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 Econometrica, Vol. 63, No. 4 (July, 1995), 841-890

 AUTOMOBILE PRICES IN MARKET EQUILIBRIUM

 BY STEVEN BERRY, JAMES LEVINSOHN, AND ARIEL PAKES1

 This paper develops techniques for empirically analyzing demand and supply in
 differentiated products markets and then applies these techniques to analyze equilibrium
 in the U.S. automobile industry. Our primary goal is to present a framework which
 enables one to obtain estimates of demand and cost parameters for a class of oligopolistic
 differentiated products markets. These estimates can be obtained using only widely
 available product-level and aggregate consumer-level data, and they are consistent with a
 structural model of equilibrium in an oligopolistic industry. When we apply the tech-
 niques developed here to the U.S. automobile market, we obtain cost and demand
 parameters for (essentially) all models marketed over a twenty year period.

 KEYWORDS: Demand and supply, differentiated products, discrete choice, aggregation,
 simultaneity, automobiles.

 1. INTRODUCTION

 THIS PAPER DEVELOPS TECHNIQUES for empirically analyzing demand and supply
 in differentiated products markets and then applies these techniques to analyze

 equilibrium in the U.S. automobile industry. Our primary goal is to present a
 framework that enables one to obtain estimates of demand and cost parameters
 for a class of oligopolistic differentiated products markets. Estimates from our
 framework can be obtained using only widely available product-level and

 aggregate consumer-level data, and they are consistent with a structural model
 of equilibrium in an oligopolistic industry. When we apply the techniques
 developed here to the U.S. automobile market, we obtain cost and demand
 parameters for (essentially) all models marketed over a twenty year period. On
 the cost side, we estimate cost as a function of product characteristics. On the
 demand side, we estimate own- and cross-price elasticities as well as elasticities
 of demand with respect to vehicle attributes (such as weight or fuel efficiency).
 These elasticities, together with the cost-side parameters, play central roles in
 the analysis of many policy and descriptive issues (see, e.g., Pakes, Berry, and
 Levinsohn (1993) and Berry and Pakes (1993)).

 Our general approach posits a distribution of consumer preferences over
 products. These preferences are then explicitly aggregated into a market-level
 demand system that, in turn, is combined with an assumption on cost functions
 and on pricing behavior to generate equilibrium prices and quantities. The

 1 We would like to thank Don Andrews, Tim Bresnahan, Gary Chamberlain, Zvi Griliches, Jerry
 Hausman, G. Mustafa Mohatarem, Whitney Newey, Frank Wolak, and the Economic Analysis
 group at the General Motors Corporation, as well as referees and a Co-Editor of this journal, for
 helpful comments. While working on this paper, Berry was an Olin Fellow at the NBER and
 Levinsohn was a National Fellow at the Hoover Institution, Stanford University. Each thanks his
 respective host. We gratefully acknowledge funding from National Science Foundation Grants
 SES-8821722 (to Richard Ericson and Ariel Pakes) and SES-9122672. Readers wishing a more
 extensive discussion of several issues in this paper are referred to our NBER working paper of the
 same title.
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 primitives to be estimated are parameters describing the firms' marginal costs

 and the distribution of consumer tastes. The distribution of tastes determines
 elasticities, and these, together with marginal cost and a Nash assumption,
 determine equilibrium prices.

 A familiar alternative is to posit a simple functional form for the market-level
 demand system. This requires some aggregation over products, since, for exam-
 ple, a constant elasticity demand system for 100 products would require estimat-
 ing 10,000 elasticities. This problem is frequently alleviated by aggregating
 and/or nesting products into groups, with justification often given by represen-
 tative consumer theory. Even apart from the appropriateness of the implied
 restrictions, aggregation methods that might seem useful for one policy experi-

 ment are unlikely to be useful for another. For example, an applied researcher
 investigating tariffs might be tempted to aggregate all foreign and all domestic
 cars. However the resulting model is unlikely to prove useful when investigating
 domestic competition or pollution taxes. Further problems associated with the
 market-level demand approach include an inability to evaluate the impact of the
 introduction of new goods on demand and the difficulty of incorporating more
 micro information on the distribution of consumers into a representative agent
 framework.

 One extensively used alternative to the market-level approach is a system that
 represents consumer preferences over products as a function of individual

 characteristics and of the attributes of those products (an approach that dates
 back at least to Lancaster (1971)). Advances in the discrete choice literature
 over the last two decades have generated much of the econometric methodology
 needed to use micro level data to estimate the parameters determining individ-
 ual demands from this characteristics approach (e.g., McFadden (1973) and the
 literature he cites in his 1986 review article). Moreover a few studies have, by
 using convenient (but restrictive) assumptions, been able to aggregate the
 individual demands generated by this approach into a market-level demand
 system (e.g., Berkovec (1985), Morrison and Winston (1989)). Finally, there is a
 literature that integrates very simple discrete choice demand systems with an
 oligopolistic price setting model in a way that allows use of aggregate data to
 estimate the parameters of marginal cost and demand (Bresnahan (1987)).

 We follow in this tradition, consider two problems that arise quite naturally in
 this framework, and provide computationally tractable methods for solving
 them. The first of the two problems concerns the imposed functional form of
 utility and the resulting pattern of cross-price elasticities. We show how, using
 only aggregate data, to interact consumer and product characteristics, thereby
 allowing for plausible substitution patterns. The second problem involves the
 correlation between prices, which are observed by the econometrician, and
 product characteristics, some of which are observed by the consumer but not by
 the econometrician, and the bias in estimated elasticities that this induces. This
 is just the differentiated products analog of the traditional simultaneous equa-

 tions problem in homogeneous product markets (the classic reference being
 Working (1926)). The resulting estimation strategy involves solving an aggrega-
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 tion problem in moving from the individual to aggregate demands (solved via
 simulation, as suggested by Pakes (1986)), and solving a nonlinear simultaneous
 equations problem to account for endogenous prices (solved via an inversion
 routine as suggested by Berry (1994)). Both these techniques have precursors in

 the literature. McFadden, et al. (1977) use simulation to generate aggregate
 predictions from micro parameter estimates. Hotz and Miller (1993) use a
 related inversion technique to estimate a dynamic model, and Bresnahan (1987)
 allows prices to be correlated with a linear disturbance in an equilibrium pricing
 equation but does not explicitly model the correlation between prices and
 unobserved characteristics.

 Because we rely on mostly aggregate data, we do not have the degrees of
 freedom associated with more micro-level studies. This naturally raises concerns
 about obtaining precise estimates of.the parameters of interest. We have two
 suggestions for ameliorating any precision problems that may arise. First, we
 show how to use widely available data on the distribution of consumer charac-
 teristics to augment market level information. Second, we use recent results to

 describe and compute an approximation to the efficient instrumental variables
 estimator for our system (Chamberlain (1986), Newey (1990), and Pakes (1994)).

 Our framework is based upon: (i) a joint distribution of consumer characteris-
 tics and product attributes that determines preferences over the products
 marketed; (ii) price taking assumptions on the part of consumers; and (iii) Nash
 equilibrium assumptions on the part of producers. This a very rich framework
 which we have not fully exploited. In particular, to generate our instruments we
 use a strong assumption on the orthogonality of observed and unobserved
 product characteristics. Though we think this is a natural starting place, it is an
 assumption that can be relaxed in future work. Relatedly, and perhaps more
 interesting, the framework is rich enough to incorporate nontrivial dynamics
 and endogenize the distribution of product attributes. We discuss these exten-
 sions in Section 8 below.

 The Automobile Industry

 Few industries have been studied as intensively as the auto industry and with
 good reason. With sales topping $150 billion in 1989, the auto market is one of
 the largest in the U.S. and has ramifications for entire state economies.
 Moreover it is often at the heart of policy debates (in fields once as diverse as
 international trade and environmental regulation) and it is a market that has
 evolved in important ways.

 Early work treated autos as a homogeneous product and estimated aggregate
 demand (e.g. Suits (1958)). Griliches (1971) and later work by Ohta and
 Griliches (1976) adopted the hedonic approach. Their work was among the first
 to consider the automobile market at the level of the individual product, a
 feature that get the tone for much future research (examples include Berkovec
 and Rust (1985), Toder et al. (1975), and Levinsohn (1988)). None of these
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 studies gave much consideration to the production side of the model, although

 many of them used consumer micro data (a point we address below).
 Perhaps the first attempt at simultaneously modeling and estimating the

 demand and oligopoly pricing sides of the market was Bresnahan's (1987) study.
 In that paper, Bresnahan adopted a vertical differentiation model and assumed
 a uniform density of consumers over the quality line. Feenstra and Levinshohn
 (1995) extend Bresnahan's work and allow products to be differentiated in

 multiple dimensions, but retain his assumption of the uniform density of
 consumers. Manski (1983) investigates the (perfectly competitive) supply side
 and demand side of the Israeli automobile market. Our goal is to estimate a

 model that allows for products that are differentiated in multiple dimensions,
 richer distributions of taste parameters, and unobserved (to the econometrician)
 product characteristics. We attempt to integrate and extend the advances in this
 literature, thereby taking a step towards a more detailed understanding of
 behavior in the auto market. (For a more detailed comparison to previous
 studies, see Section 2.3.)

 A Road Map

 The next two sections describe our theoretical model. Section 2 discusses
 utility and demand, while Section 3 models firm behavior and derives industry
 equilibrium. Section 4 introduces our instruments, Section 5 formally defines
 the estimators and describes their properties, while Section 6 provides the
 required computational techniques. The data and estimation results are dis-
 cussed in Section 7. This section also provides a quick review of alternative
 models and compares our estimates to those of some alternative models. We
 conclude and discuss extensions in Section 8.

 2. THEORY: UTILITY AND DEMAND

 Our demand system is obtained by aggregating a discrete choice model of
 individual consumer behavior.2 We then combine this demand system with a

 cost function, and embed these two primitives into a model of price setting
 behavior in differentiated products markets. The demand and pricing equations
 that this model generates give us the system of equations that we take to the
 data.

 Most of this paper assumes that we do not have data that matches individual
 characteristics to the products those individuals purchased. Consequently we
 proceed (as does much of the prior literature on the empirical analysis of
 equilibrium in markets for differentiated products3) by considering the problem

 2For background on demand systems obtained in this manner see McFadden (1981) and the
 literature cited there as well as the product differentiation literature cited in Shaked and Sutton
 (1982), Sattinger (1984), Perloff and Salop (1985), Bresnahan (1987), and Anderson, DePalma, and
 Thisse (1989), among others.

 3For examples see Bresnahan (1987) and Feenstra and Levinsohn (1995).
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 of estimating all the parameters of the demand system from product level data
 (i.e. from information on prices, quantities, and the measurable characteristics

 of the products). We then extend the discussion to allow for the possibility of
 incorporating exogenous (and frequently available) information on the distribu-
 tion of individual characteristics (e.g., the distribution of income and/or family
 size). Only in the extensions section do we come back to the advantages of
 having data that matches consumer characteristics to the products those con-
 sumers purchased.

 Our specification posits that the level of utility that a consumer derives from a
 given product is a function of both a vector of individual characteristics, say ;,
 and a vector of product characteristics, say (x, {, p). Here p represents the
 price of the product, and x and f are, respectively, observed and unobserved

 (by the econometrician) product attributes. That is, the utility derived by
 consumer i from consuming product j is given by the scalar value

 U( 4, pi,x, Xj,4;0

 where 0 is a k-vector of parameters to be estimated.
 Consumers with different ; make different choices, and to derive the aggre-

 gate demand system we integrate out the choice function over the distribution
 of ; in the population. Throughout we will take ; to have a known distribution.
 This distribution may either be the empirical distribution of a characteristic, or a
 standardized distribution whose standardization parameters are estimated (unit
 normals for example, whose standardization parameters are a mean vector and
 covariance matrix). For notational simplicity, we will let 0 include any parame-
 ters determining the distribution of consumer characteristics, as well as the
 parameters that describe the utility surface conditional on these characteristics.

 Consumer i chooses good j if and only if

 U(f , pj, xj, fj; 0) 2 U( Pi,Pr ,Xr 4r; O), for r=O,1, . . ., J,

 where alternatives r = 1,..., J represent purchases of the competing differenti-
 ated products. Alternative zero, or the outside alternative, represents the option
 of not purchasing any of those products (and allocating all expenditures to other
 commodities). It is the presence of this outside alternative that allows us to
 model aggregate demand for autos as a function of prices and auto characteris-
 tics. Let

 (2.1) Aj ={;U(, pj,xj, ej; 0) 2 U(,p PrXr x r; 0), for r=O,1,..., J}.

 That is, Ai is the set of values for ; that induces the choice of good "j". Then,
 assuming ties occur with zero probability, and that Po(d ) provides the density
 of ; in the population, the market share of good "j" as a function of the
 characteristics of all the goods competing in the market is given by

 (2.2) sA(p,x, {; 0) =fA Pj(df) *eA1
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 Denote the J-element vector of functions whose "jth" component is given by
 (2.2) as s(*). Then, if M is the number of consumers in the market, the J-vector

 of demands is Ms(p, x, 6; 0).

 2.1. Functional Forns and Substitution Pattems

 This subsection begins by discussing alternative functional forms for the

 consumer decision problem and then aggregates over consumers to obtain
 market demand.

 A special case of the model in (2.1) and (2.2) is

 (2.3) U(i,pj,xj, j; 0) =x16- apj+ ej+ ,j- j+ Eij

 where

 5j = Xj J3 - apj + 6j,,

 and the mean of the E vector in the population of consumers is assumed to be

 zero so that for each j, fj is the mean (across consumers) of the unobserved
 component of utility, f(vi, 4), while Sj is the mean of the utility from good j. In
 (2.3), the E's are the only elements of the vector of consumer characteristics, ;.

 This specification is particularly tractable if the unobserved characteristic

 ej = 0 and the vector cij is distributed independently across both consumers and
 products. Note that this implies that the distribution of is independent of the

 observed characteristics, xj. The tractability of combining (2.3) with an i.i.d.
 assumption on the distribution of the E's follows from the ease of computing
 market shares from

 (2.4) Sif = H P(8j-8q + E)P(dE).
 E q#j

 Equation (2.4) shows that this computation requires, at most, evaluating a
 unidimensional integral. We note that if the E are distributed multivariate
 extreme value (the logit model) then there is a closed form for (2.4) and there is
 no need to compute any integral.

 Despite this computational simplicity, the assumption that the utility function
 is additively separable into two terms, one determined entirely by the product
 characteristics (the 6, in (2.3)) and one determined by the consumer characteris-

 tics (the E1j in (2.3)), is problematic. This is because (2.3) generates aggregate
 substitution patterns, and hence a set of (cross and own) price derivatives, as
 well as responses to the introduction of new products, that cannot possess many
 of the features that we expect them to have.

 Before considering the implications of (2.3) in detail, it may be worthwhile to
 note that the additive separability assumption just discussed is stronger than the
 assumptions used in many models of individual consumer behavior. These
 models often assume i.i.d. additive utility errors, an assumption that has been
 critiqued extensively in the literature, at least since Debreu's (1960) discussion
 of the "independence of irrelevant alternatives" property in the logit model.
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 However, consumer level studies do often interact observed consumer charac-
 teristics with product characteristics. These interactions mean that market
 shares do not take the simple form of (2.4) and hence do not have the unnatural
 implications on demand patterns which we now discuss.

 An implication of (2.3) is that all substitution effects depend only on the aj's.
 Since there is a unique vector of market shares associated with each 8-vector,
 the additively separable specification implies that the cross-price elasticities
 between any two products, or, for that matter, the similarity in their price and
 demand responses to the introduction of a new third product, depend only on
 their market shares. That is, conditional on market shares, substitution patterns
 do not depend on the observable characteristics of the product.

 Thus, if we were using the specification in (2.3) to analyze an automobile
 market in which an inexpensive Yugo and an expensive Mercedes had the same
 market shares, then the parameter estimates would have to imply that the two
 cars have the same cross-price derivative with respect to any third car. In
 particular, the model would necessarily predict that an increase in the price of a
 BMW would generate equal increases in the demand for Yugos and for
 Mercedes. This contradicts the intuition which suggests that couples of goods
 whose characteristics are more "similar" should have higher cross-price elastici-
 ties. We expect this to happen because the consumers who would have chosen a
 BMW at the old prices, but now do not, have a preference for large cars and are
 therefore likely to move to another large car. Similarly, when a new car enters
 the market, we expect it to have a large effect on the demand for cars with
 similar characteristics. Additive separability plus i.i.d. E's, on the other hand,
 imply that a consumer who substitutes away from any given choice will tend to
 substitute toward other popular products, not to other similar products. Note
 that this does not depend on any specific distribution for the E's (e.g. logit).

 For analogous reasons, the specification in (2.3) implies that two products
 with the same market share will have the same own-price demand derivatives.
 For example, if a Jaguar and a Yugo have the same market share, the
 specification in (2.3) implies that they must have the same own-price derivative.
 In an oligopoly context, this is troubling for it implies (assuming single-product
 firms) that the two products must have the same markup over marginal cost.
 Intuitively, however, we expect markups to be determined by more than market
 shares. They ought also to be determined by the number of competing products
 that are "close" in product space, and, because consumers who buy more
 expensive goods are likely to have lower marginal utilities of income, by the
 price of the product.4

 We now consider ways of allowing for interaction between individual and
 product characteristics. A familiar starting point is to allow each individual to

 4For earlier discussions of the implications of related specifications on aggregate demand
 patterns see the Appendix to Hausman (1987), McFadden (1981), and Schmalensee (1985). Note
 also that (2.4) assumes more than additive separability. It also assumes that 8. is a linear function of
 product characteristics and that the distributions of the EqI are identical' across "j"; but these
 assumptions are primarily for expositional simplicity. They can be relaxed with only minor modifica-
 tions to the discussion that follows (see below).
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 have a different preference for each different observable characteristic. This

 generates the traditional random coefficients model

 (2.5) U(,Ix,;)xPapI++okIk. E1 (.) U( Vi, pi, xi, ej; 0 ) =xi 6-P +( + E: 'k Xjk Vik + 'Eij,
 k

 where (Q, Ej) = (vil, Vi2 ...**, IViKI Eo 0,**..., EJj) is a mean zero vector of random
 variables with (a known) distribution function. Now the contribution of Xk units

 of the kth product characteristic to the utility of individual i is (*(k + OUk Vik)Xk,
 which varies over consumers. We scale Vik such that E(v2k) = 1, so that the
 mean and variance of the marginal utilities associated with characteristic k are

 -k and ok2 respectively.5 This specification is particularly tractable if Ei consists
 of i.i.d. extreme value deviates.

 The utility obtained from consuming good j can still be decomposed into a
 mean

 8j = Xj1 /- apj + 6j

 and a deviation from that mean

 ij = SOk Xjk Vik + -ij,
 k

 but now Aij depends on the interaction between consumer preferences and
 product characteristics. As a result, consumers who have a preference for size
 will tend to attach high utility to all large cars, and this will induce large
 substitution effects between large cars.

 Note, however, that though this specification allows for more realistic cross-
 price elasticities, it re-introduces the problem of computing the integral (in 2.2)
 that defines market shares as a function of the parameters of the model. We
 solve this computational problem via aggregation by simulation, a technique
 introduced by Pakes (1986).

 Though familiar, the random coefficients specification in (2.5) is not really
 suitable for our purposes. We prefer a specification that makes it easy for us to
 incorporate prior information on both the distribution of the relevant consumer
 characteristics, and on the functional form of the interaction between those
 characteristics and product attributes. This is because we have additional
 information on the distribution of income across households, and a theoretical
 rationale for the form of the interaction between income and price.

 To this end, we now nest the random coefficients specification into a
 Cobb-Douglas utility function in expenditures on other goods and services and
 characteristics of the good purchased:

 (2.6) U( ;,pj, xj, j; 0) = (yi -pj) aG(Xj , vi e)e'('Ij),

 -5We will assume that the distribution of the [v(i, ).v(i, K)] factors into a product of
 independent densities. This is for expositional convenience; with the addition of some notation we
 could easily allow for patterns of correlation among them.
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 where y is income, and E provides the effect of the interactions of unobserved
 product and individual characteristics.

 In our empirical example we assume that G() is linear in logs and has the

 random coefficient specification discussed above, so that if Uij = log[Uij, then

 (2.7a) u ij = a log (yi-pj) + xj f + j + Er OkXjk Vik + Eij,
 k

 forj= 1,. ..,J, while

 (2.7b) uio = a log(yi) + 60 + Ovio + Eio

 Note, first, that our current data set does not have information on differences
 in the value of the outside alternative (differences that would be generated by,
 among other factors, differences in access to public transportation and differ-
 ences in used car holdings). Thus, to account for the possibility that there is
 more unobserved variance in the idiosyncratic component of the outside than of

 the inside alternatives, we allow for an extra unobserved term in the determina-

 tion of uio (the vio).'
 Second, note that the consumer terms that interact with product characteris-

 tics are now

 vi = (Yi, Vill** ..IViK)

 We have used special notation for income here both because it enters the utility
 function in a special way, and because it is a variable whose distribution can be
 estimated from the March Current Population Survey. As a result, if one

 assumes a parametric form for the distribution of vi conditional on yi, we can
 use the CPS to determine the distribution of yi in our population and reduce
 the number of parameters that are estimated from our auto data.

 Two characteristics of (2.7) are central to the rest of this paper: it allows for
 interactions between consumer and product characteristics and it allows us to
 make use of exogenous data on the distribution of income in a natural and
 parsimonious way. The first characteristic enables us to model reasonable
 substitution patterns, while the second allows us to get more precise parameter
 estimates.7

 2.2. Endogenous Prices

 If producers know the values of the unobserved characteristics, 4, even
 though we do not, then prices are likely to be correlated with them. This

 6 Note that since market shares depend only on differences in utilities, the actual estimation
 algorithm ends up subtracting the u(i, 0) in (2.7b) from the u(i, j), and estimating a model where the
 outside alternative is "normalized" to zero. Given (2.7b), this implies there is a random coefficient
 on the constant term in the utility function for the inside goods.

 7 There are also a number of restrictive assumptions in (2.7), including both the decomposition of
 the interaction of unobserved individual and product characteristics into fj + E* with the si- i.id
 over both i and j, and the separability implied by log-linearity. We are exploring some of these
 restrictions in related work using more disaggregated data.
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 generates a differentiated products analog to the classic simultaneity problem in

 the analysis of demand and supply in homogeneous product markets.8 The

 simultaneity problem is complicated by both the discrete choice set for each
 individual and the interaction of individual and product characteristics. These

 together make aggregate demand a complicated nonlinear function of product

 characteristics. Berry (1994) suggests one approach to obtaining estimates of the
 demand parameters, and proves its viability under certain restrictions. This
 subsection begins by discussing the importance of unobserved demand charac-
 teristics and the resulting endogeneity of prices, then reviews Berry's approach,
 and finally extends it to allow for the random coefficients in (2.7). The
 computation section will provide a contraction mapping that allows us to
 compute the unobserved components and hence use them in estimation.

 Much empirical work on discrete choice models of demand (both aggregate
 and consumer level studies) has specified that the unobserved component in the
 utility function for each alternative is mean zero and independent across
 agents.9 This specification assumes away the simultaneity problem. It also leads
 to an embarrassing "over fitting" problem on aggregate data (see, for example,
 Toder et al. (1978)). That is, if there is no "structural" disturbance in the market
 share equation, then only sampling error can explain differences between the
 data and the predictions of the model. For sample sizes as large as those
 typically found in aggregate studies, this variance is just too small to account for

 any noticeable discrepancy between the data and the model (so that a x2 test
 of the model's restrictions on the multinomial proportions is rejected with
 probability close to one).'0

 In contrast, aggregate demand in homogeneous product markets is typically
 specified to have a nonzero disturbance that is generally associated with
 unobserved determinants of demand that are correlated across consumers in a

 market. If these disturbances are known to the producers and the consumers

 (and if demand depends upon them, one expects this to be so), and if there is
 any equilibrating mechanism in the market, then equilibrium quantities and
 prices will depend upon the disturbances. It is this relationship between the
 disturbance and price that generates the simultaneity problem and the need for
 alternatives to ordinary least squares estimation techniques.

 All the utility specifications in the last subsection had disturbances with a
 product specific mean, 4, which is the analog of the disturbance in the
 aggregate demand system in homogeneous product markets. In the automobile
 example, 4 reflects the difficult to quantify aspects of style, prestige, reputation,

 8For a history of the econometrics of demand and supply analysis in homogeneous product
 markets, see Morgan (1990, Ch. 2).

 9One exception is Berry's (1991) study of airline hubbing, which includes an aggregate market-
 specific demand error that is correlated with prices. However, that paper uses a very restrictive
 functional form for utility.

 10 Similar overfitting phenomena have been a source of concern in the biometrics literature for
 some time; see, for example, Hasemand and Kupper (1979) or Williams (1982). Though they do not
 worry about simultaneity, their conceptual solution to the overfitting problem is similar to the one
 we shall use (allowing for unobserved determinants of the cell probabilities).
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 and past experience that affect the demand for different products, as well as the

 effects of quantifiable characteristics of the car that we simply do not have in

 our data. As one might expect, the introduction of e will alleviate the overfit-
 ting problem. However, our primary concern is that if unobserved characteris-
 tics are important, and our data indicate that they are, prices will be correlated
 with them, and the estimates of price effects will be biased. This is precisely the
 same logic that leads to biased O.L.S. estimates of price effects in traditional
 demand systems.

 As in traditional homogeneous goods models, we will assume that e is mean
 independent of some set of exogenous instruments and then derive estimators

 from the orthogonality conditions those assumptions imply. This procedure
 requires only the same assumptions needed for instrumental variable estimators
 of demand parameters in homogeneous product markets. In particular we do

 not require an explicit assumption on the distribution of the e, just that they be
 mean independent of the instruments. Furthermore, the procedure does not
 depend on the exact form of the pricing rule. On the other hand, since the
 pricing rule depends in equilibrium on the true values of the demand parame-

 ters, joint estimation of the pricing and demand equations should increase
 efficiency as long as the model is correctly specified.

 The difference between our case and the homogeneous product case is that
 the demand of a given individual, and hence market demand, becomes a

 nonlinear function of the e; i.e. qj = Msj(x, e, p; 0). Consequently the orthogo-
 nality between e and the x-vector cannot be used for estimation without first
 transforming the observed quantity, price, and characteristic data into a linear

 function of e. It is this transformation that is the focus of Berry's (1994) paper
 and we return to it in the computational section. There remains the important
 issue of the choice of instruments, an issue we come back to after describing the
 pricing equation.

 2.3. PreviousApproaches to Demand Estimation

 Variations on the logit model, discussed at length above, have often formed
 the basis for micro-data studies of the automobile industry (that is, studies that
 match consumers to the cars they purchased). The authors of those studies
 frequently have been aware of the problems that we discuss here: the endogene-
 ity of prices and the need to generate reasonable substitution patterns. With
 micro-data, there were alternatives to our proposed solutions. In particular, it is
 possible to interact product characteristics with observed consumer characteris-
 tics and many studies have done so (for example, Berkovec (1985)). Also, there
 is a possibility of using nested logit, which in our framework can be shown to be
 a restricted version of a model with random coefficients on a set of dummy
 variables that define groups (or "nests') of products (Ben-Akiva (1973),
 McFadden (1978), and Berkovec and Rust (1985), Goldberg (1993)). Note that
 this requires a priori information on the order and the contents of the nests.
 Finally, given recent advances in simulation methodology, one could use a
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 random coefficients specification similar to ours and simulate choice probabili-

 ties. Note that the vi in the micro model (equation 2.7) underlying our
 aggregate specification could potentially reflect any combination of observed
 and unobserved consumer characteristics.

 Micro-data does not by itself solve the problem of unobserved product
 characteristics that are correlated with prices. It does, however, allow one to
 introduce product-specific dummies to control for unobserved attributes. These

 dummies correspond to our 81's. Note first that this approach runs into an
 efficiency problem due to the relatively large number of automobile models. For
 example, there are on average more than 100 products in a given year of our
 sample, a number that might be compared to the approximately 500 new car
 purchases observed annually in the Consumer Expenditure Survey (which is on
 the order of the largest publicly available survey that includes detailed informa-
 tion on automobile purchases)." Thus, it is not surprising that we do not know
 of a study of automobile demand that estimates choice-specific constants, except
 when choices are artificially aggregated into a small number of alternatives,
 such as small, medium, and large cars (for more detail, see Train (1986) and his
 review of the literature on estimating auto demand). In addition, even if product
 specific dummies could be estimated, these dummies will contain the linear

 utility components of product characteristics and prices (as in our equation
 (2.3)). Therefore, to calculate price and characteristic elasticities we would need
 to separate out the effects of price, x and f on the product specific constants.
 This separation requires additional assumptions-the sort of assumptions that
 we make here to justify our instrumental variable approach.

 With only aggregate data, previous authors have adopted other specifications
 for utility. In his study, Bresnahan (1987) adopts a pure vertical differentiation
 model (Shaked and Sutton (1982)). In this model, there is only one characteris-
 tic, the marginal valuation of either price or "quality," that varies across
 consumers. This greatly restricts substitution patterns. In particular, the pattern
 of cross-price elasticities is determined exclusively by market shares and the
 rank-order of prices, not by the value of other product characteristics such as

 size, power, etc. Products have nonzero cross-price elasticities only with the two

 other products that are adjacent to it in the ranking of prices. Consider, for
 example, the possibility that the price ranking contains, in order, a $24,998
 family station wagon, a $24,999 sports car, and another family station wagon
 priced at $25,000. In this case the vertical model guarantees that the wagons are
 not substitutes for one another, but that the sports car is. A solution to this is to
 allow products to be differentiated in multiple dimensions. Feenstra and Levin-
 sohn (1995) adopt this approach while maintaining the rest of Bresnahan's
 framework.

 11 This suggests the possible advantages of combining consumer and market-level data,
 an approach that we are currently pursuing.
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 3. COST FUNCTIONS AND THE PRICING PROBLEM OF THE MULTIPRODUCT FIRM

 We take as given that there are F firms, each of which produce some subset,

 say f, of the J products. For simplicity we begin by assuming that the marginal
 cost of producing the goods marketed is both independent of output levels and
 log linear in a vector of cost characteristics. These assumptions are made only
 for expositional convenience and we relax them in our investigation of the
 robustness of our empirical results.

 The cost characteristics are decomposed into a subset which are observed by

 the econometrician, the vector Wj for model j, and an unobserved component,
 Cl). Note that we might expect the observed product characteristics, the xj, to be
 part of the wj, and wj to be correlated with fj. This is because larger cars, or
 cars with a larger unobserved quality index, might be more costly to produce, a
 possibility we will account for in our estimation algorithm.

 Given these assumptions the marginal cost of good j, say mcj, is written as

 (3.1) ln(mcj) =wjy+coj,
 where y is a vector of parameters to be estimated.

 Given the demand system in (2.1) and (2.2), the profits of firm f, say Hf, are

 (3.2) Hf= E (pi-mc1)Ms1(p,x, ;0),

 with mcj given by (3.1). Each firm is assumed to choose prices that maximize its
 profit given the attributes of its products and the prices and attributes of
 competing products.12

 Given our assumptions, any product produced by firm f, or any j E.f, must
 have a price, pj, that satisfies the first order conditions

 dsr(P,, X, ~; 6)
 (3.3) sj(p x, ; 3) + (pr -mcr) r =0.

 The J first-order conditions in (3.3) imply price-cost markups (pj - mc) for
 each good. To obtain these, define a new J by J matrix, A, whose (, r) element
 is given by:

 4 -Sr
 (3.4) Air J= t dpj ' if r and j are produced by the same firm;

 09 O,otherwise.

 12 We assume that a Nash equilibrium to this pricing game exists, and that the equilibrium prices
 are in the interior of the firms' strategy sets (the positive orthant). While Caplin and Nalebuff (1991)
 provide a set of conditions for the existence of equilibrium for related models of single product
 firms, their theorems do not easily generalize to the multiproduct case. However, we are able to
 check numerically whether our final estimates are consistent with the existence of an equilibrium.
 Note that none of the properties of the estimates require uniqueness of equilibrium, although
 without uniqueness it is not clear how to use our estimates to examine the effects of policy and
 environmental changes.
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 In vector notation the first order conditions can then be written as

 s(p, x, {: 0) - A(p, x, {; 0) [p - mc] = O.
 Solving for the price-cost markup gives

 p =mc + A(p,x, x ; )'s(p,x, X;0).

 Note that prices are additively separable in marginal cost and the markup
 defined as

 (3.5) b( p, x, {; 0) _A(p, x, {; 0) -15(p9 X, {; 0).
 The vector of markups in (3.5) depends only on the parameters of the

 demand system and the equilibrium price vector. However, since p is a function
 of cl, b(p, x, {; 0) is a function of c, and cannot be assumed to be uncorrelated
 with it (the correlation of f with co also generates a dependence between the
 markups and co). Substituting in the expression for marginal cost, we obtain the
 pricing equation we take to the data:

 (3.6) ln(p-b(p,x, ;0))=wy+to.

 Just as in estimating demand, estimates of the parameters of (3.6) can be
 obtained if one assumes orthogonality conditions between cl and appropriate
 instruments. We now move on to a discussion of appropriate instruments.

 4. INSTRUMENTS

 We need to specify instruments for both the demand and pricing equations.
 Any factors that are correlated with specific functions of the observed data, but
 are not correlated with the demand or supply disturbances, f and co, will be
 appropriate instruments. Our procedure is to specify a list of variables that are
 mean independent of f and co and use the logic of the estimation procedure to
 derive appropriate instruments.

 Our mean independence assumption is that the supply and demand unobserv-
 ables are mean independent of both observed product characteristics and cost

 shifters. Formally, if zj = [xj, wj] and z = [z1, . . ., Z.], then

 (4.1) E[ jlz] =E[cojlz] =0.
 Note first that we do not include price or quantity- in the conditioning vector,

 z. This is because our model implies that price and quantity are determined in
 part by f and cw. In contrast, we do not model the determination of product
 characteristics and cost shifters.

 On the other hand, one might think that there is a "true" underlying model
 which jointly determines both observed and unobserved product characteristics.
 Assumption (4.1) will only be correct if that model has very specific properties.
 It is relatively easy to formulate other assumptions that would also formally
 identify the model. For example, with a panel data set such as ours, one could
 assume that the { 's and co's of a given auto model evolve as a first-order
 Markov process, with the innovation in that process independent of the auto's
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 initial characteristics. It is possible, to modify our procedures to use this
 assumption as the basis of our estimation algorithm. However, this modified
 procedure would be much more demanding of the data. As a result, we started
 with the simpler assumption in (4.1).

 Given (4.1) and some additional regularity conditions, we show in Section 5
 that the model generates an optimal set of instruments. While those instruments
 are hard to compute, we suggest an approximation to them. It is important to
 realize that the instruments associated with product j include functions of the
 characteristics and cost shifters of all other products. The intuition here follows
 from a natural feature of oligopoly pricing: products that face good substitutes
 will tend to have low markups, whereas other products will have high markups
 and thus high prices relative to cost. Similarly, because Nash markups will
 respond differently to own and rival products, the optimal instruments will

 distinguish between the characteristics of products produced by the same
 multi-product firm versus the characteristics of products produced by rival

 firms. Similar intuition has been used to motivate identification assumptions in
 several previous models, e.g. Bresnahan (1987).

 Given the fact that demand for any product is, via the functional form of the
 demand system, a function of the characteristics of all products, our instruments
 cannot rely on "exclusion" restrictions. However, in our model the utility of
 consuming product j depends only on the characteristics of that product. Given
 this restriction, it is natural that the number of utility parameters grows with the
 dimension of the product characteristics space and not with the number of
 products. For example, if we approximated utility via a polynomial in character-
 istics, the number of utility parameters would be determined solely by the order
 of the polynomial and the number of characteristics. This restriction, combined
 with specific functional form and distributional assumptions, is what allows us to
 identify the demand system even in the absence of cost shifters that are
 excluded from the x vector.13

 We turn now to a formal description of the estimation algorithm.

 5. THE ESTIMATION ALGORITHM

 To keep the exposition simple, we begin by maintaining some simplifying
 assumptions that we later remove. In particular, although we will actually use
 panel data, we start by assuming that our data consist of a single cross section of
 the autos marketed in a given year. If J is the number of autos marketed, the

 data set then contains J vectors (xj, w1, pj, qj), and a number of households
 sampled, n, which, when combined with the information on purchases, can be
 used to compute the share of the outside alternative. Thus, the observed vector
 of sampled market shares, denoted s', belongs to the J + 1 dimensional unit
 simplex. (This includes the share of the outside alternative).

 13 Note, however, that we use identification in an informal sense; a formal identification
 argument requires further regularity conditions.

This content downloaded from 128.100.177.168 on Mon, 10 Sep 2018 20:15:57 UTC
All use subject to https://about.jstor.org/terms



 856 S. BERRY, J. LEVINSOHN, AND A. PAKES

 The assumptions on the data generating process are as follows. Market shares

 are calculated from the purchases of a random sample of n consumers from a

 population with a distribution of characteristics, v, given by PO(O). This popula-
 tion abides by the model's decision rules at 0= 00. Letting so denote the vector
 of shares in the underlying population, the multinomial sampling process

 implies that Sn converges to so at rate vn, or (Sn- S)= O(1/ n). The

 ( fj, w,,xj, wj) vectors that characterize the primitive product characteristics are
 independent draws from some larger population of possible characteristic
 vectors.14 The distribution of these vectors in this population has the mean

 independence property of (4.1), namely that E[ jIz] = E[ wjIz] = 0.15 We also
 assume that

 (5.1) E[( fj, wj)'( , wj)Iz] = zj),

 with (2(zj) finite for almost every zj.
 The logic behind the estimation procedure is simple enough. Appendix I

 shows that given the data on the prices and the observed characteristics of the
 products, any choice of a triple consisting of an observed vector of positive

 market shares, say s, a distribution of consumer characteristics, say P, and the
 parameters of the model, say 0, implies a unique sequence of estimates for the

 two unobserved characteristics of our products, say {( fj(0, s, P), Wj(0, s, P)J 1.
 Assume, temporarily, that we can actually calculate {( (0, so, PO),
 (j(0, s? Po)}J for alternative values of 0. In fact, we do not actually observe so
 (though we do observe Sn), and for most of the models we consider we cannot

 actually compute the disturbances generated by PO, but rather only from a
 (simulation) estimator of it. So our actual estimation procedure will be based on

 substituting estimates of so and of PO into the algorithm we now develop.
 Assuming we can compute {t j(0, so, PO), wj(0, so, Po)), then at 0 = 00 our

 computation will reproduce the true values of the unobserved car characteris-
 tics. Consequently, the conditional moment restrictions in (4.1) imply that any

 function of z must be uncorrelated with the vector { (0, s?, PO), w9(0, s0, PO)]}

 14 In fact all we require is that the draws on yj = (, co, zj) be exchangeable draws from some
 population. That is, if the joint distribution of {yj} is f[J](-), then we require that

 f[J][Y1,.,YJ] =f[]][Y,,(1).** ,Y1r(J)]

 for any permutation [r(l), . . ., rJ)I of [1, . . ., J]. A reason for using this assumption (rather than
 the more restrictive assumption of independence) is to allow the (at least in part, chosen)
 characteristics of a product to be related to the characteristics of other products, and to allow for
 the outcomes of environmental processes that are likely to affect many products. The assumption
 that we can permute the y vector without changing our model [i.e., f(] amounts to assuming that
 the y-vectors include all characteristics that are determinants of the choices made (a strong, but not
 unfamiliar, assumption in applied work, especially given our allowance for the unobservables, 6 and
 co).

 15 In reference to the representation in the last footnote, we note that exchangeability implies the
 existence of a random variable, say q(J), and distribution functions, say g[J](-) such that the {yjl are
 independent conditional on (the "aggregate') random variable q(J) or f[JI(y. yj) = H1g[JI(yjIq)
 (see Kingman (1978)). One can place (different sets of) restrictions on this representation that

 imply (4.1) and (5.1), though this returns us to the discussion in Section 4.
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 when that vector is evaluated at 0= 00. As in Hansen (1982), we can use this
 fact to generate a method of moments estimator of 00. That is, we can form the
 sample analog to some set of covariance restrictions and find that value of 0
 that sets this sample analog "as close as possible" to zero (see below).

 To be more precise let T(zj) be a 2 by 2 matrix of functions of zj, and Hj(z)
 be an L by 2 matrix of functions of z (the j index here indicates that the

 function may differ with the observation). The matrix T(O) is introduced to
 standardize [ {(00), co(00)I; so we will assume that

 (5.2) T(z)'T(z) =-f2(z)-l
 Hj(-) is a matrix of instruments for two standardized disturbances. Now define

 (5.3) G'(0) =E[Hj(Z)T(Zj) (wJ0O s? Po)]

 and note that (4.1) guarantees G'(00) = 0. So form

 1 .' ( j(, so, PO
 (5.4) G1(0; sO, PO) = E Hj(z)T(zj) coj( J

 and choose, as an estimate of 0, the value that minimizes, up to a term of

 op(1 / vT),

 ||GJ(0; S?,PO)||9

 where for any vector y, Ilyll =Y'Y.
 We need to account for the fact that we cannot actually compute the moment

 conditions, G1(0; so, PO), needed to minimize the objective function. There are
 two separate problems here. The first is that we do not observe so but just Sn,
 so for any P we actually calculate G1(0, s', P). Second, for most of our models
 we will not be able to calculate G1(0; s, PO) explicitly but will have to suffice
 with a simulation estimator of it. We show in Section 6 that this is equivalent to
 using G1(0; s, Pns) where Pns provides the empirical distribution of ns simula-

 tion draws from po016 Consequently, the objective function that our estimator 0
 minimizes is

 (5.5) II GJ( 0, sn, Pns) |
 In a separate paper, Berry and Pakes (in process) provide conditions that

 insure that our estimate is consistent and asymptotically normal. Three prob-
 lems arise in deriving the limiting properties of this estimator. First, the
 interdependence implicit in the demand system generates dependence in the
 quantities that we average over to form moment conditions. Indeed these
 quantities are not mean independent at values of 0 different from 00, so
 consistency requires us to bound the moment conditions away from zero

 16Actually for increased efficiency we use an importance sampling simulator; see equation (5.3).
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 uniformly for 0 different from 00. Given consistency, asymptotic normality
 follows from mean independence and smoothness of the objective function at
 00. Second, the quantities entering the moment conditions are nonlinear func-
 tions of the disturbances generated by the consumer sampling and simulation
 processes. As a result, consistency requires both the number of simulation

 draws, ns, and the size of the consumer sample, n, to grow large. In addition,
 both the consumer sampling and simulation processes generate disturbances
 whose effects on the variance of our parameter estimates we want to quantity.
 Third, as J goes to infinity all but a finite number of the choice probabilities
 must go to zero, which makes it particularly difficult to evaluate the impact of
 the simulation and sampling errors on the inverse market share function that
 defines {. To accommodate these last two points more detailed assumptions
 must be made on the rate at which n and ns grow with respect to J.

 The covariance matrix, provided in Berry and Pakes (in process), for our
 estimator iS17

 (5.6) (FTF)-1r(E v) F(FT) -1.

 Here

 F = lim dE[GJ(0, so, PO)]
 J-+ 0 do' 0=00

 while if

 Vlj =EZ, Hj(z)T(zj) o Z (0 s? po) ) &ji(?o, s? S o 09 ) T]Jj()
 J

 V2j=-E(vn[Gj(0O, S, Po) Gj( 00, Sn, Po)]
 n

 X n GJ ( 00 SO9 PO)-GJ( 00, Sn, PO)]1),

 and

 V3' -E(ns[G1( 00s ,PnS)- GJ( 00, Sn, PO)]
 ns

 X V--S[GJ( 00, Sn, pns) -GJ( 00, Sn. p0)]'lSn),

 then

 V1 = lim V1, V2= lim V2J, and V3= lim V3J
 J- -00 J-+00 J-+00

 17 Berry and Pakes (in process) provide expressions for V2 and V3 in terms of the model's
 primitives. The conditions in their paper include an identification condition, conditions which insure
 the existence of limits, a condition on the form of the covariance matrix for a single draw of the
 simulation process as J goes to oo, conditions on the rate at which the derivatives of the market
 share vector with respect to f go to zero as J goes to oo, conditions on the rate at which ns and n
 grow as J goes to oo and smoothness conditions on the map from 9 x R-' to s(6, {, PO).
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 The matrices Vl, V2, and V3 arise from the three independent sampling
 processes. V1 arises from the process generating the product characteristics (the
 (X, W, , W)), V2 from the consumer sampling process (which generates the
 difference between s' and s?) and V3 from the simulation process (which
 generates the difference between Pns and P0).

 From the utility specification used here, the results in Berry and Pakes (in
 process) require n and ns to grow quite riapidly, on the order of J3. Despite
 this, the fact that n in our sample is so large (the number of households in the
 U.S. economy is on the order of 100 million) implies that V2 is negligible in our
 problem. On the other hand, we are concerned about the variance due to
 simulation error. Section 6 develops variance reduction techniques that enable
 us to use relatively efficient simulation techniques for our problem. Even so, we
 found that with a reasonable number of simulation draws the contribution of
 the simulation error to the variance in our estimates (13) is not negligible.

 To calculate standard errors, we estimate V, by substituting 0. for 00 and
 taking the sample analog of the expression above. To estimate V3, we substitute
 O for 00 and employ a Monte Carlo procedure. Specifically, we draw Pns
 independently times. For each of these samples, we calculate the vector of
 moment conditions (5.4) and use the empirical variance of these moment
 conditions as our estimate. Correcting for the variance due to simulation
 increases our reported standard errors in Table IV of Section 7 by about 5-20%
 (with the exception of one parameter, whose reported standard error doubles).

 5.1. Optimal Instruments

 In Section 4, we propose using as instruments functions of z, the cost and
 demand characteristics of all products in a given year. In this section we
 consider the form of those functions. Because we use only market level data and
 are therefore concerned with efficiency, we are guided in our choice by the
 optimal instrument literature.

 Using an i.i.d. sampling scheme and other mild regularity conditions Cham-
 berlain (1986) shows that the efficient set of instruments when we have only
 conditional moment restrictions is equal to the conditional expectation of the
 derivative of the conditional moment condition with respect to the parameter
 vector (conditioning on the same set of variables that condition the moment
 restriction, and evaluated at 00). The analogous instruments for our case are

 ___oo______PO) dw1(009 s0,PO)1
 (5.7) Hj(z) =E s , do zj T(zj)-Dj(z)T(zj),

 in which case the variance covariance matrix of the estimated parameter vector
 is

 {Ez [Dj(z) 2(zj) 1 Dj(z)'] }
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 The formula in (5.7) is very intuitive: larger weights should be given to the
 observations that generate disturbances whose computed values are very sensi-

 tive to the choice of 0 (at 0= 00). Unfortunately Dj(z) is typically very difficult,
 if not impossible, to compute. To calculate Dj(z) we would have to calculate the
 pricing equilibrium for different { {j, )j sequences, take derivatives at the
 equilibrium prices, and then integrate out over the distribution of such se-

 quences. In addition, this would require an assumption that chooses among
 multiple equilibria when they exist, and either additional assumptions on the

 joint distribution of (Q, co), or a method for estimating that distribution.'8
 Newey (1990) considers the special case where T(z) = T (for all z), and shows

 that, again under mild regularity conditions, one can circumvent the problem of

 computing Dj(z) by using a semiparametric estimator of it, and still generate an
 estimator whose limiting variance-covariance matrix is {Ez[Dj(z)2 -'D1(zY ]}-1
 (see also the related work on feasible GLS by Robinson (1987); and the
 literature cited in both of these articles). The first stage of this procedure uses
 an initial consistent estimate of 00 to compute a nonparametric estimate of

 Hj(z). Newey (1990) provides results from a Monte Carlo experiment that shows
 that this procedure tends to work well when a polynomial series approximation
 to the efficient instrument vector is used.

 Though polynomial approximations are easy to compute, there is a dimen-
 sionality problem in using them to approximate functions whose arguments
 include the characteristics of all competing products. An unrestricted polyno-

 mial series approximation of a given order will have a number of basis functions
 that grows polynomially in the number of products in the market, J. In our case
 J is also the limiting dimension of the problem. This implies that the dimension
 of the basis needed for the approximation grows polynomially in sample size.
 This in turn both creates a practical problem in forming the estimator and
 violates the regularity conditions required for the consistency of the first stage
 estimator of the efficient instruments.

 As shown in Pakes (1994) this dimensionality problem can be circumvented if
 f and cl are symmetric, or more precisely exchangeable, in some of their
 arguments. By exchangeable we mean that we can permute the order in which
 those variables enter a function without changing the value of that function.
 Recall that f and co are determined by the demand function, the cost function,
 and the pricing assumption. By construction, both the demand and the cost
 functions for product j are exchangeable in vectors of characteristics of all other
 products. This is true trivially of cost functions that only depend on own-product
 characteristics, and is true for any differentiated products demand system in
 which the demand for a product does not depend on the ordering of rival
 products but just on their characteristics.

 The pricing function for a given firm's product will change, however, if we
 permute the order of a product produced by the given firm and a product

 18 In an early version of this paper, we proposed alternative ways of approximating Hj(z) and we
 have found some of these useful in subsequent work; see Berry, Levinsohn, and Pakes (1994).
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 produced by a rival firm. So this function is not exchangeable in the characteris-

 tics of all other products. On the other hand, any unique Nash equilibrium is

 still partially exchangeable: that is, exchangeable in the characteristics of the
 firm's other products and exchangeable in the state vectors of its competitors

 products. In fact, a unique Nash equilibrium would imply the following three

 forms of exchangeability for the e and w functions:
 (i) exchangeable in the order of the competing firms (e.g., the prices of GM's

 products would not change if instead of listing the characteristics of Ford's

 products before Chrysler's, we listed the characteristics of Chrysler's products

 before Ford's).
 (ii) for a given competitor, exchangeable in the order of that competitors

 products, and
 (iii) for a given product, exchangeable in the order of the other products

 marketed by the same firm.
 Theorem 32 in Pakes (1994) shows that the dimension of the basis for

 polynomials of a given order that are partially exchangeable is independent of
 the number of exchangeable arguments. For example, given the properties

 above, the first order basis functions associated with characteristic Zjk, the kth
 characteristic of product j produced by firm f, are

 (5.8) Zjk 9 E Zrk I E Zrk'
 r$j, reY r ij, r Y

 (Remember that gf7 is the set of products produced by firm f). Note that the
 dimension of the first order terms in this basis is 3K, where K is the dimension

 of zj. In contrast, the dimension of the first order terms in the unrestricted basis
 is JK.

 For each of the separate cost and demand characteristics in our model, we
 compute the three terms in (5.8) and include these three terms as potential
 instruments. For example, if one of our characteristics is the size of a car, then

 the instrument vector for product j includes the size of car j, the sum of size
 across own-firm products, and the sum of size across rival firm products. Note
 the two sums vary across products in our sample because (i) they exclude

 different own-products j, (ii) different firms produce different sets of products,
 and (iii) there is variation across time in the products in our panel data set. Note
 also that one of our characteristics is a constant term, so that the number of
 own-firm products and rival-firm products become instruments.

 We could also include second and higher order basis functions, but in
 practice we found these extra terms to be nearly collinear with the terms in
 (5.8). In fact, the entire matrix of these linear terms is also nearly not of full
 rank. We faced a somewhat arbitrary choice of what terms to leave out, but
 given the near multicollinearity the choice should not greatly affect our esti-
 mates.

 In constructing a set of instruments to interact with the demand error, ei, we
 began with the three terms in (5.8) for each of the five demand variables

 described in the data section below, as it seemed reasonable to insure that Xj
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 entered the demand side moment conditions. The two variables that in our
 specification enter cost but not demand (miles per gallon and a trend) could be
 added to this list, but we found them to be so nearly collinear as to cause
 numerical problems in inversion and therefore we left them out, giving 15

 demand-side instruments. To construct a list of variables to interact with w, we
 began with the three terms of (5.8) for each of the six elements of wj, giving at
 least eighteen cost side instruments. We were able to add the excluded demand
 variable, miles per dollar, to this list without causing a problem with near
 collinearity. Therefore, there are nineteen cost side instruments, giving a total
 of 34 = 15 + 19 sample moment restrictions.

 5.2. Other Details

 The method outlined by Newey (1990) would suggest projecting the deriva-
 tives in (5.7) onto the basis functions in (5.8). Instead, we enter the basis

 functions directly into the instrument vector. To see why, let fj(z) E RR provide
 the values of the basis functions in (5.8) for the jth observation, let ? be the
 Kronecker product operator, and let I2 be an identity matrix of order two. It is

 helpful to consider the special case in which T(z) = T and the conditional

 expectation of the derivative matrix, DP(z), is a linear function of a finite
 dimensional basis. That is, Dj(z) exactly equals (fj(z) 0 I2)B for some matrix
 B. In this case algebraic manipulation shows that the estimator found by first

 projecting the derivatives in (5.7) onto (fj(z) 0 I2), and then using the fitted
 values from this projection as the estimate of Dj(z), has the same limiting
 distribution as the generalized method of moments (or GMM) estimator

 (Hansen (1982)) that uses {[ ((), c(O)I' ?fj(z)} as moments and a consistent
 estimate of E({[ M(O), w(O)I ?fj(z)}{[ 6(0), w(O)I' ?fjW(z)') as its weighting ma-
 trix. Since the method of moments estimator is easier to compute, we use. it in
 the actual estimation subroutine.19

 Finally, note that the data we actually use are not a single cross section, but a
 panel data set that follows car models over all years they are marketed. It is
 likely that the demand and cost disturbances of a given model are more similar
 across years than are the disturbances of different models (so model-year
 combinations are not exchangeable). Though correlation in the disturbances of
 a given model marketed in different years does not alter the consistency or
 asymptotic normality of the parameter estimates from our algorithm, it does
 affect their variance-covariance matrix. As a result, we use estimators that treat
 the sum of the moment restrictions of a given model over time as a single
 observation from an exchangeable population of models. That is, replacing
 product index j by indices for model m and year t, we define the sample

 19Additionally, if T(z) # T we do not know of a proof which insures that the two step estimator
 is more efficient than this GMM estimator.
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 moment condition associated with a single model as

 gm(O) E [fmt(Z)'(&I2]

 and then obtain our GMM estimator by minimizing our quadratic form in the
 average of these moment conditions across models. Although this is probably
 not the most efficient method for dealing with correlation across years for a
 given model, it does produce standard errors that allow for arbitrary correlation
 across years for a given model and arbitrary heteroskedasticity across models.

 6. COMPUTATION

 The method of moments estimation algorithm outlined in the last section

 requires computation of the moments, G,(O, sn, P,), for different values of 0.
 Most of this section is devoted to providing an algorithm that computes the

 GJ(O, Sn, P9.) The reader who is not interested in computational details can go
 directly to the empirical results in Section 7.

 We focus throughout on two special cases. The first is the pure logit model,
 while the second adds interactions between consumer and product characteris-
 tics as in (2.7). The advantages of carrying along the logit model, despite its
 unreasonable substitution patterns, stem from its computational simplicity. This
 makes it easy to use the logit model to illustrate both the logic of the overall
 estimation procedure and the likely importance of unobserved product charac-
 teristics.

 There are four steps to each evaluation of G.Z(6, s's P9 in both models. For
 each 0:

 (i) estimate (via simulation) the market shares implied by the model;
 (ii) solve for the vector of demand unobservables [i.e. {O, Sn, P,)I implied by

 the simulated and observed market shares;

 (iii) calculate the cost side unobservable, w(O,5,Pn9) from the difference
 between price and the markups computed from the shares; and finally

 (iv) calculate the optimal instruments and interact them with the computed
 cost and demand side unobservables (as in (5.3)) to produce G,(O, sn" P.)

 Both models are nested to the utility specification,

 (6.1) uij 1= (xi,pi,g ,O 1) + iU(xj p 1,vi 02) + Ej
 where the Eij are draws from independent extreme value distributions (indepen-
 dent over both i and j). Here Aj= 8(xj, pj, fj; 01) is a product-specific compo-
 nent that does not vary with consumer characteristics, while Ii= p(xj, p;, vi; 02)
 contains the interactions between product specific and consumer characteristics.
 We begin with the logit model.

 6.1. The Logit Model

 Our first model will assume no interaction effects: i.e. luij = 0. Given that we
 are assuming that eij has the Weibull (or type I extreme value) distribution
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 function, exp [-exp( -E)], the assumption that uij 0 gives us the traditional
 logit model for market shares. In addition we assume that the mean utility level
 is linear in product characteristics, or

 (6.2) 81 = xj,B - ap1 + j,

 so that ui xj - apj + ej + eij. Since ui, = Ei0 (that is, we normalize 80 to
 zero), the market-share functions are given by

 e'Bj

 (6.3) sJ(P, X, {, 0' PO) (+ Ej=e'6)

 for j = 0,1, ... , J (McFadden (1973)).
 Also, since (6.3) implies that

 (6.4) 8j =ln (sj) -ln (so),

 our estimate of 8j for the logit model is ln(sj) - ln (sJ), and, consequently, our
 estimate of the demand-side unobservable is

 (6.5) 6( n P p, 0, Po) = ln (sjn) - ln (Sn) -xj P + ap.

 That is, there are analytic formuilae for both the market share and the inverse
 functions for the logit model (see (i) and (ii) above).

 The demand-side parameters can be estimated by interacting the demand-side
 unobservables from (6.5) with instruments and applying a method of moments
 procedure to the resulting moment conditions. For joint estimation of the
 demand and pricing equations we also need to compute the markups (see (iii)
 above) from the logit demand system and then use them to compute the
 cost-side unobservables (as in (3.6)).

 6.2. A Model with Interactions

 We now reintroduce a nontrivial interaction term u = u,(xj, pj, Vi, 092). For the
 reasons noted, we focus on the "Cobb-Douglas" specification in (2.7).2?

 For this model, it is useful to obtain the market share function in two stages.
 First, condition on the v and integrate out over the extreme value deviates to
 obtain the conditional (on v) market shares as

 e'6 + A (xi, Pi, 6l, 02)

 (6.6) fj( vi, 8, p,x , 0) = 1 + EjJle i+Ax(x,pjV'i 2

 Second, integrate out over the distribution of v to obtain the market shares

 20 The computational techniques provided here generalize to handle a variety of other cases. For
 example, at an additional computational cost we can allow for an interaction between unobserved
 product (Q) and consumer (vi) characteristics, and/or do away with the extreme value, or
 idiosyncratic, error (the eq1). Also it is straightforward to generalize to less restrictive functional
 forms for utility (at least subject to mild regularity conditions).

This content downloaded from 128.100.177.168 on Mon, 10 Sep 2018 20:15:57 UTC
All use subject to https://about.jstor.org/terms



 AUTOMOBILE PRICES 865

 conditional only on product characteristics as

 (6.7) sj(p x, , 0, Po) = fj(vi, (x,p, ),p, x, O)Po(dv).

 Note that (6.6) has a closed form, while (6.7) does not. Since we cannot compute

 (6.7) exactly we will substitute a simulation estimator of its value into the
 estimation algorithm. Integrating out the e analytically in the first stage allows

 us to limit the variance in the estimator of sj(p, x, 6, 0, P0) to the variance
 induced by the v. It also produces simulated market shares that are: positive,
 sum to one, and are smooth functions of their argument. We come back to the
 problem of efficiently simulating (6.7) in the next subsection; for now we simply
 assume we have a good simulation estimator and label the vector of simulated

 shares s(p, x, 8, Pns; 0).
 Next we have to combine our estimates of the market share function with the

 observed market shares to solve for 8 as a function of 0 (see (ii) above). Once
 we add the interaction term we cannot solve for 8 analytically, so we will have
 to solve for it numerically each time we evaluate the objective function at a

 different 0. Recall that 8 solves the nonlinear system Sn = S(p, X, 8, Pns 0), or
 equivalently

 5 = 5 + In (sn) -lIn [s( p, x, 5, Pns; 0)] .

 In Appendix I, we show that for any triple (s, 0, P), such that s is in the
 interior of the J + 1 dimensional unit simplex, 0 E E CRk, and P is a proper

 distribution for v, the operator T(s, 0, P): RJ -> RJ defined pointwise by

 (6.8) T(s, 0, P) [ 8j] = 8j + ln (sj) - ln [sJ(p,X, 8, P; 0)],

 is a contraction mapping with modulus less than one. This implies that we can
 solve for 8 recursively. That is, we begin by evaluating the right-hand side of
 (6.8) at some initial guess for 8, obtain a new 8' as the output of this
 calculation, substitute 8' back into the right hand side of (6.8), and repeat this
 process until convergence.

 Given 8j(0,s,P), it is easy to solve for the demand-side unobservable as
 j( 0, s, P) = 8j(0, s, P) - xj P. Next we calculate the cost-side unobservable. To
 do so, we need to solve for the markup, which in turn requires the derivatives of
 the market share function with respect to price. Equation (6.7) implies that
 those derivatives are

 (6.9a) dsj( p, X, 6, 0, Po)ldpj

 = fj(V, 5, X, p, 0)(1 -f( v, , x, p, 0))[ /ijdpj] Po(dv),

 (6.9b) dsj(p, X, 6, 0, Po)/dpq

 = -fj( Vf 69X9P9 O)fq(V9 c5X9P90)[d/ij/dPq]Po(dV).
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 6.3. Simulators for Market Shares

 The integral in (6.7) becomes difficult to calculate as the dimension of the

 consumer characteristic grows much beyond two or three. As a result we form a
 simulation estimator of that integral and use it in the estimation algorithm. One

 simple simulation estimator would replace the population density, PO(dv) in
 (6.7), with the empirical distribution obtained from a set of ns pseudo-random

 draws from P0, say, (v1,..., vns) and calculate
 1 ns

 (6.10) sj(p, x, 6, O, Pns) ---E fj(vi, a, p, X, 0).
 i=1

 The derivatives of market shares have similar, simple analytic forms. Although
 this simulation estimator does have a smaller variance than the standard
 frequency simulator, we looked for a simulator with yet smaller variance.

 The importance sampling literature notes that we can often reduce the
 sampling variance of a simulation estimator of an integral by transforming both
 the integrand and the density we are drawing from in a way that reduces the

 variance of a simulation draw but leaves its expectation unchanged (see
 Rubinstein (1981), and the literature cited there). To see this take any function
 h(-, 0) that is strictly positive on the support of P0, and note that the integral in
 (6.7) can be rewritten as

 (6.11) sj( 6, P0) - 0) p0(v)h(v 0) dv

 ffhj( v, O)Phj(dv, 0) sj(0, Phj)9

 where

 Phj(dv, 0) h( v, 0) dv and

 fhj(v, 0) [fj(v, 0)p0(v)]/h(v, 0),
 and we have assumed, for simplicity, that P0 has a density with respect to
 Lebesgue measure (denoted by po).

 Let Sj(0, Phj, ns) be the h(+)-based unbiased estimator of sj(0, PO) formed
 from a simulated analogue to (6.11). Since there are many feasible hO the

 literature has focused on finding an sj(0, Phj, ns) with minimum variance. The
 solution is to set

 (6.12) Ph*j(dv, 0) = [fj(v, 0)po(v) dv]/sj(0 PO),

 as, in this case, sj(0, Phj ns) equals sj(0, PO) exactly (no matter ns). Intuitively,
 Ph*j(dv, 0) places proportionately higher weight (relative to P0) on draws of v
 that result in larger values of the integrand. That is, we over sample consumers
 whose characteristics would lead them to buy product j.

 Unfortunately, the optimal importance sampling simulator cannot be used
 directly. The most obvious problem with it is that to use it we need to know the

 integral itself, i.e., sj(0, PO). Also, it depends on 0, while the limit properties of
 simulation estimators (and indeed the performance of the search algorithms
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 used to find them) require the use of simulation draws that do not change as the
 minimization algorithm varies 0 (see Pakes and Pollard (1989)). Finally, the
 contraction property that allows us to solve for the unobservables as a function
 of 0 requires the vector of simulated shares to sum to one. However, the
 optimal importance sampling estimator changes with the share we are trying to
 simulate. If we use draws that change across shares in this way, it is difficult to
 guarantee that the shares sum to one.

 Though these problems make direct use of the simulator in (6.12) impossible,
 that formula does suggest how to build an importance sampling simulator with

 low variance. First, note that though we do not know Ph*j(dv, 0), we can obtain
 a consistent estimator of it, at least about 0= 00, by taking an initial consistent
 estimate of 00, say 0', calculating a good estimate of the share at 0', say

 sj(0f, 9P,,) and then drawing from [fj(v, 0')pj(v) dvl/sj(0', P,,j). Note that the
 estimate sj(0', Pn,) is calculated only once, so nsi (the number of simulation
 draws for the initial step) can be quite large without imposing too much of a
 computational burden.

 To implement this suggestion we need a way of drawing from

 [ffj(v, 0)po(jv) dv]/sj(O', Pn,,). A simple acceptance/rejection procedure which
 accomplishes this is to draw v from P0 and "accept" it with probability fj(v, 0').
 It is easy to use Bayes Rule to show that the accepted draws have the required
 density.

 Lastly, to insure that the vector of simulated market shares sums to one, we
 used the same simulation draws to calculate each market share. Thus, we had to
 base the importance sampling estimators for the shares of all choices on the
 market share for a particular choice. We focus on the share of households who
 purchase automobiles, that is, on s(0) = [1 - s5(O)] = E] - 1s.

 Thus we proceed as follows. We obtain an initial estimator of Q, say 0', using
 the simple smooth simulator in (6.10). Next we draw v from P0 and accept it

 with probability f(v, 0') = E1 fj(v, 0'). The vector of simulated market shares
 are then calculated as

 (6.13) Sj[0,Ph* (0 ')ns = E f' ' f1(v1, 0)
 =i=A fv1, 0')

 where the sum is over accepted v draws. This oversamples (relative to P0) the
 v's that are more likely to lead to (some) auto being purchased and then weights

 the purchase probabilities, fj, by s(0', PO)/f(vi, 0'), the inverse of the sampling
 weights.

 6.4. The Empirical Distribution of Income and the Final Form of the
 Simulator

 Recall that consumer preferences in our interactive "Cobb-Douglas" model of
 (2.7) are determined by the marginal utility of characteristics [the vectors

 vi' = (vz0, ..., vid)] and income (yi). We assume that the vi are random draws

This content downloaded from 128.100.177.168 on Mon, 10 Sep 2018 20:15:57 UTC
All use subject to https://about.jstor.org/terms



 868 S. BERRY, J. LEVINSOHN, AND A. PAKES

 from a normal distribution with mean vector zero and an identity covariance
 matrix independent of the level of consumer's income (yi). The income distribu-
 tion is assumed to be lognormal and we estimate its parameters from the March
 Current Population Survey (CPS) for each year of our panel (we denote the

 estimated mean by m, and the estimated standard deviation by ( ). This allows
 us to use the exogeneously available information on the income distribution to
 increase the efficiency of our estimation procedure.21

 Using this procedure our utility model is written as

 (6.14a) uij = a ln (emt+dyviy -pjt) +xjt, + ejt + E ?kXjkt Vik + fijt
 k

 (6.14b) uiot = a ln(emt+yviy) + 0ot + Ovio + Eiot,

 where the vectors ( viO,..., Vik) are random draws from a multivariate
 normal distribution with mean 0 and an identity covariance matrix. Note that we

 held the vector of characteristics ( vj1,..., Vik) fixed over the time period of
 the panel.

 6.5. Minimization

 Finally, we need a minimization routine that searches to find the value of 0
 that minimizes the objective function in (5.5). The minimization routine can be
 simplified by noting that the first order conditions for a minimum to (5.5) for
 our specifications are linear in /3 and y for any given (a, o-). As a result [3 and
 y can be "concentrated out" of those conditions, allowing us to confine the
 nonlinear search to a search over (a, o-) couples. This search was performed
 using the Nelder-Mead (1965) nonderivative "simplex" search routine.

 7. DATA AND RESULTS

 7.1. The Data

 We use data on product characteristics obtained from annual issues of the
 Automotive News Market Data Book.22 Product characteristics for which we have
 data include the number of cylinders, number of doors, weight, engine displace-
 ment, horsepower, length, width, wheelbase, EPA miles per gallon rating
 (MPG), and dummy variables for whether the car has front wheel drive,
 automatic transmission, power steering, and air conditioning as standard equip-
 ment.

 21 We could have taken ns draws from the CPS for each year and used these draws directly to
 simulate the market shares. This places fewer restrictions on the empirical distribution of income,
 but is inefficient if the true income distribution is in fact lognormal. We found the less restrictive
 procedure led to quite imprecise simulators (it did a particularly bad job of estimating changes in
 the upper tail of the income distribution), and, as a result, we kept the lognormal assumption. Also,
 we did not attempt to estimate a different standard deviation of income in each year because such
 estimates were imprecise.

 22 The data set combines data collected by us with a similar data set graciously made available to
 us by Ernie Berndt of MIT.
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 The price variable is the list retail price (in $1000's) for the base model. This
 is clearly not ideal; we would prefer transaction prices, but these are not easy to
 find. All prices are in 1983 dollars. (We used the Consumer Price Index to

 deflate.) The sales variable corresponds to U.S. sales (in 1000's) by name plate.23
 The product characteristics correspond to the characteristics of the base model
 for the given name plate.

 The data set includes this information on (essentially) all models marketed
 during the 20 year period beginning in 1971 and ending in 1990 (the only models
 excluded are "exotic" models with extremely small market shares, such as the
 Ferrari and the Rolls Royce). Since models both appear and exit over this
 period, this gives us an unbalanced panel. Treating a model/year as an
 observation, the total sample size is 2217. Throughout we shall assume that two
 observations in adjacent years represent the same model if (a) they have the
 same name; and (b) their horsepower, width, length, or wheelbase do not
 change by more than ten percent. With these definitions the 2217 model/years
 represent 997 distinct models (as noted in Section 5, different models are
 assumed to have unobservables whose conditional distributions are independent
 of one another, but the unobservables for different years of the same model are
 allowed to be freely correlated).

 Aside from these product characteristics, we obtain additional data from a
 variety of sources. Because the cost of driving may matter to consumers (as
 opposed to just the MPG rating), we gathered data on the price of gasoline (the
 real price of unleaded gasoline as reported by the U.S. Department of Com-
 merce in Business Statistics, 1961-1988). One of our product characteristics is
 then miles per dollar (MP$), calculated as MPG divided by price per gallon.
 Also, our measure of market size (M) was the number of households in the U.S.
 and this was taken for each year from the Statistical Abstract of the U.S., while,
 as noted in the computation section, the parameters of the distribution of
 household income were estimated from the annual March Current Population
 Surveys. We also obtained Consumer Reports reliability ratings. This variable is a
 relative index that ranges from 1 (poor reliability) to 5 (highest reliability).24

 The multi-product pricing problem requires us to distinguish which firms
 produce which models. We assume that different branches of the same parent
 company comprise a single firm. For example, Buick, Oldsmobile, Cadillac,
 Chevrolet, and Pontiac are all part of one firm, General Motors. This follows
 Bresnahan (1981) and Feenstra and Levinsohn (1995). For some results, we also
 assign a country of origin to each model, which is simply the country associated
 with the producing firm.25

 23 We do not observe fleet sales, which include sales to rental car companies. In ignoring fleet
 sales, we effectively assume that fleet purchasers are acting as agents for households.

 24 Unfortunately, this variable is not available for every product in our sample and, more
 importantly, the rating was rescaled in every year of our sample. For example, the absolute level of
 reliability of a "3" rating changes every year in an unreported way, as does the absolute increment in
 reliability represented by a one point increase in the index.

 25 For example, we treat Hondas as Japanese and VW's as German, although, by the end of our
 sample, some of each were produced in the U.S.
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 TAiBLE 1

 DESCRIPTIVE STATISTICS

 No. of

 Year Models Quantity Price Domestic Japan European HP/Wt Size Air MPG MP$

 1971 92 86.892 7.868 0.866 0.057 0.077 0.490 1.496 0.000 1.662 1.850
 1972 89 91.763 7.979 0.892 0.042 0.066 0.391 1.510 0.014 1.619 1.875
 1973 86 92.785 7.535 0.932 0.040 0.028 0.364 1.529 0.022 1.589 1.819
 1974 72 105.119 7.506 0.887 0.050 0.064 0.347 1.510 0.026 1.568 1.453
 1975 93 84.775 7.821 0.853 0.083 0.064 0.337 1.479 0.054 1.584 1.503
 1976 99 93.382 7.787 0.876 0.081 0.043 0.338 1.508 0.059 1.759 1.696
 1977 95 97.727 7.651 0.837 0.112 0.051 0.340 1.467 0.032 1.947 1.835
 1978 95 99.444 7.645 0.855 0.107 0.039 0.346 1.405 0.034 1.982 1.929
 1979 102 82.742 7.599 0.803 0.158 0.038 0.348 1.343 0.047 2.061 1.657
 1980 103 71.567 7.718 0.773 0.191 0.036 0.350 1.296 0.078 2.215 1.466
 1981 116 62.030 8.349 0.741 0.213 0.046 0.349 1.286 0.094 2.363 1.559
 1982 110 61.893 8.831 0.714 0.235 0.051 0.347 1.277 0.134 2.440 1.817
 1983 115 67.878 8.821 0.734 0.215 0.051 0.351 1.276 0.126 2.601 2.087
 1984 113 85.933 8.870 0.783 0.179 0.038 0.361 1.293 0.129 2.469 2.117
 1985 136 78.143 8.938 0.761 0.191 0.048 0.372 1.265 0.140 2.261 2.024
 1986 130 83.756 9.382 0.733 0.216 0.050 0.379 1.249 0.176 2.416 2.856
 1987 143 67.667 9.965 0.702 0.245 0.052 0.395 1.246 0.229 2.327 2.789
 1988 150 67.078 10.069 0.717 0.237 0.045 0.396 1.251 0.237 2.334 2.919
 1989 147 62.914 10.321 0.690 0.261 0.049 0.406 1.259 0.289 2.310 2.806
 1990 131 66.377 10.337 0.682 0.276 0.043 0.419 1.270 0.308 2.270 2.852
 All 2217 78.804 8.604 0.790 0.161 0.049 0.372 1.357 0.116 2.099 2.086

 Note: The entry in each cell of the last nine columns is the sales weighted mean.

 Tables I and II provide some summary descriptive statistics of variables that
 are used in the specifications we discuss below. These variables include quantity
 (in units of 1000), price (in $1000 units), dummies for where the firm that
 produced the car is headquartered, the ratio of horsepower to weight (in HP
 per 10 lbs.), a dummy for whether air conditioning is standard (1 if standard, 0
 otherwise), the number of ten mile increments one could drive for $1 worth of
 gasoline (MP$), tens of miles per gallon (MPG), and size (measured as length
 times width).

 Table I gives sales-weighted means. Several interesting trends are evident.
 The number of products available generally rises from a low of 72 in 1974 to its
 high of 150 in 1988. Sales per model, on the other hand trend downward
 (though here there is some movement about the trend). In real terms, the
 sales-weighted average list price of autos has risen almost 50 percent during the
 1980's after having remained about constant during the 1970's. On the other
 hand, the characteristics of the cars marketed are also changing (so the cost of a
 car with a given vector of characteristics need not be increasing). The ratio of
 horsepower to weight fell in the early 1970's and has since trended upward.
 Most of the changes in this ratio are attributable to changes in weight as
 horsepower has remained remarkably constant. It appears that prior to the first
 oil price shock, cars were becoming heavier, while after the mid-1970's cars
 became lighter. Along with the change in the ratio of horsepower to weight, cars
 have also become more fuel cost-efficient. In 1971, the average new car drove
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 TABLE II

 THE RANGE OF CONTINUOUS DEMAND CHARACTERISTICS
 (AND ASSOCIATED MODELS)

 Percentile

 Variable 0 25 50 75 100

 Price 90 Yugo 79 Mercury Capri 87 Buick Skylark 71 Ford T-Bird 89 Porsche 911 Cabrio]
 3.393 6.711 8.728 13.074 68.597

 Sales 73 Toyota 1600CR 72 Porsche Rdstr 77 Plym. Arrow 82 Buick LeSabre 71 Chevy Impala
 .049 15.479 47.345 109.002 577.313

 HP/Wt. 85 Plym. Gran Fury 85 Suburu DH 86 Plym. Caravelle 89 Toyota Camry 89 Porsche 911 Turbo
 0.170 0.337 0.375 0.428 0.948

 Size 73 Honda Civic 77 Renault GTL 89 Hyundai Sonata 81 Pontiac F-Bird 73 Imperial
 0.756 1.131 1.270 1.453 1.888

 MP$ 74 Cad. Eldorado 78 Buick Skyhawk 82 Mazda 626 84 Pontiac 2000 89 Geo Metro
 8.46 15.57 20.10 24.86 64.37

 MPG 74 Cad. Eldorado 79 BMW 528i 81 Dodge Challenger 75 Suburu DL 89 Geo Metro
 9 17 20 25 53

 Notes: The top entry for each cell gives the model name and the number directly below it gives the value of the variable for this mod

 18.50 miles on a (1983) dollar of gasoline, while by 1990 that figure was 28.52
 miles. Also, while no cars had air conditioning as standard equipment at the
 start of the sample, 30.8 percent had it by the end. This is indicative of a general
 trend toward more extensive standard equipment. The market share of domestic

 cars has fallen from a 1973 high of 93.2 percent to a 1990 low of 68.2 percent.
 European market share has been fairly constant since the demise of the popular
 VW Beetle in the mid-1970's hovering around 4 to 5 percent. The Japanese
 market share has risen from a low of 4.0 percent in 1973 to a high of 27.6
 percent in 1990. An automobile's size, given by its length times width trends
 generally downward with this measure falling about 17 percent over the sample.

 Table II associates some names with the numbers. This table provides an
 indication of the range of the continuous product attributes by presenting the
 quartiles of their distribution. The least expensive car in the sample is the 1990
 Yugo at $3393 (1983 dollars) while the top-of-the-line Porsche 911 Turbo
 Cabriolet costs $68,597. The 1989 Geo Metro has the highest MPG and MP$
 while the 1974 Cadillac Eldorado has the lowest. The ratio of horsepower to
 weight varies tremendously from 0.170 for the (questionably named) 1985
 Plymouth Gran Fury to .948 for the Porsche 911 Turbo. The smallest car in the
 sample was the 1973 Honda Civic.

 7.2. Some Results

 We will report three basic sets of results together with some auxiliary
 calculations. These are a simple logit specification, an instrumental variables
 logit specification, and the Cobb-Douglas specification in (6.14) above. For
 simplicity, we will refer to the first as logit, the second as IV logit, and the third
 as BLP.
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 The logit model, discussed first, provides an easy to compute reference point.
 One advantage of presenting logit results is that we can explore the effects of
 controlling for the endogeneity of prices in a very simple framework. The IV
 logit maintains the restrictive functional form of the logit (and hence must
 generate the restrictive substitution patterns that this form implies), but allows
 for unobserved product attributes that are correlated with price, and therefore
 corrects for the simultaneity problem that this correlation induces. The BLP
 results allow both for unobserved product characteristics and a more flexible set
 of substitution patterns. Results from each specification will be discussed in
 turn.

 7.3. The Logit and the IVLogit

 The first set of results are based on the simplest logit specification for the
 utility function. They are obtained from an ordinary least squares regression of

 ln(sj) - ln (so) on product characteristics and price (see (5.5)).
 The choice of which attributes to include in the utility function is, of course,

 ad hoc. For the BLP specification, computational constraints dictate a parsimo-
 nious list. Since we wish to compare results across different specifications, we
 adopt a short list of included attributes in the logit specifications also. Included
 characteristics are the ratio of horsepower to weight (HPWT), a dummy for
 whether air conditioning is standard, miles per dollar (MP$), size, and a
 constant. Horsepower over weight and MP$ are obvious measures of power and
 fuel efficiency, while air conditioning proxies for a measure of luxury. Size is
 intended as a measure of both itself and safety. Other measures of size such as
 interior room are not available for much of the sample period while government
 crash test results are only available for a small subsample of the data. Though
 there are surely solid arguments for including excluded attributes, their force is
 somewhat diminished by our explicit treatment of product attributes unobserved
 by the econometrician but known to the market participants. Still, we investi-
 gate how robust results are to the choice of included attributes in sensitivity
 analyses that are presented below.

 In the first column of Table III, we report the results of OLS applied to the
 logit utility specification. Most coefficients are of the expected sign, although
 the (imprecisely estimated) negative coefficients on air conditioning and size are
 anomalies, as one would expect these attributes to yield positive marginal utility.
 On the other hand these estimates have a distinctly implausible set of implica-
 tions on own price elasticities. The estimated coefficient on price in Table III
 implies that 1494 of the 2217 models have inelastic demands. This is inconsis-
 tent with profit maximizing price choices. Moreover this is not simply a problem
 generated by an imprecise estimate of the price coefficient. Adding and sub-
 tracting two times the estimate of the standard deviation of the price coefficient
 to its value and recalculating the price elasticities still leaves 1429 and 1617
 inelastic demands respectively.
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 TABLE III

 RESULTS WITH LOGIT DEMAND AND MARGINAL COST PRICING
 (2217 OBSERVATIONS)

 OLS IV OLS
 Logit Logit In (price)

 Variable Demand Demand on w

 Constant -10.068 - 9.273 1.882
 (0.253) (0.493) (0.119)

 HPI Weight* -0.121 1.965 0.520
 (0.277) (0.909) (0.035)

 Air -0.035 1.289 0.680
 (0.073) (0.248) (0.019)

 MP$ 0.263 0.052
 (0.043) (0.086)

 MPG* - -0.471
 (0.049)

 Size* 2.341 2.355 0.125
 (0.125) (0.247) (0.063)

 Trend - 0.013
 (0.002)

 Price -0.089 -0.216
 (0.004) (0.123)

 No. Inelastic
 Demands 1494 22 n.a.
 (+/- 2 s.e.'s) (1429-1617) (7-101)
 R 2 0.387 n.a. .656

 Notes: The standard errors are reported in parentheses.
 *The continuous product characteristics-hp/weight, size, and fuel effi-

 ciency (MP$ or MPG)-enter the demand equations in levels, but enter the
 column 3 price regression in natural logs.

 In the second column of Table III, we re-estimate the logit utility specifica-
 tion, this time allowing for unobservable product attributes that are known to
 the market participants (and hence can be used to set prices), but not to the
 econometrician. To account for the possible correlation between the price
 variable and the unobserved characteristics, we use an instrumental variable
 estimation technique, using the instruments discussed at the end of Section 5.1.

 The use of instruments generates substantial changes in several of the
 parameter estimates. All characteristics now enter utility positively and all but
 MP$ are statistically significant. Moreover, just as the simultaneity story pre-
 dicts, the coefficient on price increases in absolute value (indeed it more than
 doubles). Our interpretation of this finding is familiar: products with higher
 unmeasured quality components sell at higher prices. Note that now only 22
 products have inelastic demands-a significant improvement from the OLS
 results. Seven to 101 demands are estimated to be inelastic when we evaluate

 elasticities at plus and minus two standard deviations of the parameter estimate.
 These results seem to indicate that correcting for the endogeneity of prices

 matters. One can also see the importance of unobservable characteristics by
 examining the fit of the logit demand equation. The simple logit specification
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 gives an R2 of 0.387. This implies that 61 percent of the variance in mean utility
 levels is due to the unobserved characteristics.

 As noted in Section 2, the separability, in product and consumer characteris-
 tics, of the logit functional form applied to aggregate data implies that neither
 the IV nor the simple logit estimates can possibly generate plausible cross price
 elasticities, or for that matter differences in markups across products. Thus, the
 IV logit estimates reported in Table III imply that all models have about the
 same mark-up (ranging from $4630 for the BMW to $4805 for the Chevy
 Cavalier). Markups are related to the model's market share (which, as noted,
 are about equal in absolute terms for all products) and how many products are
 made by the same parent firm. GM produces the most models and therefore its
 estimated markups are highest, while BMW produces the fewest models and its
 estimated markups are, quite counter-intuitively, the lowest.26

 Table III also presents results from a very simple model of "supply." For the
 purposes of Table III we assume marginal cost pricing, with the specification for
 marginal cost found in (3.1). The marginal cost pricing equation is obtained by
 setting the markup term in our pricing equation (3.6) to zero, and regressing log
 price on w (the characteristics that shift the cost surface).27

 The third column of Table III presents the results of this simple regression.

 In Table III (and in subsequent cost-side results), included cost shifters (wj) are
 the same attributes that appear in utility with three modifications. First, miles
 per gallon replaces miles per dollar, as the production cost of fuel efficient
 vehicles presumably does not change with the retail price of gasoline (at least in
 the short-run). Second, we include a trend term to capture technical change and
 other trending influences (e.g. government regulation) on real marginal cost.
 Third, we use the log of continuous attributes, not their level, in the cost
 function. Thus the cost function parameters have the interpretation of elastici-
 ties of marginal cost with respect to associated product characteristics.

 Note that the cost function adopted here is both simple and restrictive. In
 particular, it implies a constant elasticity of marginal cost with respect to all
 attributes and does not permit marginal cost to vary with output. Though our
 robustness tests provide some results with more flexible cost functions (see
 Table IX), we hesitate to use a more detailed specification of the cost surface
 without having more direct information on costs.

 As is typical in similarly estimated hedonic pricing regressions, each of the
 coefficients on characteristics (except MPG) is estimated to be positive and all
 are significantly different from zero. (We comment on the MPG coefficient
 below). For example, a 10% increase in the ratio of horsepower to weight is

 26A referee has noted that we could generate variation in markups by putting ln(p) instead of p
 into the logit utility function, which might also more closely match the ln (y -p) specification in the
 full model. We implemented this suggestion and found that markups are indeed more reasonable,
 but that substitution patterns are still quite unreasonable.

 7 The hedonic pricing literature, e.g. Griliches (1971), frequently presents similar regressions of
 log price on product characteristics. Of course, these regressions are motivated much differently
 from the marginal cost pricing argument we give here.
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 associated with a 5.2% increase in prices (and, in this context, in marginal
 costs). Also familiar from hedonic results is the fact that the R2 from this
 regression is fairly high (at 0.66); simple functions of observable characteristics
 seem to be much better able to explain differences in the log of prices, than they
 are able to explain differences in the mean utility levels that rationalize the logit
 demand structure.

 We turn now to results from our full model.

 7.4. Results from the Full Model

 The demand system for the full model is derived from the utility function in
 (5.14). The attributes that enter the utility function (the x-vector) for our base
 case scenario are the same as in Table III. Now, the marginal utility of each
 attribute varies across consumers so that we estimate a mean and a variance for
 each of them.28 The pricing equation is given in (3.6) and the cost-side variables
 (the w-vector) are the same as in the third column of Table III.

 The results from jointly estimating the demand and pricing equations from
 our specification are provided in Table IV.29 As noted, the reported standard
 errors have been corrected for simulation error and for serial correlation of
 unobserved characteristics within models across years (but not for any correla-
 tion across models). The first and second panels of the table provide the
 estimates of the means and standard deviations of the taste distribution of each
 attribute, respectively. The third panel provides the estimate of the coefficient
 of ln (y - p), and the last panel provides the estimates of the parameters of the
 cost functions.

 We begin with a discussion of the cost-side parameters. The coefficients on
 ln(HP/Weight), Air, and the constant are positive and significantly different
 from zero. The term on trend is also positive and significant. The coefficient on
 ln(size) is not significantly different from zero. The coefficient on MPG is
 negative and significant, just as it is in the regression of log price on product
 characteristics reported in Table III.

 Indeed, recall that our pricing equation is essentially an instrumental variable

 regression of ln[p- b(p,x,e;0)] on the cost side characteristics, where
 b(p,x,e;0) is the markup (see (3.5)). Since ln[p-b(p,x,e;0)] ln(p)-
 b(p, x, e; 0)/p, if our model is correct, the marginal cost pricing, or "hedonic,"
 regression should, by the traditional omitted variable formula, produce coeffi-

 28 In this context, we remind the reader that a positive variance of the random coefficient on the
 constant term implies that the distribution of the outside good has more idiosyncratic variance than
 that of the extreme value deviates generating idiosyncratic variance for the inside alternatives.

 29 We should note here that we have also estimated the demand side of our specification
 separately, and that we have run specifications that allowed for firm specific dummy variables on
 both the demand and cost side. Since there are 22 firms in our data set this latter specification
 generates 66 additional parameters (a mean and variance for each firm on the demand side, and one
 cost elasticity on the supply side). Neither of these changes generated point estimates that were
 much different from the point estimates in Table IV, but both generated much larger estimated
 standard errors.
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 TABLE IV

 ESTIMATED PARAMETERS OF THE DEMAND AND PRICING EQUATIONS:
 BLP SPECIFICATION, 2217 OBSERVATIONS

 Parameter Standard Parameter Standard
 Demand Side Parameters Variable Estimate Error Estimate Error

 Means ( 1's) Constant - 7.061 0.941 - 7.304 0.746
 HP/Weight 2.883 2.019 2.185 0.896
 Air 1.521 0.891 0.579 0.632
 MP$ -0.122 0.320 -0.049 0.164
 Size 3.460 0.610 2.604 0.285

 Std. Deviations (oa's) Constant 3.612 1.485 2.009 1.017
 HP/Weight 4.628 1.885 1.586 1.186
 Air 1.818 1.695 1.215 1.149
 MP$ 1.050 0.272 0.670 0.168
 Size 2.056 0.585 1.510 0.297

 Term on Price (a) ln(y -p) 43.501 6.427 23.710 4.079

 Cost Side Parameters
 Constant 0.952 0.194 0.726 0.285
 In (HP/Weight) 0.477 0.056 0.313 0.071
 Air 0.619 0.038 0.290 0.052
 ln(MPG) - 0.415 0.055 0.293 0.091
 ln (Size) -0.046 0.081 1.499 0.139
 Trend 0.019 0.002 0.026 0.004
 ln (q) -0.387 0.029

 cients that are approximately the sum of the effect of the characteristic on
 marginal cost and the coefficient obtained from the auxiliary regression of the
 percentage markup on the characteristics. Comparing the cost side parameters
 in Table IV with the hedonic regression in Table III we find that the only two
 coefficients that seem to differ a great deal between tables are the constant
 term and the coefficient on size. The fall in these two coefficients tells us that
 there is a positive average percentage markup, and that this markup tends to
 increase in size.

 The coefficients on MPG and size may be a result of our constant returns to
 scale assumption. Note that, due to data limitations, neither sales nor produc-
 tion enter the cost function. Almost all domestic production is sold in the U.S.,
 hence domestic sales is an excellent proxy for production. The same is not true
 for foreign production, and we do not have data on model-level production for
 foreign automobiles. The negative coefficient on MPG may result because the
 best selling cars are also those that have high MPG. By imposing constant
 returns to scale, we may force these cars to have a smaller marginal cost than
 they actually do. Due, to the positive correlation between both MPG and size
 and sales, conditional on other attributes, the coefficients on MPG and size are
 driven down. We can attempt to investigate the accuracy of this story by
 including ln (sales) in the cost function, keeping in mind that for foreign cars
 this is not necessarily well measured. (Note, though, in Table I that about 80%
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 of the cars in our sample are domestic). When we include ln (q), so that the cost
 function is given by

 ln (cj) = wjyw + yq ln (qj) + cj,
 and re-estimate with the same instruments, all cost shifters are positive and
 significantly different from zero. These estimates are presented in the last two
 columns of Table IV. The coefficient on ln(q) is very significantly negative,
 giving implied returns to scale that seem implausibly high. Adding higher order
 terms in ln (q) reduces this problem, but we hesitate to take this approach too

 far since the data are inaccurate for about a fifth of our sample.
 Our estimate of the variance of the cost-side unobservable, w, implies that it

 accounts for about 22% of the estimated variance in log marginal cost. Thus,
 though our estimates do imply that there are some differences in "productivity"
 across firms, most of the differences in (the log of) marginal costs can be
 accounted for by a simple linear function of observed characteristics. As one

 might expect, the correlation between the demand-side error, 6, and cl is
 positive implying that products with more unmeasured quality were more costly
 to produce. On the other hand, that correlation was only .17, implying that most

 of the (substantial) variance in 6 could not be accounted for by a linear function
 of differences in marginal costs of production.

 Before discussing the demand-side coefficients in the first three panels of
 Table IV, we briefly review the structure of purchases in a discrete-choice
 model. Recall that these are driven by the maximum, and not by the mean, of
 the utilities associated with the given products. Thus there are, in general, two
 ways to explain why, say, products with high levels of horsepower to weight
 (HPWT), are popular. One can explain this by either positing a high mean for
 the distribution of tastes for HPWT, or by positing a large variance of that same
 distribution, for both an increase in the mean and an increase in the variance of
 tastes will increase the share of consumers who purchase cars with high HPWT.
 However, the two explanations have different implications for substitution
 patterns, and thus different implications for how market share will change with
 product attributes and prices. If there were, for example, a zero standard
 deviation for the distribution of marginal utilities of HPWT, we would find that
 when a high HPWT car increases its price, consumers who substitute away from
 that car have the same marginal utilities for HPWT as any other consumer and
 hence will not tend to substitute disproportionately toward other high HPWT
 cars. If, on the other hand, the standard deviation of tastes for HPWT was
 relatively large, the consumers who substitute away from the high HPWT cars
 will tend to be consumers who placed a relatively high marginal utility on
 HPWT originally, and hence should tend to substitute disproportionately to-
 wards other high HPWT cars.30

 30 This same reasoning leads to an interesting set of questions regarding the nonparametric
 identification of the parameters of the taste distribution, which we have not yet-begun to investigate.
 We should note, however, that we had much more difficulty estimating separate mean and variance
 terms from a single cross section. than we did from the panel; indeed, this was one motivation for
 using a panel data set.
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 We now move on to the estimates of the means, 8k, and the standard
 deviations, ak, of the marginal utility distributions. For expositional simplicity,
 we will focus on the estimates in the first two columns. The demand-side
 estimates in the nonconstant returns to scale case imply elasticities and substitu-
 tion patterns similar to the constant returns case. We find that the means (t3's)
 on Air and Size are positive and are estimated precisely enough to be signifi-
 cant at traditional significance levels. The estimate of the constant is precise
 and negative, while the mean utility levels associated with HPWT and MP$ are
 insignificantly different from zero. On the other hand, the estimate of the
 standard deviations of the distribution of marginal utilities for HPWT and MP$
 are substantial and estimated precisely enough to be considered significant at
 reasonable significance levels. Thus, each of the included attributes is estimated
 to have either a significantly positive effect on the mean of the distribution of
 utilities, or a significant positive effect on the standard deviation of that
 distribution (and in the case of Size on both). We turn next to providing some
 figures on the economic magnitude of these effects.

 Table V presents estimates of elasticities of demand with respect to the
 continuous attributes, including prices. Each row in this table corresponds to a
 model. The top number in each cell is the actual value of that attribute for that
 model, while the bottom number is the elasticity of demand with respect to the
 attribute. For example, the Mazda 323 has a HP/weight ratio of 0.366 and its
 elasticity of market share with respect to HP/weight is 0.458.

 The elasticities with respect to MP$ illustrate the importance of considering
 both the mean and standard deviation of the distribution of tastes for a
 characteristic. The results here are quite intuitive. The elasticity of demand with
 respect to MP$ declines almost monotonically with the car's MP$ rating. While
 a 10 percent increase in MP$ increases sales of the Mazda 323, Sentra, and
 Escort by about 10 percent, the demand for the cars with low MP$ are actually
 falling with an increase in MP$. The decreases, though, are quite close to zero.
 Hence, we conclude that consumers who purchase the high mileage cars care a
 great deal about fuel economy while those who purchase cars like the BMW
 735i or Lexus LS400 are not concerned with fuel economy. Similarly, the
 demand elasticities with respect to size are generally declining as cars get larger.

 The elasticity of demand with respect to HP/weight, our proxy for accelera-
 tion, is also small (about 0.1) for the largest cars in the sample, the Lincoln,
 Cadillac, Lexus, and BMW. On the other hand, it appears that consumers who
 purchase the smallest cars place a greater value on increased acceleration. For
 the Mazda 323, Sentra, and Escort, a 10 percent increase in HP/weight
 increases demand by about 4.5 percent. The relationship between the elastici-
 ties and the value of HP/weight is not monotonic though. For midsize cars, the
 elasticities are varied. The Maxima (a fairly sporty midsize car) has a relatively
 high elasticity (0.322) while the similarly sized but more sedate Taurus has an
 elasticity of 0.180.

 The term on ln (y -p), a, is of the expected sign and is measured precisely
 enough to be highly significant. Its magnitude is most easily interpreted by
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 TABLE V

 A SAMPLE FROM 1990 OF ESTIMATED DEMAND ELASTICITIES

 WITH RESPECT TO AiTRIBUTES AND PRICE

 (BASED ON TABLE IV (CRTS) ESTIMATES)

 Value of Attribute/Price
 Elasticity of demind with respect to:

 Model HP/Weight Air MP $ Size Price

 Mazda323 0.366 0.000 3.645 1.075 5.049
 0.458 0.000 1.010 1.338 6.358

 Sentra 0.391 0.000 3.645 1.092 5.661
 0.440 0.000 0.905 1.194 6.528

 Escort 0.401 0.000 4.022 1.116 5.663
 0.449 0.000 1.132 1.176 6.031

 Cavalier 0.385 0.000 3.142 1.179 5.797
 0.423 0.000 0.524 1.360 6.433

 Accord 0.457 0.000 3.016 1.255 9.292
 0.282 0.000 0.126 0.873 4.798

 Taurus 0.304 0.000 2.262 1.334 9.671
 0.180 0.000 -0.139 1.304 4.220

 Century 0.387 1.000 2.890 1.312 10.138
 0.326 0.701 0.077 1.123 6.755

 Maxima 0.518 1.000 2.513 1.300 13.695
 0.322 0.396 -0.136 0.932 4.845

 Legend 0.510 1.000 2.388 1.292 18.944
 0.167 0.237 - 0.070 0.596 4.134

 TownCar 0.373 1.000 2.136 1.720 21.412
 0.089 0.211 -0.122 0.883 4.320

 Seville 0.517 1.000 2.011 1.374 24.353
 0.092 0.116 -0.053 0.416 3.973

 LS400 0.665 1.000 2.262 1.410 27.544
 0.073 0.037 - 0.007 0.149 3.085

 BMW 735i 0.542 1.000 1.885 1.403 37.490
 0.061 0.011 -0.016 0.174 3.515

 Notes: The value of the attribute or, in the case of the last column, price,
 is the top number and the number below it is the elasticity of demand with
 respect to the attribute (or, in the last column, price. )

 examining the elasticities and markups it, together with the other estimated
 coefficients, imply. We note first that the estimates imply that demands for all
 2217 models in our sample are elastic. The last column of Table V lists prices
 and price elasticities of demand for our subsample of 1990 models. We find that
 the most elastically demanded products are those that are in the most "crowded"
 market segments-the compact and subcompact models. (The Buick Century is
 an exception to this pattern.) The Sentra and Mazda 323 face demand elastici-
 ties of 6.4 and 6.5 respectively, while the $37,490 BMW and $27,544 (in 1983
 dollars) Lexus face demand elasticities of 3.5 and 3.0 respectively.

 Table VI presents a sample of own and cross price semi-elasticities. Each
 semi-elasticity gives the percentage change in market share of the row car
 associated with a $1000 increase in the price of the column car. Looking down
 the first column, for example, we note that a thousand dollar increase in the
 price of a Mazda 323 increases the market share of a Nissan Sentra by .705
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 TABLE VI

 A SAMPLE FROM 1990 OF ESTIMATED OWN- AND CROSS-PRICE SEMI-ELASTICITIES:

 BASED ON TABLE IV (CRTS) ESTIMATES

 Mazda Nissan Ford Chevy Honda Ford Buick Nissan Acura Lincoln Cadillac Lexus BMW 323 Sentra Escort Cavalier Accord Taurus Century Maxima Legend Town Car Seville LS400 735i 323 - 125.933 1.518 8.954 9.680 2.185 0.852 0.485 0.056 0.009 0.012 0.002 0.002 0.000 Sentra 0.705 - 115.319 8.024 8.435 2.473 0.909 0.516 0.093 0.015 0.019 0.003 0.003 0.000 Escort 0.713 1.375 -106.497 7.570 2.298 0.708 0.445 0.082 0.015 0.015 0.003 0.003 0.000 Cavalier 0.754 1.414 7.406 - 110.972 2.291 1.083 0.646 0.087 0.015 0.023 0.004 0.003 0.000 Accord 0.120 0.293 1.590 1.621 -51.637 1.532 0.463 0.310 0.095 0.169 0.034 0.030 0.005 Taurus 0.063 0.144 0.653 1.020 2.041 -43.634 0.335 0.245 0.091 0.291 0.045 0.024 0.006 Century 0.099 0.228 1.146 1.700 1.722 0.937 -66.635 0.773 0.152 0.278 0.039 0.029 0.005 Maxima 0.013 0.046 0.236 0.256 1.293 0.768 0.866 -35.378 0.271 0.579 0.116 0.115 0.020 Legend 0.004 0.014 0.083 0.084 0.736 0.532 0.318 0.506 -21.820 0.775 0.183 0.210 0.043 TownCar 0.002 0.006 0.029 0.046 0.475 0.614 0.210 0.389 0.280 -20.175 0.226 0.168 0.048 Seville 0.001 0.005 0.026 0.035 0.425 0.420 0.131 0.351 0.296 1.011 - 16.313 0.263 0.068 LS400 0.001 0.003 0.018 0.019 0.302 0.185 0.079 0.280 0.274 0.606 0.212 -11.199 0.086 735i 0.000 0.002 0.009 0.012 0.203 0.176 0.050 0.190 0.223 0.685 0.215 0.336 - 9.376

 Note: Cell entries i, j, where i indexes row and j column, give the percentage change in market share of i with a $1000 change in the price of j.
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 percent but has almost no effect on the market share of a Lincoln Town Car,
 Cadillac Seville, Lexus LS400, or a BMW 735i.

 In general, Table VI shows cross-price elasticities that are large for cars with
 similar characteristics. Perhaps not surprisingly, the magnitudes of the effects of
 a $1000 price increase of the higher priced cars are much smaller than they are
 for the lower priced cars. The general pattern of cross-price semi-elasticities
 accords well with intuition. For example, the Lexus is the closest substitute
 (measured by magnitude of cross price semi-elasticities) to the BMW 735, the
 Cadillac is the closest substitute to the Lincoln, and the Accord is the closest
 substitute to the Taurus. Since the demand elasticities will play a crucial role in
 policy analysis, the sensible elasticities in Table VI are encouraging.

 Next we consider the substitutability of our auto models with the "outside

 good," that is dso/dpj. To give some idea of the magnitude of this derivative, we
 express it as a percentage of the absolute value of the own-price derivative:

 100 * (dso/dpj)

 Idsj/dpj I

 For a small increase in the price of product j, this gives the number of
 consumers who substitute from j to the outside good, as a percentage of the
 total number of consumers who substitute away from j. The results of this
 exercise are given in Table VII. There we report results concerning substitution
 to the outside good for our subsample of 1990 models under both the logit and
 the BLP specifications. The first column in Table VII indicates that for every
 model, about 90 percent of the consumers who substitute away from a model

 opt instead for the outside good. This figure is just so/(l - sj). The results
 under the BLP specification are not nearly as uniform across models. Here, the
 numbers still seem a bit large to us, which may point to the need for improve-

 TABLE VII

 SUBSTITUTION TO THE OUTSIDE GOOD

 Given a price increase, the percentage
 who substitute to the outside good

 (as a percentage of all
 who substitute away.)

 Model Logit BLP

 Mazda 323 90.870 27.123
 Nissan Sentra 90.843 26.133
 Ford Escort 90.592 27.996
 Chevy Cavalier 90.585 26.389
 Honda Accord 90.458 21.839
 Ford Taurus 90.566 25.214
 Buick Century 90.777 25.402
 Nissan Maxima 90.790 21.738
 Acura Legend 90.838 20.786
 Lincoln Town Car 90.739 20.309
 Cadillac Seville 90.860 16.734
 Lexus LS400 90.851 10.090
 BMW 735i 90.883 10.101
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 TABLE VIII

 A SAMPLE FROM 1990 OF ESTIMATED PRICE-MARGINALCOST MARKUPS
 AND VARIABLE PROFITS: BASED ON TABLE 6 (CRTS) ESTIMATES

 Markup Variable Profits
 Over MC (in $'000's)

 Price (p - MC) q*(p-MC)

 Mazda 323 $5,049 $ 801 $18,407
 Nissan Sentra $5,661 $ 880 $43,554
 Ford Escort $5,663 $1,077 $311,068
 Chevy Cavalier $5,797 $1,302 $384,263
 Honda Accord $9,292 $1,992 $830,842
 Ford Taurus $9,671 $2,577 $807,212
 Buick Century $10,138 $2,420 $271,446
 Nissan Maxima $13,695 $2,881 $288,291
 Acura Legend $18,944 $4,671 $250,695
 Lincoln Town Car $21,412 $5,596 $832,082
 Cadillac Seville $24,353 $7,500 $249,195
 Lexus LS400 $27,544 $9,030 $371,123
 BMW 735i $37,490 $10,975 $114,802

 ments in our treatment of the outside good (see the extensions section below).
 However, our estimates are much smaller than the corresponding figures for the
 logit model. Our results also show the expected pattern that consumers of lower
 priced cars are more likely to stay with the outside good when the price of their
 most preferred model increases.

 Table VIII presents the estimated price-marginal cost markups implied by the
 estimates of the constant returns to scale case reported in Table IV. In 1990,
 the average markup is $3,753 and the average ratio of markup to retail price is
 0.239.31 The pattern and magnitudes of the markups reported in Table VIII are
 quite plausible. The models with the lowest markups are the Mazda ($801),
 Sentra ($880), and Escort ($1077). At the other extreme, the Lexus and BMW
 have estimated markups of $9,030 and $10,975 respectively. In general, markups
 rise almost monotonically with price.

 In the third column of Table VIII, we list variable profits for each model
 (since marginal costs are assumed to be constant in output, variable profits are
 just sales multiplied by price minus marginal cost). Given our estimates, large
 markups do not necessarily mean large profits, as the sales of some of the high
 markup cars are quite small. The models that, according to our estimates, are
 the most profitable (by a factor of two, relative to the other models reported in
 the table) are the Honda Accord and the Ford Taurus. Both are widely
 regarded as essential to each firm's financial well-being.

 It seems to us that Tables IV through VIII demonstrate that allowing more
 flexible utility specifications generates a more realistic picture of equilibrium in
 the U.S. automobile industry. Conditional on allowing for a more flexible utility
 specification, there are, however, a number of different variables one might

 31 Interestingly, while the pattern of markups differs considerably between the logit case and the
 BLP specification, the average level of markups is similar across the two sets of results.
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 TABLE IX

 RESULTS FROM SOME ALTERNATIVE SPECIFICATIONS:
 PRICE-MARGINALCOST MARKUPS

 Include Use 3 region Add weight
 Base Case Include Use AT Weight and interaction dummies and and include
 (reported In (q) in instead of HP instead terms in add interactions

 in Table VIII) cost function AIR of HP/Wt cost function Reliability in cost function

 Mazda 323 $801 $1,616 $1,012 $1,073 $828 $1,125 $1,389
 Nissan Sentra $ 880 $1,769 $1,153 $1,271 $ 912 $1,308 $1,487
 Ford Escort $1,077 $2,043 $1,326 $1,470 $1,111 $2,094 $1,690
 Chevy Cavalier $1,302 $2,490 $1,729 $1,655 $1,329 $2,593 $2,020
 Honda Accord $1,992 $3,059 $2,629 $2,703 $2,059 $3,839 $2,327
 Ford Taurus $2,577 $3,721 $2,528 $3,344 $2,585 $4,094 $2,898
 Buick Century $2,420 $4,162 $3,161 $2,939 $2,405 $4,030 $3,321
 Nissan Maxima $2,881 $4,674 $4,565 $2,085 $2,911 $6,941 $3,513
 Acura Legend $4,671 $7,105 $6,563 $3,059 $4,661 $8,305 $5,081
 Lincoln Town Car $5,596 $8,029 $6,778 $4,765 $5,508 $7,114 $6,518
 Cadillac Seville $7,500 $10,733 $8,635 $4,863 $7,439 $9,182 $8,015
 Lexus LS400 $9,030 $10,510 $8,411 $4,791 $8,585 $10,925 $7,398
 BMW 735i $10,975 $13,646 $9,122 $7,605 $10,713 $12,153 $12,202

 No. of demand
 side variables
 significant at
 95%levela 5of5 4of5 4of5 6of6 4of5 8of8 4of6

 aA demand side variable is considered significant if either its mean or standard deviation (o) is significant. See text for
 details.

 include in the utility and cost functions. We now ask how sensitive our results
 are to our admittedly ad hoc choice of included variables. Table IX begins to
 address this issue.

 There are many ways one might summarize the implications of the estimated
 parameters. We choose to report the estimated price-marginal cost markups
 that result from alternative specifications, since these markups embody informa-
 tion from both the cost and demand sides of the model, and they are easily
 interpretable. The first column of Table IX replicates the results in Table VIII
 and is included to make comparisons more convenient. In the second column,
 we report the markups that result when we include the natural log of output in
 the cost function. The vector of other cost-shifters, w, is unchanged from the
 base case. This is the specification reported in the last 2 columns of Table IV
 and, as previously noted, the quantity variable is problematic. Nonetheless, the
 markups follow the same pattern in the base case. The main difference is that

 the markups are uniformly higher. This results from the decreasing returns to
 scale. The markups over average variable cost (not reported) are much lower.
 Indeed, without higher order terms in ln(q) entering the cost function, the
 markups over average variable cost are implausibly low. Of all the alternate
 specifications we investigated, this one yielded the highest price-marginal cost
 markups, and yet even these markups are not extraordinarily high. For this and
 all the other alternate specifications, we also report the number of demand side
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 variables whose means or o-'s are significantly different from zero at standard
 levels.

 In the Table IV results, the o- associated with air conditioning was not
 significantly different from zero. We believe the AIR variable is proxying for a

 degree of luxury. It is possible that there really is little disagreement in the
 population about this attribute, but perhaps it is a poor proxy. In column 3 of
 Table IX, we report the markups that result from using another proxy-whether

 automatic transmission is standard equipment. The pattern and magnitudes of
 the markups are quite similar to the base case results. Markups are slightly
 higher for the less expensive cars and slightly lower for the high-end cars, but
 not dramatically so.

 In the fourth column of Table IX, we report the results from a specification

 that replaces the ratio of horsepower to weight with the two variables entered
 separately and linearly. Of all the alternative specifications investigated, this
 one gave the largest change in estimated markups. While the patterns of
 markups is the same, this specification gave implausibly low markups for the
 more costly cars. This might result if cost were not linear in horsepower and
 weight, since these cars have large values of each attribute, hence forcing
 marginal cost to be higher than it perhaps actually is.

 In our model, adding additional terms to the cost function is computationally
 cheap, while adding additional demand side random coefficients is computa-

 tionally demanding. In column 5 of Table IX, we include interaction terms in
 the cost function between all the continuous characteristics. This captures the
 notion that the cost of a characteristic may depend on the level of another
 characteristic. The results of this exercise give markups very similar to our base
 case results. For most models, the markups are within a few percent of one
 another. We found that most interaction terms were statistically significant at
 the usual levels and the elasticities of marginal cost with respect to the
 continuous attributes were virtually identical to those that resulted with no
 interaction terms in the cost function. Further, the parameters associated with
 one of the five demand side variables was no longer significantly different from
 zero.

 In the sixth column of Table IX, we report the markups that result when we
 replace the constant in the utility function with a set of dummy variables
 indicating whether the car was built by a firm from the U.S., Japan, or Europe.
 We also include the Consumer Reports reliability rating. Problems with this
 variable are noted above, but we include it in this particular specification
 because we suspect that the region dummies may be highly correlated with
 reliability. If we did not include a measure of reliability, it would mean that an
 instrument would be correlated with the unobservables, contrary to the assump-
 tions we need for the consistency of our estimator. In this specification there is
 a separate mean and variance for the dummy associated with each region. Once
 again, the markups exhibit the same pattern as in the other specifications. We
 do find, though, that the markups for a number of the models in the middle of
 the price range are substantially higher. Since these models are not from just
 one region, it is not clear what drives this change.
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 In the final column of Table IX, we report the results when we add weight to
 the list of regressors (instead of sufficing with the ratios of horsepower to
 weight), and then allow for interactions in all the cost side variables. Here the
 linear coefficient of the weight variable came in insignificant on the cost side
 with a significant mean and insignificant standard deviation on the demand side.
 The pattern and magnitude of markups was quite similar to the base case
 results.

 8. APPLICATIONS, PROBLEMS, AND EXTENSIONS

 8.1. Applications

 Our model is defined in terms of four primitives and a Nash equilibrium
 assumption in prices. The primitives are the utility surface that assigns values to
 different possible combinations of product characteristics as a function of
 consumer characteristics, a cost function which determines the production cost
 associated with different combinations of product characteristics, a distribution
 of consumer characteristics, and a distribution of product characteristics. Condi-
 tional on these primitives the model can solve for the distribution of prices,
 quantities, variable profits, and consumer welfare. There are, therefore, at least
 two ways one might use the estimated parameters. One is to investigate changes
 in one of the primitives assuming that the others are held fixed, while the other
 is to determine the extent that changes in the various primitives can account for
 historical movements in the data. The first corresponds to traditional policy
 analysis, while the second provides an interpretation of the changes that have
 occurred in the industry.

 It is easy to list policy questions that our estimates might be used to help
 analyze. These include: trade policy (e.g., the effect of import restrictions),
 merger policy, environmental policy (e.g., carbon and gas guzzler taxes as well as
 Auto Emission and Corporate Average Fuel Efficiency Standards) and the
 construction of price indices. For a start on these issues, see Berry, Levinsohn,
 and Pakes (1994) and Berry and Pakes (1993) for the first two and Pakes, Berry,
 and Levinsohn (1993) for the last two. Demand elasticities play a crucial role in
 each of these issues and hence the methods developed in this paper might
 provide more realistic analyses than some more traditional models.

 On the other hand, all of the models, including our own, are limited in that
 they provide only a "conditional" analysis of each issue. That is, to do policy
 analysis we will have to perturb a small number of parameters and compute new
 equilibria conditional on the other primitives of the model remaining un-
 changed. In fact in many cases these other "primitives" will change in response
 to a change in policy or in the environment.

 For example, Pakes, Berry, and Levinsohn (1993) used our model's estimates
 to predict the effect of the 1973 gas price hike on the average MPG of new cars
 sold in subsequent years. We found that our model predicted 1974 and 1975
 average MPG almost exactly. This is because the characteristics of cars, treated
 as fixed in our predictions, did not change much in the first two years after the
 gas price hike and our model did well in predicting responses conditional on the
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 characteristics of cars sold. However, by 1976 new small fuel efficient models
 began to be introduced and our predictions, based on fixed characteristics,
 became markedly worse and deteriorated further over time. We return to the
 problem of endogenizing characteristics in the next subsection.

 8.2. Extensions

 Our methods have been developed on the premise that consumer and
 producer level data are not always available. This seems an important conces-
 sion to the realities facing empirical researchers investigating many, but not all,
 markets. We do note that information on the distribution of many of the
 relevant consumer characteristics is generally available and we illustrate how to
 make use of the empirical distribution of this information in the estimation
 algorithm. (In addition to income, consumer characteristics that might be
 expected to interact with product attributes and for which distributional infor-
 mation is available include household size, geographic region in which the
 household resides, and age of head of household.)

 There are, however, several industries in which some consumer and/or
 producer-level micro data are available, and the auto industry is one of them.
 Though production costs for autos are not publicly available at the product-level,
 the Longitudinal Research Data (LRD) maintained by the Bureau of the
 Census do contain plant-level cost data. Since industry publications link auto-
 motive models to specific plants, we are exploring the possibility of using this
 information to improve our estimates. Note that separate information on costs
 would allow for a more detailed examination of the relationship of prices to
 marginal costs, and, therefore, for a more detailed analysis of the nature of the
 appropriate equilibrium in the spot market for current output. The cost infor-
 mation would also enable a more flexible analysis of functional forms for the
 cost surface, and, perhaps, an analysis of how that surface has changed over
 time in response to changes in both R&D investments and in government
 policies. As noted above, there is also consumer survey information on automo-
 bile purchases and we are investigating how to integrate survey data with the
 aggregate data used here.

 The other, perhaps more important and certainly more difficult, direction for
 future work is incorporating a realistic treatment of dynamics. On the producer
 side there are two aspects of this problem. The first and possibly easier one is
 obtaining consistent estimates of the parameters of the static profit function
 while allowing for a correlation between observed and unobserved characteris-
 tics. This correlation may result from the fact that both sets of characteristics
 are, in part, determined by related decision-making processes. The second, and
 richer, part of the problem is to endogenize the actual choice of the characteris-
 tics of the models marketed. Even the more detailed models of dynamic
 industry equilibrium (see, for example, the theory in Ericson and Pakes (1995)
 and the computational algorithm in Pakes and McGuire (1994)) still have to be
 enriched before we can provide a realistic approximation to the multiproduct,
 multi-characteristic nature of the auto industry.
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 On the consumer side, a complete model of dynamic decision making would
 incorporate both the transaction costs of buying and selling a car and uncer-
 tainty about the future. In particular, a dynamic model of consumer decision-
 making would highlight the important role played by our outside alternative,
 which for many consumers is simply an older model car. Treating the outside
 alternative in a realistic way would require building a demand system for
 durable goods and incorporating a used car market.

 Dept. of Economics, Yale University, 37 Hillhouse Ave., New Haven, CT 06520,
 U.S.A., and National Bureau of Economic Research,

 Dept. of Economics, University of Michigan, 319 Lorch Hall, Ann Arbor, MI
 48109, U.S.A., and National Bureau of Economic Research,

 and

 Dept. of Economics, Yale University, 37 Hillhouse Ave., New Haven, CT 06520,
 U.S.A., and National Bureau of Economics Research.

 Manuscript received November, 1992; final revision received September, 1994.

 APPENDIX I: THE CoNTRAcriON MAPPING

 In this appendix, we will establish the contraction argument used in the computational algorithm.
 We will show that the function (6.8) has a unique fixed point. Furthermore, we want to establish
 that (6.8) is a contraction mapping. In fact, our proof will require us to impose an upper bound on
 the value taken by the function in (6.8), although in practice we never had to impose this bound.
 (This upper bound appears in the definition of f in the statement of the following theorem.)

 THEOREM: Consider the metric space (RK, d) with d(x, y) = llx -yll (where Il*ll is the sup-norn).
 Let f: RK - RK have the properties:

 (1) Vx E RK, f(x) is continuously differentiable, with, Vj and k,

 dfj(x)/dxk ? 0

 and

 K

 E dfj(x)/dxk < 1.
 k=1

 (2) mini infx f(x) x > - oo.
 (3) There is a value, x, with the property that iffor any j, xi >x , then for some k (not necessarily equal

 to j), fk(x) <xkK
 Then, there is a unique fixed point, x0, to fin RK. Further, let the set X= [x, xIK, and define the

 truncated function, f: X -X, as fj(x) = min {fj(x), xI. Then, f(x) is a contraction of modulus less than
 one on X.

 PROOF: We will first show the contraction mapping property that 3J3 < 1 such that Vx and
 x' eX, IIf(x) -f(x')lI <3 11ix -x'lI. To see this, choose any x and x' in X and define the scalar
 A = llx -x'll. Consider the jth element of f, fj(x) and WLOG assume fi(x') -f(x) 0. Then,
 x + A 2 x' implies

 fx( X) -f(x) ?fj(x + A) -fj(x) <fj(x + A) -fj(x) = [ E dfj(X+Z)/dXk dz] A

 where

 K

 /3-max max E dfj(x)/dxk
 j XeW k=1
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 and the set W is defined as

 W= {yERK:y= (x+z),xEX, zE [O,x-x]}.

 The second inequality follows from the fact that fj(x + A) <fj(x + A), while f(x) =fj(x). The
 scalar ,3 exists, as it is the maximum of a continuous function over a compact set. /8 is the maximum
 value of the integrand over the set of (x + z) values that can possibly be reached when x E X and
 the scalar z is less than the possible difference between any two points in the set X. The final
 inequality and the fact that 8 < 1 follow from Assumption (1).

 We have now established that f is a contraction of modulus /8 < 1 on X. Therefore, there is a
 unique fixed point, x0, to f on X and for any x in X, the sequence f (x) converges to xo.
 Assumptions (2)-(3) rule out the existence of fixed points to either f or f that are outside the
 interior of X. Thus, xo cannot be on the boundary of X; xo is a fixed point of f and there can be
 no other fixed point to f. Q.E.D.

 We will now show that the function f(8) = 8 + ln (s) - ln(s(8)) satisfies the hypotheses of the
 theorem. The function f is differentiable by the differentiability of the function s(8). To check the
 monotonicity condition of Assumption 1 note that

 1 dsj
 dfj(8)/d8j = 1-- -,

 Si d8

 while for k #j,

 _ 1 dsj
 dfj(8 )/dk =- '

 By differentiating our specific market share function, it is easy to show that both dfl/d81 and
 dfj/d8k are positive and that Jk=l dsj/d8k <s1. This in turn establishes that the derivatives of
 f sum to less than one, establishing all the conditions of Assumption 1.

 It is easy to find the lower bound for f (Assumption 2). First note that we can rewrite s;(8) as

 sj(8) =e8JDj(8), where

 e JL

 Dji(8 fl 1 + Eke8k+ , dkP( J)

 Plugging this into the definition of f gives

 fj(B) = In (sj) - In (Dj(5)).

 Note that D. is declining in all the Bk. As all of the Bk approach -oo, Dj(8) goes to feLdP( I.
 Thus a lower bound for fj is lj - In (s ) - ln (fe u d'( ,u)). This is the value of B. that would explain
 a market share for good j of sJ if alf the other market shares (other than the outside good) were
 equal to zero.

 Unfortunately, f(8) is increasing in Bj without bound. Berry (1994) does, however, show how to
 establish the existence of a value, 8, such that if any element of 8 is greater than 8, then there is
 some k such that Sk(8) > Sk. The vector with each element equal to 8 then satisfies the require-
 ments of x in Assumption (3), for if Sk(8) > Sk, then fk(8) < Bk.

 Berry (1994) shows that an appropriate 8 is found as follows. For product j, define Aj as the

 value of - B. that would explain the market share of the outside good, so, when 80 = 0 and all the
 other Bk = -?. Then set 8 > maxi A>.
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