ECO 310: Empirical Industrial Organization Tutorial 1 - Review of Econometrics

Victor Aguirregabiria

Fall 2019 University of Toronto

References

- Wooldridge (2008). *Introductory Econometrics: A Modern Approach, 4th Edition*. South-Western College Publishers.
 - Chapter 2
 - Chapter 3, Sections 3.1-3.4
 - Chapter 4
 - Chapter 6, Sections 6.1-6.2
 - Chapter 7, Sections 7.1-7.4

Introduction

- Econometrics uses statistical methods to produce estimates of economic parameters.
- Parameters Quantitative measure of some feature of the population or model
- Estimates Statistical inferences of the unknown parameters of model
 - At the very least want estimators to be consistent and unbiased
 - We are satisfied when they are efficient (low standard errors)
- Standard Errors Measure of the imprecision in our estimates.
 - Our parameter estimates will always contain some error:
 - Sampling error.
 - Omitted variables bias.

Experiments and Sample Space

- Experiment Any process of observation that can be conceptually repeated and has an uncertain outcome
 - Toss two coins
 - Measure average height
 - Measure the effect of policy on housing price

- Sample Space The set of all possible outcomes of an experiment
 - Toss two coins: {HH, HT, TH, TT}
 - Height: $(0, \infty)$
 - Policy effect: $(-\infty, \infty)$

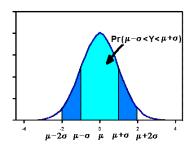
Events and Random Variables

- Event A subset of the sample space
 - Toss two coins: {HH, HT, TH } "toss at least one head"
 - Height: "between 150 and 180 cm", "greater than 190 cm"
 - Policy effect: "positive effect on housing price"

- Random Variable A function that assigns a numerical value to each outcome
 - Toss two coins: $X \in \{0,1,2\}$ =number of heads
 - Height: $X \in \{0, \infty\}$
 - Policy effect: $X \in \{-\infty, \infty\}$

Random Variables and their Distribution

- Let Y be a random variable (r.v.)
 - ullet That is, the value of Y is subject to variations due to chance
 - As such, there is uncertainty involved in its value.
- The set of possible values of Y, and the probability at which it takes on these values is described by the distribution of Y



Random Variables and their Distribution

• The **distribution function** denoted F(y) describes the probability that the r.v. Y takes on a value less than or equal to the number y.

$$F(y) = \Pr\{Y \le y\}$$

- The **mean** μ of Y is the expected value of the distribution of Y
- The **variance** σ^2 of Y measures the spread in the distribution of Y.

$$\mu = E[Y]$$
 and $\sigma^2 = E[(Y - \mu)^2]$

Random Variables and their Distribution

- We often deal with r.v.'s that are generated from an unknown distribution.
- In this case, we want to perform **inference** on the distribution of Y

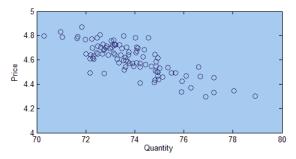
- Let $\{y_i : i = 1, ..., N\}$ be a random sample of observations on Y
- Estimators of the population mean and variance are

Sample Mean :
$$\overline{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

Sample Variance:
$$s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (y_i - \overline{y})^2$$

Estimating Causal Relationships

- ullet In economics, we are often interested in the causal relationship between an explanatory variable x and an outcome variable y
- A scatter-plot is useful way of depicting the relationship between two r.v.'s



• The sample covariance is a useful statistic to describe this relationship

$$cov(x,y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})$$

Estimating Causal Relationships Cont.

- In other words, we are interested in the **causal relationship** between a set of explanatory variables $x_1, x_2, ..., x_k$ and a **dependent variable** y
- We hypothesize that there is a systematic causal relationship between $x_1, x_2, ..., x_k$ and y through the equation

$$E[y] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

ullet The random component of Y is captured by the **error term** arepsilon with

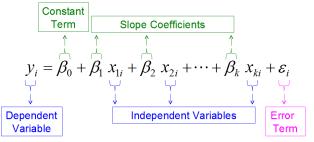
$$E[\varepsilon] = 0$$
 and $V[\varepsilon] = \sigma^2$

The Linear Regression Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$$

The Linear Regression Model

The Linear Regression Model

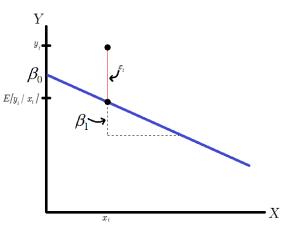


- The parameter β_k measures causal effect of x_k on y, holding all other vars. fixed
- ε captures all other factors that affect y aside from $x_1, x_2, ..., x_k$
- This error term is included because:
 - Some relevant variables are unobservable.
 - Even if observable, impossible to collect data on everything.
 - Even if collectable might be subject to Measurement Error

The Simple Linear Regression Model

• The Simple Linear Regression Model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$



- Constant β_0 "autonomous" level of y.
- Slope β_1 causal effect of a marginal increase in x on y.

Functional Forms

- The LRM is flexible: allows for many functional forms it is only linear in parameters, not in variables:
 - In a Linear specification

$$y = \beta_0 + \beta_1 x + \varepsilon$$

 β_1 is the # of units change in y from a 1-unit change in x

• In a Log-Log specification

$$\ln y = \beta_0 + \beta_1 \ln x + \varepsilon$$

 β_1 is the % change in y from a 1% change in x

In a Log-Linear specification

$$\ln y = \beta_0 + \beta_1 x + \varepsilon$$

 $100 * \beta_1$ is the % change in y from a 1-unit change in x

The Data

• In this Linear Regression Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k + \varepsilon$$
 $\varepsilon \sim N(0, \sigma^2)$

 $\beta_0, \beta_1, \beta_2, ..., \beta_k$ and σ^2 are unknown parameters.

• The purpose of our econometric analysis is to estimate these parameters

Towards this end, suppose we have collected a random sample of data

$$\{y_i, x_{1i}, x_{2i}, ..., x_{ki} : i = 1, 2, ..., N\}$$

• By random sample we mean that, for each observation in the sample, the data y_i has been generated by $x_{1i}, x_{2i}, ..., x_{ki}$ through the model under study, independent of all other observations.

The Data Cont.

- Ideally, our data comes in the form of a random sample
 - Each individual in the population has an equal chance of being chosen at each draw of our sample.
 - This ensures that sample is representative of the underlying population
- Data for econometric analysis comes in a variety of types
 - Cross Section observe many individuals for one period

$$Q_i = \beta_0 + \beta_1 P_i + \varepsilon_i$$
 for $i = City \ 1, ..., City \ N$

• Time Series - observe one individual over successive time periods, e.g.

$$Q_t = \beta_0 + \beta_1 P_t + \varepsilon_t$$
 for $t = \text{Year } 1, ..., \text{Year } T$

• Panel Data - observe many individuals over multiple periods, e.g.

$$Q_{it} = \beta_0 + \beta_1 P_{it} + \varepsilon_{it}$$
 for $i = City \ 1, ..., City \ N$
and $t = Year \ 1, ..., Year \ T$

The Data Cont.

City	Price	Quantity
Toronto	99.99	1.75 mil
Montreal	103.50	1.65 mil
:		
Cranbrook	123	10,000

Montreal - Year	Price	Quantity
1990	87.50	1.03 mil
1991	87.99	1.02 mil
i i		
2010	103.50	1.65 mil

City	Year	Price	Quantity
Toronto	1990	87.50	0.9 mil
Toronto	2010	99.99	1.75 mil
Montreal	1990	87.50	1.03 mil
Montreal	2010	103.50	1.65 mil
•			
Cranbrook	1990	86.00	1,000
Cranbrook	2010	123	10,000

Assumptions

- We want to *estimate* the causal effect of k explanatory variables $x_1, x_2, ..., x_k$ on the dependent variable y.
- The multiple regression model states that, in the population:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki} + \varepsilon_i$$

- The number of parameters is k+1
- The observation index is i. Notationally, we use
 - i for cross-sectional data
 - t for time series data
 - it for panel data
- Parameter β_k measures causal effect of x_k on y holding all other vars fixed
- ullet Error term arepsilon is an unobservable capturing all *other* factors that effect y

Assumptions Cont.

- **1 Linearity**: each predictor variable x is linearly related to y.
 - Means no non-linearities in parameters cannot have $y_i = \beta_0 + x_i^{\beta_1} + \varepsilon$.
 - However, the x and y variables can be non-linear transformations can have $\ln y_i = \beta_0 + \beta_1 \ln x_i + \varepsilon_i$ or $y_i = \beta_0 + \beta_1 x_i^2 + \varepsilon$
- **2 Zero Mean**: Error terms have a mean of zero. $E[\varepsilon_i]=0$
 - ullet Can be made without loss of generality if constant eta_0 has been included
- **Solution Exogeneity**: Each x_k is unrelated with the error term. $cov(x_k, \varepsilon_i) = 0$.
 - Means no "lurking variables". i.e. any omitted variable do not have confounding effects on both x's and y.
 - ullet Crucial is random sampling, so variation in x's is independent of variation in arepsilon
- **1 Independence**: Error terms are independently distributed. $cov(\varepsilon_i, \varepsilon_j) = 0$
- **1 Homoscedasticity**: Error terms have a constant variance. $var(\varepsilon_i) = \sigma_{\varepsilon}^2$
- **1** Normality: Error terms are normally distributed. $\varepsilon_i \sim N(0, \sigma_{\varepsilon}^2)$

Estimation

- $\beta_0, \beta_1, ... \beta_k$ are unknown population parameters.
- ullet But, if we have a sample of data $\{y_i, x_{1i}, ... x_{ki}: i=1,...,N\}$ can estimate them
- Let $b_0, b_1, ... b_k$ be the estimated parameters from our sample of data.
- Based on these estimates, the **fitted value** or **predicted value** of y_i given $x_{1i}, x_{2i}, ... x_{ki}$ is

$$\hat{y}_i = b_0 + b_1 x_{1i} + b_1 x_{2i} + \dots + b_k x_k$$

ullet The difference between observed value of y_i and predicted value \widehat{y}_i is the **residual**

$$e_i = y_i - \widehat{y}_i$$

and can be thought of as a measure of how close our prediction is to the true value

Estimation - Some Ideas

- We want to choose our estimates such that the error is small
- Choose parameters to minimize the sum of residuals $\sum_{i=1}^{n} (y_i \hat{y}_i)$
 - Doesnt account for errors of opposite sign
 - Any line that passes through the point (\bar{x}, \bar{y}) will have this sum equal to 0 (non unique solution)
- Choose parameters to minimize $\sum_{i=1}^{n} |(y_i \hat{y}_i)|$
 - "Least absolute value regression" this is seldom used
- Choose parameters to minimize $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$
 - This type of estimator is called a Least Squares Estimator
 - One of the most common estimators in econometrics
 - Easy to compute and provides a unique solution
 - Best Linear Unbiased Estimator (BLUE)

Estimation - Ordinary Least Squares

- Our goal is to **estimate** the unknown parameters of our model.
- The most common estimator in econometrics is Ordinary Least Squares
 - We do not observe the error term ε_i .
 - ullet But given estimates of the eta parameters, we can construct an estimate of it.
 - The residuals

$$e_i = y_i - \hat{y}_i = y_i - b_1 x_{1i} - b_2 x_{2i} - \dots - b_k x_{ki}$$

 The OLS Estimator is the value of the b's which minimizes the sum of squared residuals

$$b = \arg\min \sum_{i=1}^N e_i^2$$

Estimation - Ordinary Least Squares Cont.

- Our goal is to estimate the unknown parameters of our model.
- The most common estimator in econometrics is Ordinary Least Squares
 - For the simple linear regression model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

the OLS estimator for the slope parameter has a simple expression

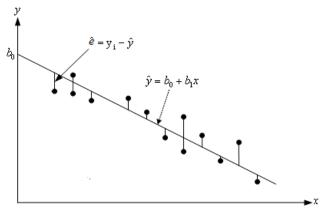
$$b_{1} = \frac{\sum_{i=1}^{N} (y_{i} - \overline{y})(x_{i} - \overline{x})}{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}} \qquad b_{0} = \overline{y} - b_{1}\overline{x}$$

ullet And our estimator for the error variance σ^2 is given by

$$s^2 = \frac{1}{N-2} \sum_{i=1}^{N} e_i^2$$

Interpretation

• How do we interpret the estimated parameter?



- The principle behind OLS is to estimate the model parameters by drawing that a line "best fits" the data in the least squares sense.
- This results in a slope parameter of

Interpretation Cont.

- How do we interpret the estimated parameter?
- The estimated value b_k measures the *typical* (i.e. average) change in y associated with a one unit change in x_k , holding the other included x variables fixed.
 - You can think of b_k as the "partial correlation" between x_k and y i.e. the correlation between x_k and y after controlling for the other included x's
 - NB: partial-correlation is not the same thing as correlation. E.g., it is possible to observe positive correlation between x_k and y, and then get a negative estimate b_k .
- However, (Partial) Correlation does not imply Causation
 - Because of the possibility of latent or ommitted variables (violation of Exogeneity) b_k is not necessarily an estimate of the causal effect of x_k on y.
 - That is, due to the possibility of Endogeneity, we cannot say that b_k
 measures the change in y associated with a one unit change in x_k, holding all
 variables fixed.

Hypothesis Testing

- Under Assumption 1-6, b_k is an estimate of the (partial) effect of x_k on y based on our sample of data.
- We can use it to do **inference** about the value of β_k , the (partial) effect of x_k on y in the *population*.

Hypothesis Testing

- Suppose we wanted to answer the question "Is the (partial) effect of x_k on y in the *population* equal to (the number) β ?"
- ullet We maintain **Null Hypothesis** that eta_k is indeed equal to eta in the population

$$H_0: \beta_k = \beta$$

and we ask the data to show us otherwise - i.e. our Alternative Hypothesis

$$H_1: \beta_k \neq \beta$$

• The test-statistic for this test is the t-statistic

$$t=\frac{b_k-\beta}{s_{b_k}}$$

Hypothesis Testing Cont.

- Hypothesis Testing Cont.:
- Where s_{b_k} is the standard error of our estimator b_k . In a simple linear regression $y_i = \beta_0 + \beta_1 x_i + \epsilon$ this is given by

$$s_{b_1} = \frac{s^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

• Under the null hypothesis, H_0 , our test statistic follows a T **Distribution** with N-K-1 deg. of freedom

Hypothesis Testing Cont.

• Hypothesis Testing Cont.:

- At significance level α , let $t_{\alpha/2}$ be the **critical value** from the T-distribtion that leaves probability mass $\alpha/2$ in the tails.
- We reject H_0 in favour of H_1 if t-statistic is greater than $t_{a/2}$ in absolute value

Reject if
$$t>t_{lpha/2}$$
 or $t<-t_{lpha/2}$

- The P-value of the test is the prob. in the tails of the T-distribution as
 determined by the computed value of the t-stat.
- It measures the strength of the evidence against the Null Hypothesis.
- Thus, we can equivalently reject the Null in favour of the Alternative if the P-Value of the test is less than our level of significance

Reject if P-value $< \alpha$

Test of Statistical Significance

- A particularly important question is whether x_k indeed has an effect of y.
- We call this a **Test of Statistical Significance** or just a "Significance Test"
- Our Null Hypothesis and Alternative Hypothesis are

$$H_0: \ \beta_k = 0$$
 vs $H_1: \ \beta_k \neq 0$

The test-statistic for this test is a special case of our usual t-statistic

$$t=\frac{b_k}{s_{b_k}}$$

and under the Null-Hypothesis, $t \sim T(n-k-1)$.

• Rule of thumb: we can reject H_0 if t is greater than 2 in absolute value.

Analysis of Variance

The linear regression model is designed to explain the variation of y

$$s_y^2 = \frac{\sum_i (y_i - \overline{y})^2}{n - 1}$$

- Analysis of Variance (ANOVA): How the total variability of y variable is related to the variation in the x's versus the variation in ε
 - Define the Total Sum of Squares as

$$SST = \sum_{i} (y_i - \overline{y})^2$$

- The Sum of Squares of the Regression (SSR) is that part of the variation in y that is explained by our regression model
- The Sum of Squares of the Errors (SSE) is that part left unexplained

$$SSR = \sum_{i} (\widehat{y}_{i} - \overline{y})^{2}$$
 $SSE = \sum_{i} (y_{i} - \widehat{y}_{i})^{2}$

By construction

$$SST = SSR + SSE$$

Goodness of Fit

- How much of y is explained by $x_1, x_2, ..., x_k$?
- The R-Squared of the regression is that fraction of the total variation in y
 that has been explained by the variation in the x's

$$R^2 = {SSR \over SST}$$
 or equivalently $R^2 = 1 - {SSE \over SST}$

- R^2 is a number between 0 and 1.
- The higher is R^2 the greater is the percent of the variation of y explained by our model.

An Example

- Is the demand for gasoline inelastic?
- Suppose we collected a sample of 50 towns in Ontario during 2013
 - ullet Q_i the quantity of gasoline sold in that town last year
 - P_i the (average) price of gasoline in that town
 - \bullet Y_i median household income in that town

 Economic theory gives us a valid regression model of the Demand for Gasoline

$$\ln Q_i = \beta_0 + \beta_1 \ln P_i + \beta_2 \ln Y_i + \varepsilon_i$$

In STATA, the syntax for regression is: regress y x1 x2 ...xk

. reg lnQ lnP lnY

Source	SS	df	MS
Model Residual	24.0503982 60.2333272	2 47	12.0251991 1.28156015
Total	84.2837254	49	1.72007603

Number of obs = 5 F(2, 47) = 9.3 Prob > F = 0.000 R-squared = 0.285 Adj R-squared = 0.254 Root MSE = 1.132

1nQ	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
	1.806263	.4239203	4.26	0.000	-1.953664 .9534459 9.382345	2.65908

. reg lnQ lnP lnY

Source	SS	df	MS
Model Residual	24.0503982 60.2333272	2 47	12.0251991 1.28156015
Total	84.2837254	49	1.72007603

Number of obs = 5 F(2, 47) = 9.3 Prob > F = 0.000 R-squared = 0.254 Adj R-squared = 0.254 Root MSE = 1.132

1nQ	Coef.	\	Std. Err.	/	t	P> t	[95% Conf.	Interval
lnP lnY _cons	9464336 1.806263 10.70829	-71	.4239203	- 1	-1.89 4.26 16.25	0.065 0.000 0.000	-1.953664 .9534459 9.382345	.06079 2.65908 12.0342

`se(b)

. reg lnQ lnP lnY

Source	SS	df	MS
Model Residual	24.0503982 60.2333272		12.0251991 1.28156015
Total	84.2837254	49	1.72007603

Number of obs = 5: F(2, 47) = 9.3: Prob > F = 0.000: R-squared = 0.285: Adj R-squared = 0.254: Root MSE = 1.132:

lnQ	Coef.	Std. Err.	/ t	P> t	[95% Conf.	Interval:
lnP lnY _cons	1.806263	.4239203	4.26	0.000	-1.953664 .9534459 9.382345	2.659083

t-Statistic & P-Value for HO: beta = 0 vs H1: beta = 0

. reg lnQ lnP lnY

Source	SS	df	MS
Model Residual	24.0503982 60.2333272	2 47	12.0251991 1.28156015
Total	84.2837254	49	1.72007603

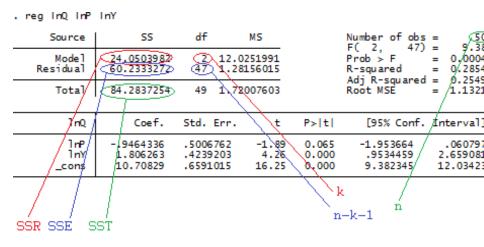
Number of obs = 5 F(2, 47) = 9.3 Prob > F = 0.000 R-squared = 0.285 Adj R-squared = 0.254 Root MSE = 1.132

1nQ	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
lnP lnY _cons	1.806263	.5006762 .4239203 .6591015	4.26	0.000	-1.953664 .9534459 9.382345	2.65908

```
95% CI for beta

LB = b - t.025*se(b)

UB = b + t.025*se(b)
```



. reg lnQ lnP lnY

Source Model Residual Total	SS 24.0503982 60.2333272 84.2837254	47 (1.2	MS 9251991 8156015 2007603		R-squared Adj R-squared	
1nQ	Coef.	Std. Err.	t \	P> t	[95% Conf.	Interval
lnP lnY _cons	9464336 1.806263 10.70829	.5006762 .4239203 .6591015	-1.89 4.26 16.25	0.065 0.000 0.000	-1.953664 .9534459 9.382345	.06079 2.65908 12.0342
			S _e ²	= SSE n-k-1	S _e = /	SSE n-k-1

. reg lnQ lnP lnY

Source	SS	df	MS	Number of obs = $\frac{Number of obs - 5}{F(2.47) = 9.3}$
Model Residual	24.0503982 60.2333272		12.0251991 1.28156015	Prob F = 0.000 R-squared = 0.285
Total	84.2837254	49	1.72007603	Adj R-squared = 0.254 Root MSE = 1.132
1.0				D. I.I

lnQ	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval:
lnP lnY _cons	9464336 1.806263 10.70829	.5006762 .4239203 .6591015	-1.89 4.26 16.25	0.065 0.000 0.000	-1.953664 .9534459 9.382345	.06079 2.65908 12.0342
		,				

F-Stat and P-Value for H0: beta₁ = beta₂ = 0 vs H1: At least on * 0

R-Sq and Adj R-Sq

. reg lnQ lnP lnY

Model 24.0503982 2 12.0251991 Prob > F = Residual 60.2333272 47 1.28156015 R-squared = Adj R-squared =	Source	SS	df	MS	Number of obs = F(2, 47) =
					Prob > F = R-squared =
	Total	84.2837254	49	1.72007603	

InQ	Coet.	Std. Err.	t	P> t	L95% Cont.	Interval
lnP lnY _cons		.5006762 .4239203 .6591015	4.26		-1.953664 .9534459 9.382345	.06079 2.65908 12.0342

- In a "typical" (i.e. average) market, a 1% increse in Price is associated with a 0.95% decrease in quantity demanded, after controlling for Income.
- ullet The P-value for a significance test is 0.065. Thus, at lpha=10%. we reject null hypothesis that, even after controling for income, price has no effect on demand.
- The R-Square for this model is 0.2854.
- Victor Aguirregabiria () ECO 310: Empirical Industrial Organization Tutorial 1. Fall 2019 University of Toronto 39

Functional Forms

- As we have just seen, the multiple regression model is much more flexible than it appears It can be used to estimate non linear relationships between y and the x's
- The linearity assumption only means that the parameters enter linearly
- Some common functional forms involve
 - Logarithms
 - Quadratics
 - Interaction Terms
 - Dummy Variables
 - Time Series Models: Trends
 - Panel Data Model: Fixed Effects

Functional Forms - Logarithms

- Consider the case of the demand function for a good.
- Suppose we wanted to estimate the relationship between quantities demanded Q, price P, and income Y.
 - In the Log-Log Model

$$\ln Q_i = \beta_0 + \beta_1 \ln P_i + \beta_2 \ln Y_i + \varepsilon_i$$

 eta_1 is interpreted as $\% \triangle$ in Q from a $1\% \triangle$ in P, conditional on (log) Y

- That is, b1 is an estimate of the Price-Elasticity of Demand
- In the Log-Linear Model

$$\ln Q_i = \beta_0 + \beta_1 P_i + \beta_2 Y_i + \varepsilon_i$$

 $\beta_1 * 100$ is interpreted as $\% \triangle$ in Q from a 1 unit \triangle in P, conditional. on Y.

Functional Forms - Quadratic

- One might assume that people are more price-elastic at higher prices
- In this case, the price elasticity of demand is dependent on price
- A model of demand with a Quadratic term in price

$$\ln Q_i = \beta_0 + \beta_1 \ln P_i + \beta_2 \ln Y_i + \beta_3 \ln P_i^2 + \varepsilon_i$$

The price-elasticity of demand is

$$\frac{\partial \ln Q}{\partial \ln P} = \beta_2 + 2\beta_3 \ln P_i$$

and thus price-elasticty changes as the price level changes

Functional Forms - Interaction Terms

- One might assume that markets with higher income are less price-elastic than those with lower income
- In this case, the price elasticity is dependent on the level of income
- A model of demand with an Interaction term between price and income

$$\ln Q_i = \beta_0 + \beta_1 \ln P_i + \beta_2 \ln Y_i + \beta_3 \ln P_i * \ln Y_i + \varepsilon_i$$

The price-elasticity of demand is

$$\frac{\partial \ln Q}{\partial \ln P} = \beta_1 + \beta_3 \ln Y_i$$

and thus price-elasticity changes as income changes

Functional Forms - Dummy Variables

- Suppose we believed demand in cities is higher than demand in towns.
- Define the **Dummy Variable** CITY by

$$CITY_i = \begin{cases} 1 & \text{if market-} i \text{ is a city} \\ 0 & \text{otherwise} \end{cases}$$

• A model of demand with a City-Dummy

$$\ln Q_i = \beta_0 + \delta_0 CITY_i + \beta_1 \ln P_i + \beta_2 \ln Y_i + \varepsilon_i$$

The regression for towns vs cities

$$\ln Q_i = \beta_0 + \beta_1 \ln P_i + \beta_2 \ln Y_i + \varepsilon_i \quad \text{vs} \quad \ln Q_i = (\beta_0 + \delta_0) + \beta_1 \ln P_i + \beta_2 \ln Y_i + \varepsilon_i$$

- β_0 is intercept for towns (omitted category).
- $\beta_0 + \delta_0$ is intercept for cities

Functional Forms - Time Trends

- The use of data with a time component (both Time-Series and Panel Data)
 allow us to control for unobserved trending variables or secular effects
- Consider the demand model with time series data

$$\ln Q_t = \beta_0 + \beta_1 \ln P_t + \beta_2 \ln Y_t + \beta_3 t + \varepsilon_t$$

- Recall that the data for this model come from a single market that is observed over successive periods.
- The time-trend t, which is nothing more then the obervation number, is included to control unobserved factors that are growing at a constant rate – i.e. trending – over time.
- Such factors such as population change are sometimes referred to as "secular effects"
- Had we not included the time trend, and had our included regressor variables P_t and Y_t been "trending" themselves, we could have **spuriously** attributed that change in Q_t generated by these secular effects mistakenly to P_t and Y_t .

Functional Forms - Fixed Effects

- The use of panel data allows us to control for 'unobserved heterogeneity when this heterogeneity is time-invariant
- Consider the demand model with panel data

$$\ln Q_{it} = \beta_0 + \beta_1 \ln P_{it} + \beta_2 \ln Y_{it} + u_i + \varepsilon_{it}$$

where u_i is an unobserved component that affects market i and is constant over time. We call u_i the **Fixed Effect** of market i

- Since u_i is unobserved, it cannot be directly controlled.
- However, since we observe each market i at multiple points in time, we can
 include a series of dummy variables one for each market to indirectly
 serve as controls for these Fixed Effects
- Define the market-j dummy by:

$$D_{it}^{j} = \left\{ egin{array}{ll} 1 & ext{if observation } i,t ext{ is from market-} j \\ 0 & ext{otherwise} \end{array}
ight.$$

Functional Forms - Panel Data Model: Fixed Effects

The Fixed Effects model

$$\ln Q_{it} = \beta_0 + \beta_1 \ln P_{it} + \beta_2 \ln Y_{it} + u_1 D_{it}^1 + u_2 D_{it}^2 + ... + u_M D_{it}^M + \varepsilon_{it}$$

- That is, the Fixed Effects model allows each market to have its own intercept
- Formally, the effects from the unobserved heterogeneity are treated as the coefficients of the market-specific dummy variable.
- · Intuitition: each market serves as a control for itself
 - Since the u_i varies over markets but not over time the identity of market i is sufficient to control for u_i
 - Thus, unobserved heterogeneity will be absorbed by the market dummies
- Had we not accounted for these fixed effects, we could have attributed the change in Q_t generated by this unobserved heterogeneity mistakenly to P_t and Y_t , leading to endogeneity bias