact, this condition rejects this simple version of the model.
Substantial sample variation in W it Lit

Pit Yit
. Either αL,it , or unobserved

heterogeneity in cost of labor, or other assumptions do not hold.
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