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Input prices as IVs

1. Input Prices as Instruments
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Input prices as Vs

o If input prices rj; are observable (wages, cost of capital, fuel and
energy prices), then under the assumption that they are not correlated
with TFP, E (wjr rir) = 0, we can use them as instruments.

@ This approach has several limitations/problems.

e Problem (1). Firms in the same industry typically use very similar
type of inputs (labor, capital equipment, energy, materials) and they
buy these inputs in the same input markets. If these input markets
are competitive, the input prices are the same for all the firms in the
industry:

rip = ry  for every firm j

@ If input prices vary only over time, they are perfectly collinear with
time-dummies in the PF. No valid instruments.
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Input prices as IVs (2)

@ Problem (2). When input prices have cross-sectional variation, it
could be because endogenous reasons.

@ (a) Inputs markets are not competitive and firms with higher
productivity pay higher prices. Then, cov (wit, rir) # 0, making input
prices not a valid instrument.

e (b) Firms may be using different types of labor or capital inputs, with
different qualities. This difference in the quality of inputs is part of
the log-TFP. Then, cov (wit, rir) # 0, making input prices not a valid
instrument.
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Input prices as IVs (3)

@ An ideal situation for using input prices as Vs is when firms in the
same industry product in different geographic markets where the
input markets are competitive.

@ The variation in input prices over gegraphic market is due to different
conditions on the supply of inputs (e.g., labor supply, better access to
materials) and not to differences in productivity.
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Fixed Effects Estimator

2. Fixed Effects estimator
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Fixed-Effects (FE) estimator

@ Consider the PF:
yie = & Lir + g kip + wie

(1)

o Let's first define the FE (or Within-Groups) estimator and then
we will show under which conditions this estimator provides unbiased

(consistent) estimates of parameters a; and ak.

e If, for each firm i, we average equation (1) considering all the years

observations, we have the equation:

yi=wop li+ak ki + w;

where:
T T T T
21 Yit 21 li 21 kit 21 Wit
—':t: _*:t: .*_:t: _i':t:
.yl T 1 El T ' k/ -,— [} C(], T
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FE estimator (2)

e If we subtract equation (2) to equation (1), we have:
(it = ¥i) = a1 <€it - Z,-) +ak (ki — ki) + (wir —@;)  (3)

@ This equation is named the Fixed-Effects (or the Within-Groups)
transformation of the model.

@ The FE estimator is OLS applied to FE transformed model.

@ For instance, if we had only one input, say labor, the FE estimator of
oy would be:

Y Y (vie — i) (fit — Z/)
Y El <£it - zi>2

—_—
@05 =
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Fixed Effects Estimator

FE estimator in Stata: Implementation 1

o Let logy, logn, logk, id, year, be the variables.
@ First, we construct the within-group transformation of the variables:

egen mlogy = mean(logy), by(id)
gen wlogy = logy - mlogy

egen mlogn = mean(logn), by(id)
gen wlogn = logn - mlogn

egen mlogk = mean(logk), by(id)
gen wlogn = logn - mlogn
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Fixed Effects Estimator

Implementation 1

Then, run OLS using within-groups transformed variables.

reg wlogy wlogn wlogk

° Source 55 df MS Muber of obs = 4,072
F(2, 4069) = b25h,44

Model 211.639421 2 105.81971 Prcb > F = 0.0000

Residual §1.9304197 4,009 ,020135271  R-scuared = 0.7209

Ad) R-squared = 0.7208

Total 293.56954 4,071 .072112464  Root MSE = .1419

wlogy Coef, Std. Err. t Pt [95% Conf. Interval]

wlogn .5995702 .012516 47,90  0.000 .575032 .6241084

wlogk .3190445  ,0092708 34,41  0.000 . 3008687 . 3372203

_cons 4.53e-09  ,0022237 0.00  1.000 -.00435597 .0043597
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FE estimator: Implementation 2

@ Define i and t in panel data. Then, we apply FE estimator:

xtset id year
xtreg logy logn logk, fe

Fixed-effects (within) regression Munlzer of obs = 4,072
Group variakle: id Mumlrer of groups = 50%
R—=q: Okbs per group:
within = 0.7209 min = 3
kbetween = 0.9729 avg = 8.0
overall = 0.98683 max = 8
F(z,356l) = 4599.32
corr(u_i, Xbo) = 0.4651 Prokb > F = 0. 0000
logy Coef. 5td. Err. t P>t [95% Conf. Intervall]
logn .5995702 .013379 44.81 0.000 .5733389 . 6258015
logk .3150445 .00591 32.1%9 0.000 .2996146 .3384744
_cons 3.512405 -0404574 88.82 0.000 3.433083 3.591727
sigma u . 37142884
sigma_e -15168289
rho .85706581 (fraction of wvariance due to u i)
F test that all u i=0: F(508, 3561l) = 36.48 FProk > F = 0.0000
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FE estimator: Implementation 2

@ We can also include year dummies:

xtreg logy logn logk i.year, fe

Fixed-effects (within) regression MNumker of obs = 4,072
Group wvariakle: id MNumber of groups = 509

R—=q: Obs per group:
within = 0.7379 min = g
ketween = 0.9706 avg = 8.0
overall = 0.9661 max = 8
F(9,3554) = 1111.47
corriu i, o) = 0.5988 Prob > F = 0.0000
logy Coef. Std. Err. t Pt [95% Conf. Interval]
logn . 6544609 .0144048 45.43 0.000 . 6262184 . 6827034
logk .2329072 013637 17.08 0.000 2061702 .2556443

year

13983 -.0376406 .0093042 -4.05 0.000 -.0558828 -.0193985
1984 —.0076445 .0096071 -0.80 0.426 —.0264805 .0111914
15885 -.0234513 .01005855 -2.32 0.020 —.0432449 -.0036578
15568 -.0136103 .0105543 -1.29 0.157 —. 0343034 . 0070829
1987 .0314121 .0108748 2.89 0.004 . 0100507 .0527335
1988 .0753576 0111072 .78 0.000 . 0535805 L.0971347
1389 0764164 .0118166 6.47 0.000 .0532485 .0995844
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Consistency of FE estimator

@ The FE estimator is OLS in the regression equation
(yit = yi) = ar (Eit - Zi) +ak (ki — ki) + (wie —@;)  (3)

@ As any OLS estimator, it is consistent if the error term is not
correlated with the regressors. In this case, this implies:

E [(wit —w;) (git _Zi)] =E [(wi —w;) (kii —ki)] =0

@ We now present two assumptions on the unobserved log-TFP that
imply consistency of the FE estimator (with time dummies).
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Consistency of FE estimator (2)

Assumption FE-1. Log-TFP has the following structure:

wit = 1; + 0¢ + ujt

1; is interpreted as managerial ability, or a different technology that is
constant over time.

Ot represents productivity that affect in the same way to all the firms
in the industry.

uj; is a firm-specific transitory shock.
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Fixed Effects Estimator

Consistency of FE estimator (3)

@ Assumption FE-2. The firm-specific transitory shock, uj, is not
correlated over time and it is realized after the firm chooses the
amount of inputs at period t.

@ ujr is a "surprised" that is realized after the firm has chosen inputs.

For any two periods t and s, uj; is not correlated with inputs ¢;s and
kis.
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Consistency of FE estimator (4)

@ Under assumptions FE-1 we have that:
Wi =1;+0+T1;

such that:
Wit —W; =0y — 6+ ujp — U
e If we control for §; — & using time dummies, the remaining error term

is uj — uj.

@ Under Assumption FE-2, the error term uj; — U; is not correlated with
the regressors <€,-t — Z,-) and (k,-t — E,-) because, for any two periods
t and s, uj; is not correlated with inputs ;s and k.

@ Under FE-1 and FE-2, the FE estimator is unbiased / consistent.
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Cochrane-Orcutt estimator

3. Cochrane—Orcutt estimator
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Cochrane—Orcutt estimator

@ The assumption that the firm-specific transitory shock is not serially
correlated (and fully unknown to the firm at period t) is quite strong.

@ This assumption is testable (Arellano-Bond test for serial correlation).
If rejected, this assumption can be relaxed.

@ Suppose that we maintain assumption FE-1 but we replace
assumption FE-2 with the following.

o Assumption FE-CO. The firm-specific transitory shock, uj, follows
an Autorregressive-1 process, AR(1):

Uip = 0 Ujt—1+ ajt

where p is a parameter, and aj; is not correlated over time and it is
realized after the firm chooses the amount of inputs at period t.
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Cochrane—Orcutt estimator (2)

@ In this model where uj; is serially correlated, the standard FE
estimator is inconsistent (biased) because uj; — Tj is correlated with
the regressors.

@ However, we can define a new version of the FE estimator
(Cochrane-Orcutt FE) that is consistent under these conditions and
the additional condition that the number of periods T is large.
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Cochrane—Orcutt estimator (3)

o Consider the PF at periods t and t — 1 under assumption FE-1:

yie = g L4k ki +1;,+0: 4 uj
Yierr = ap bip1+ax ki1 +1;+ 061+ Ui

@ Multiplying the equation at t — 1 by p and subtracting it to the
equation at period t, we get:

Yit — 0 Yit—1 ap [lie —p Cie—1] + ak [kit — 0 Kit—1]

+ [1—=ply,+[0:—p dt—1]+ air
because ujr — p ujr—1 = ajt.

@ This is called a quasi-difference transformation.
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Cochrane-Orcutt estimator

Cochrane-Orcutt estimator (4)

@ The quasi-difference transformation can be written as:

Yit = ﬁl Yit—1 + ﬁz eit + ﬁ3 Eit—l + 54 kit + ,85 kit—l (4)
+ ni+0; +ai

with By =, B, = a1, B3 = —par, By = ax, Bs = —pak, and
ni =[1—pln; and 6y =6: —p 6.

o Note that given the B parameters we can obtain the parameters p, ay,
and ak. In fact, there are additional (over-identifying restrictions):

_53/ﬁ2 = _55/54 =B

@ Now, under assumption FE-CO, in equation (2), the transitory shock
aj: is not correlated with the inputs.
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Cochrane—Orcutt estimator (5)

e Consider equation (4) in firm-specific means:

Yi = 51 y, +52 Zi+ﬁ3 zi(—1)+.34 Ei+ﬁ5 Ei(—l)
+ 171 +5 +3,

@ And in deviations with respect to firm-specific means:

Yie =¥i = By [y't 1 ]+ﬁ2[ — ¢ + B3 Eitfl_zf(—l)
+ By [Kie — i]+ﬁ5 [:’H— i(-1)
+ (67 =0") + (ar — )

@ The FE-Cocharne-Orcutt estimator is applying OLS to this equation.
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Cochrane—Orcutt estimator: Implementation

xtreg logy logn logk 1l.logy l.logn 1l.logk i.year, fe

Fixed-effects (within) regression TMudoer of obs = 3,563
Group varialkle: id Mhazer of groups = 509
R—sdq: Cbs per group:
within = 0.7825 min = 7
ketween = 0.9879 avg = 7.0
overall = 0.95847 max = 7
F(11,3043) = 995.10
corriu i, Xk) = 0.7191 Frokb > F = 0.0000
logy Coef. Std. Err. t P>t [85% Conf. Interwvall]
logm -4880013 .0166747 29.27 0.000 . 4553065 5206961
logk 1765454 .0178288 9.90 0.000 . 1415877 2115032
logy
1. -4039344 . 015273 26.45 0.000 . 3739879 - 4338808
logn
1. —-.0231194 .0192464 -1.20 0.230 —-.06085686 0146175
logk
1. —.1305487 .0164086 -7.96 0.000 —.1627218 . 05883757
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Cochrane—Orcutt estimator: Large T condition

o IMPORTANT NOTE: The FE-Cochrane-Orcutt is consistent
(asymp. unbiased) only when T is large, e.g., larger than 30 or 40
periods.

@ Note that under condition FE-OC, we have that (a; — 3;) is not
correlated with regressors [E,-t - Z,-], |:£it—1 - Z,-(_l)} , [k,-t - E,-], and

[kit—l - R’(—l)]

e However, even under this condition, we have that (a; — 3;) is
correlated with regressor (yir—1 — ¥i(—1))-

@ Note that yj;_; depends on a;;—; and that a; ;—; is part of a;.

@ This correlation goes to zero as T becomes large.
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Arellano-Bond estimator

4. Arellano-Bond estimator

Victor Aguirregabiria () Production Functions September 30, 2019 26 / 62



Arellano-Bond estimator

@ Assumption FE-2 (or for that matter FE-CO) has two parts:
- FE-2(a): ujr is not serially correlated.
- FE-2(b): ujt is not known to the firm when it decides the
amounts of inputs.

@ In most applications, the stronger of the two assumptions is FE-2(b).

@ We now present a panel data estimator that relaxes assumption
FE-2(b).
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Arellano-Bond estimator (2)
e We maintain assumptions FE-1, wj; = 17, + 6; + uj, and FE-2(a), uj
is not serially correlated.

@ Define the variables in first differences: Ay = yir — yir—1;
Aliy = Llip — Lip_q; etc.

@ And consider the PF in first differences (equation at period t minus
equation at period t — 1):

Ayir = ap Dl + e Akir + A + Aujy

@ We have removed the term 7, from the error term, and we can
control for the term AJd; by including time-dummies.

@ But we still have the term Auj; that is correlated with the regressors
Ag,'t and Ak,’t.
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Arellano-Bond estimator (3)

Ayir = M + ke Akie + Aéy + Aujy

o Consider the following general models for demand of capital and labor
inputs:
(LD) Lir = fr(4it1, kie—1, Wit, Tit)

(KD) kit = fK(gi,t—ly kit—1, Wi, ”it)

@ This means that £;; and k;; depends on the current and the past
histories of the transitory shocks: wjt, uj—1, Ujt—2, ....;

@ But not on future shocks: wujry1, Ujts1, ...
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Arellano-Bond estimator (4)

Ayir =« M + ax Akie + Aéy + Aujy

@ This implies that ¢; ;_» and k; ;—» are valid instruments in this
equation.

@ They are Relevant: A/ and Akj; are correlated with ¢; ;5 and
kit—2.

@ They are not correlated with the error term:

E [lit—2 Auit) =E [ljs—2 ui] —E [lir— ujr—1] =0
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Arellano-Bond estimator (5)

@ This idea implies many moment restrictions that can be used to
estimate «;, &k, and Ad;:

E¢jADur)=0 fort=3..,T; andj<t—2
E (kit—j Aui) =0 fort=3,..,T; and j <t—2
E(yit—j Dup) =0 fort=3,..,T; and j < t—2

@ The Arellano-Bond estimator exploits all these restrictions optimally:
optimal weighting; optimal Generalized Method of Moments (GMM)

estimator.
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Arellano-Bond estimator: Implementation

@ The command xtabond2 in Stata implements the Arellano-Bond
estimator.

@ It can be applied also to the model where uj; follows an
autorregressive process.
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System GMM estimator

5. System GMM estimator
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System GMM

@ When labor and capital inputs are strongly correlated, the
Arellano-Bond estimator suffers of a weak instruments problem:
low correlation between instruments and endogenous variables, and
imprecise estimates.

o Note that if £;; and k;; follow "random walks" then A¢;; and Ak;; are
not serially correlated and therefore they are not correlated with the
instruments £;;_> and kj:_o.

@ For these cases, Blundell-Bond derive additional restrictions that help
to identify the PF.
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Blundell and Bond (2001)

@ They show that if the model is stationary, then Af;; and Ak;; are not
correlated with 77;.

@ Therefore, in the PF in levels:
Yit = & git +DCK kit +5t +77, + Ujt

we have that Af;;_1 and Ak;;_1 are not correlated with error term
7],’ + Ujt.

@ This implies that Af;; 1 and Akj;_1 are valid instruments in the
equation in levels.

o Relevant. {; and k;; are correlated with A¢j;_; and Akj:—1 (even
when inputs follow random walks).

@ No correlation with error:
E (Alir—1[n; + uir]) = E (Akie—1 [17; + uir]) =0
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Blundell and Bond (2001)

@ The Blundell-Bond System GMM estimator combines these
moment restrictions and Arellano-Bond moment restrictions in an
optimal way to obtain an efficient estimator.
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Blundell and Bond (2001): Results

509 manufacturing firms; 1982-89

Parameter OLS-Levels WG AB-GMM SYS-GMM
ap 0.538 0.488 0.515 0.479
(0.025)  (0.030)  (0.099) (0.098)
aK 0.266 0.199 0.225 0.492
(0.032)  (0.033)  (0.126) (0.074)
Iy 0.964 0.512 0.448 0.565
(0.006)  (0.022)  (0.073) (0.078)
Sargan (p-value) - - 0.073 0.032
m2 - - -0.69 -0.35
Constant RS (p-v) 0.000 0.000 0.006 0.641
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System GMM estimator Control Function: Olley and Pakes estimator

Control Function:
Olley and Pakes estimator
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Control Function: Olley and Pakes estimator
Control Function Methods

@ Olley & Pakes (1996; OP) and Levinsohn & Petrin (2003; LP) are
control function methods.

@ Instead of looking for instruments for K and L, we look for observable
variables that can "control for" (or proxy) unobserved TFP.

@ The control variables should come from a model of firm behavior.

@ Note: Both OP and LP assume that labor is perfectly flexible input.
This assumption is completely innocuous for their results. To
emphasize this point, | present here versions of OP and LP that treat
labor as a potentially dynamic input.
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Control Function: Olley and Pakes estimator
Olley and Pakes (OP)

@ Consider the following model of simultaneous equations:

(PF) yit =ay b +ax ki +wir + €

(LD) lir = f (Ui e—1, kit, wie, rit)

(ID) Ilt = fK (gl',t—lv kftv wit; rft)

(LD) & (ID): firms’ optimal labor and investment given state
variables (¢;;_1, kit, Wi, rit); rir = input prices.

@ OP consider the following assumptions:

(OP —1) fx (Ui -1, kit, wit, rir) is invertible in w;;

( ) No cross-sectional variation in ri: riy = ry.

(OP —3) wj follows a first order Markov process.

( ) ki is decided at t — 1: kiy = (1 — &) kip—1 + ijt—1
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Control Function: Olley and Pakes estimator
Olley and Pakes (2)

OP method deals both with the simultaneity problem and with the
selection problem due to endogenous exit.

It doesn't deal with potential measurement error in inputs.

@ OP method proceeds in two stages.

First stage: estimates a; [Assumptions (OP-1) and (OP-2) are key|;
and the second stage estimates ayx [Assumptions (OP-3) and
(OP-4) are key].
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Control Function: Olley and Pakes estimator
Olley and Pakes First Stage
@ Assumptions (OP-1) and (OP-2) imply that the investment equation
is invertible in wj:

-1 .
Wit = fK (Ei,t—lv Kit, lit, rt)

@ Solving this equation in the PF we have:

vii = ap b +ak ki + (o1, kie, e 1) + €ie

= oy Lig + ¢, (Lie—1, kit ije) + €t

@ This is a partially linear model. Parameter a; and functions ¢, (.),
..., 7 (.) can be estimated using semiparametric methods.

@ A possible method is Robinson's method (1988). OP use an n — th
order polynomial to approximate the ¢, functions.
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Control Function: Olley and Pakes estimator
Olley and Pakes First Stage

@ This first stage is a "Control Function" method: instead of
instrumenting the endogenous regressors, we include additional
regressors that capture the endogenous part of the error term.

@ We are controlling for endogeneity by including (¢; :—1, kit, ii) as
"proxies" of wj;.

o Key assumptions for the identification of a;:

(a) Invertibility of fx ({j 1, Kit, Wit, rt) W.r.t Wie.

(b) rir = rt, i.e., no cross-sectional variability in unobservables,
other than wj;, affecting investment.

(c) Given (£;+—1, Kit, iit, rt), labor £; still has sample variability.
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Control Function: Olley and Pakes estimator
Olley and Pakes First Stage

e Example (with parametric linear investment func.):

(PF) yit =ap b +ax ki +wir + €

(Inverse /D) Wit = Y1 it + Y2 lirq + Y3 kit + 74 rie

@ Then,
yie = o Ui + (ax +v3) ki + 91 die + 7o Cie—1 + (Yaric + €it)

@ Note that £;; is correlated with r;;. Therefore, we need r;; = r; and
include time dummies to control for r; in order to have consistency of
the OLS estimator in this regression.

@ Note also that to identify ¢;; with enough precision we need not high
collinearity between this variable and (kit, i, £ +—1).
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Control Function: Olley and Pakes estimator
Olley and Pakes Second Stage

o Estimation of ak. It is based on the other two assumptions:

(OP —3) w; follows a first order Markov process.
(OP —4) ki is decided at t — 1: kip = (L —O)kj t—1 + fi¢t—1

@ Since wj; is first order Markov, we can write:
wit = Elwir | wie-1] + ¢ = h(wie-1) + &5

where ¢, is an innovation which is mean independent of any
information at t — 1 or before. And h(.) is some unknown function.

@ ¢, is identified from 1st step; and ¢, = ax ki + wjr. Then,
¢ = ak ki +h (P g —ak kit-1) +E;
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Control Function: Olley and Pakes estimator
Olley and Pakes Second Stage

@ We estimate h(.) and ax by applying recursively the same type of
semiparametric method as in the first stage of OP.

¢ = ak kig +h (‘Pi,t—l — &K kiyffl) +Cit

@ Suppose that we consider a quadratic function for h(.): i.e.,
h(w) = miw + mow?. Then:

¢i =tk kie+ 71 (¢ — @k kie1) + 72 (¢; 1 — ki,t71)2 +Cie

@ It is clear that ak, 711 and 71, are identified in this equation.
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Control Function: Olley and Pakes estimator
Olley and Pakes Second Stage

@ Time-to build is a key assumption for the consistency of this method.
If investment at period t is productive, then the equation becomes:

Pjp = Ak kier1+h (¢i,t71 — &k k/t) + Gt

@ Kj++1 depends on investment at period t and therefore it is correlated
with the innovation (.
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Control Function: Olley and Pakes estimator
OP: Empirical Application

@ US Telecom. equipment industry: 1974-1987.

@ Technological change and deregulation.
- Elimination of barriers to entry;
- Antitrust decisions against AT&T: The Consent Decree

(implemented in 1984) —> divestiture of AT&T.
- Substantial entry/exit of plants.

@ Data: US Census of manufacturers.
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System GMM estimator Control Function: Olley and Pakes estimator

OP: Empirical Application

TABLE VI

ALTERNATIVE ESTIMATES OF PRODUCTION FUNCTION PARAMETERS?
(STANDARD ERRORS IN PARENTHESES)

Sample: Balanced Panel Full Sample®¢
Nonparametric F,,
¢V @ [©)) @) ) ©) )] ®) ©
Estimation
Procedure Total ~ Within Total Within OLS Only P Onlyh Series Kernel
Labor .851 728 693 629 .628 .608
(039) (049  (.019) (.026)  (.020) (.027)
Capital 173 067 .304 150 219 355 339 342 355
(034) (049  (.018) (026)  (018)  (02)  (.03) (.035) (.058)
Age 002 -.006 —.0046 —.008 —.001 —.003 .000 -.001 010
(.003) (016) (.0026) (017)  (002) (002) (.004) (.004) (.013)
Time .024 042 016 .026 012 .034 011 044 020
(006)  (.017)  (.004) (017)  (004)  (.005) (01) (.019) (.046)
Investment — — — — 13 — — — —
o1
Other — — — — — Powers Powers Full Kernel in
Variables of P of A Polynomial P andh
in P and h
# Obs.® 896 896 2592 2592 2592 1758 1758 1758 1758
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Control Function: Olley and Pakes estimator
OP: Empirical Application

@ Going from OLS balanced panel to OLS full sample almost doubles
ay and reduces a; by 20%. [Importance of endogenous exit].

@ Controlling for simultaneity further increases ax and reduces &, .
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Control Function: Olley and Pakes estimator
OP: Empirical Application

DECOMPOSITION OF PRODUCTIVITY

TABLE XI

(EquaTION (16))

Year Py P E, as,, Ap,, plp k)
1974 1.00 0.90 0.01 —0.07
1975 0.72 0.66 0.06 —0.11
1976 0.77 0.69 0.07 —0.12
1977 0.75 0.72 0.03 —0.09
1978 0.92 0.80 0.12 —0.05
1979 0.95 0.84 0.12 —0.05
1980 1.12 0.84 0.28 —0.02
1981 1.11 0.76 ' 0.35 0.02
1982 1.08 0.77 0.31 —0.01
1983 0.84 0.76 0.08 —0.07
1984 0.90 0.83 0.07 —0.09
1985 0.99 0.72 0.26 0.02
1986 0.92 0.72 0.20 0.03
1987 0.97 0.66 0.32 0.10
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System GMM estimator Control Function: Levinsohn-Petrin estimator

8. Control Function:
Levinsohn-Petrin estimator
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System GMM estimator Control Function: Levinsohn-Petrin estimator

Levinshon & Petrin (2003)

@ The main difference with OP method is that LP use the demand
function for intermediate inputs instead of the investment equation to
invert out unobserved productivity.

@ Two main motivations:
- Investment can be responsive to more persistent shocks in TFP;
materials is responsive to every shock in TFP.
- In some datasets Zero Investment accounts for a large fraction of
the data. At i = 0 (corner solution / extensive margin) there is not
invertibility between i;; and wj;. Problems: loss of efficiency; missing
estimates of TFP for many observations.
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System GMM estimator Control Function: Levinsohn-Petrin estimator

Levinshon & Petrin (2003)

They consider a Cobb-Douglas production function in terms of labor,
capital, and intermediate inputs (materials):

yire = o Ui +ax kip + oy mie +wie + e

@ Investment equation is replaced with demand for materials:

mje = fag (Ui e—1, Kit, Wit, Fie)

Assumption LP-1: fy (€ :_1, kit, wit, rit) is invertible in w;.

They maintain OP-2 [No other unobservables; ri; = r;], OP-3
[Markov TFP], and OP-4 [Time-to-build].
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System GMM estimator Control Function: Levinsohn-Petrin estimator

Levinshon & Petrin: First Step

@ Least squares estimation of parameter «; and the nonparametric
functions {¢,(.) : t =1,2,..., T} in regression equation:

vie = o Lig +¢,(Lir—1, kir, mjt) + e

-1
o ¢, (Lit—1, kit, mit) = &y kir +appmie + fi,7 (Ui 11, Kie, mje, r¢) and
fl\gl is the inverse function of fy; with respect to wj;.
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System GMM estimator Control Function: Levinsohn-Petrin estimator

Levinshon & Petrin: Second Step

@ The second step is also similar to OP’s second step but in the model
with the intermediate input.

@ ¢, is estimated in st step; and ¢;, = ak kit +ap mj + wjr. Then,

¢, = ak ki +ay mi+h (4),-,,_;_1 — g Kit—1— oy mi—1) + Gy

e Important difference with OP: In this second step E(mj¢ §;,) # 0, i.e.,
materials mj; is endogenous.

@ LP propose two approaches:
- "unrestricted method": instrument mj; with its lagged values
[see GNR (2013) criticism];
- "restricted method": under static input, price-taking: ap =
Cost of materials/Revenue.
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System GMM estimator Control Function: Levinsohn-Petrin estimator

LP: Empirical application

@ Plant-level data from 8 different Chilean manufacturing industries:
1979-1985 [Pinochet period].
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System GMM estimator Control Function: Levinsohn-Petrin estimator

LP: Empirical Application. Var input shares

TABLE 3
Average Nominal Revenne Shares (Percentage), 1979-85

Industry Unskilled  Skilled Materials Fuels Electricity
Metals 15.2 8.3 44.9 1.6 1.7
Textiles 13.8 6.0 48.2 1.0 16
Food Products 12.1 3.5 60.3 2.1 1.3
Beverages 11.3 6.8 45.6 18 1.5
Other Chemicals 18.9 10.1 37.8 1.7 0.7
Printing & Pub. 19.8 10.7 40.1 0.5 13
Wood Products 20.6 5.3 47.0 3.0 2.4
Apparel 14.0 49 52.4 0.9 0.3
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System GMM estimator Control Function: Levinsohn-Petrin estimator

LP: Empirical Application: Zeroes

TABLE 2
Percent of Usable Observations, 1979-85

Industry Investment Fuels Materials  Electricity
Metals 448 63.1 99.9 96.5
Textiles 41.2 51.2 99.9 97.0
Food Products 42.7 78.0 99.8 88.3
Beverages 44.0 73.9 99.8 94.1
Other Chemicals 65.3 78.4 100 96.5
Printing & Pub. 39.0 46.4 99.9 96.8
Wood Products 35.9 59.3 99.7 93.8
Apparel 35.2 34.5 99.9 97.2
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System GMM estimator

Control Function: Levinsohn-Petrin estimator

LP: Empirical Application: Zeroes

TABLE 4
TUnrestricted and Restricted Parameter Estimates for 8 Industries

(Bootstrapped Standard Errors in Parentheses)

Tndustry (ISIC Code)

Input 311 381 321 331 352 322 342 313
Unskilled labor
0.138 0.164  0.138 0.206 0.137 0.163 0.192 0.087
(0.010) (0.032) (0.027) (0.035) (0.039) (0.044) (0.048) (0.082)
Skilled labor
0.053 0.185  0.139 0.136 0.254 0.125 0.161 0.164
(0.008) (0.017) (0.030) (0.032) (0.036) (0.038) (0.036) (0.087)
Materials
0.703 0.587  0.679 0617 0.567 0.621 0.483 0.626
(0.013) (0.017) (0.019) (0.022) (0.045) (0.020) (0.028) (0.075)
Fuels
0.023 0.024  0.041 0.018 0.004 0.0162 0.033 0.087
(0.004) (0.008) (0.012) (0.018) (0.020) (0.016) (0.014) (0.027)
Capital
unrestricted  0.13 0.09 0.08 0.18 0.17 0.10 0.21 0.08
(0.032) (0.027) (0.054) (0.029) (0.034) (0.024) (0.042) (0.050)
restricted 0.14 0.09 0.06 0.11 0.15 0.09 0.21 0.07
(0.011) (0.02) (0.019) (0.025) (0.034) (0.039) (0.045) (0.11)
Electricity
nnrestricted  0.038 0.020 0.017 0.032  0.017 0.022 0.020 0.012
(0.021) (0.010) (0.024) (0.028) (0.032) (0.014) (0.024) (0.022)
restricted 0.011 0.015 0.014 0.021 0.005 0.008 0.011 0.012
No. Obs. 6051 1394 1129 1032 758 674 507 465
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Using first order conditions

8. Using First Order Conditions
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First order conditions for flexible inputs

@ Suppose that labor is a perfectly flexible input and the firm is a
price-taker in output and labor markets. Then, F.O.C. imply:

Vi
'D/tTit— It

@ For the Cobb-Douglas PF, this condition becomes:

o — Wit Lir
TPy Y

i.e., «; is identified by the wage bill-to-revenue ratio.

@ In fact, this condition rejects this simple version of the model.
Substantial sample variation in W" L'f Either ay j+, or unobserved
heterogeneity in cost of labor, or other assumptions do not hold.
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