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PRODUCTION FUNCTIONS: THE SEARCH FOR IDENTIFICATION

Zvi Griliches and Jacques Mairesse’

" ...we have here one of those cases - so frequent in
economic practice - where it can be "proved” by
abstract reasoning that a solution is not possible, but
where life itself compels us nevertheless to find a
way out." Frisch (1934), p. 274!

1. Introduction

Econometric production functions, as we know them today, originated in the work of
Douglas (Cobb and Douglas, 1928). They started out as a tool for testing hypotheses about the
workings of marginal productivity theory and the competitiveness of labor markets, using macro-
data. After a number of withering attacks by critics, this line of work shifted from macro to
micro data, especially in agriculture (see Tintner (1944), Mundlak (1961), and Heady and Dillon
(1961) for examples), where the necessary assumptions for estimating something sensible
appeared to be more plausible. The growing interest in technical change brought production
functions back as a measurement framework for productivity and led to a resurgence of interest
in their estimation. A "dual" literature on cost functions, factor demand systems, and flexible
functional forms developed in parallel, but we will only touch on it in passing here (see
Jorgenson (1986) for a review). Both approaches have undergone significant econometric
questioning, focused primarily on whether the relationship of interest is really "identified” or
even identifiable with the data at hand.

In the empirical implementation of econometric production functions one runs into a
number of difficult conceptual and data problems: (1) Is what we are looking for really out
"there"? What is it that we are approximating when we write down Q=F(K, L,...) and apply it to
a particular data set, across different firms and different time periods? Does the assumed
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functional form make sense? (2) Do we have the right data set for this enterprise? Are all
outputs and inputs accounted for and measured correctly? Have allowances been made for
differences in the quality of labor and other resources across our units observation? Differences
in the utilization of capital? (3) How was the sample generated? Is it representative of the
population of interest? (4) Is the proposed estimation procedure appropriate? Can one take all or
most of the input variables as "independent” or should one embed this problem in a larger
simultaneous equations framework? Do the market structure and behavioral assumptions make
sense? Can they be tested? And much more.

In this paper we shall limit ourselves only to the last question, even though some of the
other questions, especially those connected with data and sample construction, may be more
important substantively.? We shall look at this question from a historical perspective, tracing out
the changing ideas and justifications offered in defense of the various suggested econometric
procedures and how this process was affected by developments in data availability and
computing ability. We shall reiterate an old observation of ours (Griliches (1977), p.12-13) that
living in a second-best world one should be careful in focusing only on one problem. Fixing it
may only aggravate other problems in our data and not lead us, necessarily, closer to the "truth,”
wherever that may be.

Before we turn to the more substantive discussion, a word should be said why researchers
are actually interested in estimating production functions. In most cases it is a tool, a framework
for answering other questions, only partially related to the "production function” itself. It is hard
even to pose some questions without embedding them in such a framework. For example, one
may be interested in the presence or absence of economies of scale in production (Griliches and
Ringstad (1971), Mairesse (1975)), in whether productivity differences are related to differences
in the quality of labor as measured by education and to differences in public and private
investments in research (Griliches, (1964), Griliches and Mairesse (1984), Griliches 1986)),
whether marginal products are equated to the apparent factor prices (Hall (1988), Hellerstein and
Neumark (1993)), and what is the market structure in various industries and how high are the
markups there. Such questions require independent estimates of cost or production functions and
they are too interesting for us to give up trying to answer them even though the estimation
framework used for these purposes may be itself problematic. One has to start someplace.



2. The Basic Criticism.

One of the first penetrating criticisms of Douglas's work came from Oslo. In his 1938
Econometrica article, Horst Mendershausen, after thanking Frisch, Haavelmo, and Reirsol for
their comments and referring to the then still unpublished Frisch book on Production Theory,
argued that data used by Douglas were too multi-collinear to allow for a "reliable” determination
of the production function coefficients. While not saying so explicitly, he asserted that the
underlying production function is not "identifiable” because the input variables are determined
simultaneously by the same forces.” He demonstrated the last point by computing the implicit
coefficients from the "other direction” regressions and showing that there was not enough
independent variability in the data in the right directions.*

The first application of the simultaneous equations methodology to production function
estimation, based explicitly on Haavelmo's earlier papers, is in Marschak and Andrews (1944).

Their formulation of the problem cannot really be improved upon:

"...Can the economist measure the effect of changing amounts of labor and capital on the firm's
output - the "production function” - in the same way in which the agricultural research worker
measures the effect of changing amounts of fertilizers on the plot's yield? He cannot, because the
manpower and capital used by each firm is determined by the firm, not by the economist. This
determination is expressed by a system of functional relationships; the production function, in
which the economists happens to be interested, is but one of them...," Marschak and Andrews

p. 1443

Their main point can be illustrated with a very simple two-equation model of producer
behavior. The first is the production function

(¢)) y=az+ Bx+u

where y is the logarithm of output, z is the logarithm of capital (or all "fixed” inputs) and x is the
logarithm of labor input (or all "variable" inputs). This is just a logarithmic transformation of the
simple Cobb-Douglas production function, with u representing all other disturbances, left out
factors, efficiency differences, functional form discrepancies, and errors of measurement.® The

critical point made by Marschak and Andrews, and by others, is that one cannot really treat the



right side variables as "independent” variables and proceed with estimation by "ordinary” least
squares (OLS) as was done originally by Douglas and is still being done by most applied
practitioners of this genre of research. Because the "inputs” are not under the control of the
econometrician but are chosen in some optimal or behavioral fashion by the producers
themselves, the usual exogeneity assumptions that are required for the consistency of OLS are
unlikely to hold for the data at hand, at least not without further detailed analysis.

Even if one accepts the notion that "fixed” inputs (the z's) are predetermined for the
duration of the relevant observation period, variable inputs (the x's) may be adjusted by the
decision maker. A simple profit maximizing model of the joint determination of x and y, given z,
product prices p (which, for now, will be assumed to be equal for different producers and hence
normalized to 1), and factor prices w (e.g., wages, or rather, their logarithms), implies the
following marginal productivity condition (or vanable input demand function)

) y=x+w+v-In(p)

where v represents all discrepancies from the assumed conditions of perfect competition, perfect
foresight, absence of risk aversion, and possible measurement errors in y, x, and w.” Ignoring
constants and other unnecessary complications at this stage, one can solve these two structural

equations to yield the associated reduced form equations:

©)) x=D(az-(w+Vv)+u)
©) y=D(az-p(w+v) +u)

where D=(1-p)". Itis clear that if x is chosen even approximately optimally, then the production
function disturbance u is "transmitted"” to this decision equation, and x is a function of it.

Simple OLS estimates of the production function will be biased and will not possess the desired
structural interpretation. This is the main and plain message of the Marschak and Andrews paper
and of a large number of subsequent expositions of this point (see, especially, Hoch (1962),
Mundlak (1963), Mundlak and Hoch (1965), and Mundlak (1994)).

The responses to this message have taken a number of forms: The most common has



been and still is denial, either outright by ignoring this message, or by claiming that the problem
does not apply to the data at hand.” At first, in the mid-1940's and 1950's, most of the work on
production functions had shifted to micro data, especially farm data, and many of these
criticisms seemed to have less force. (There were almost no comparable micro data for industry
available at that time.) In particular, it was possible to assert that much of what was contained in
u, such as weather, and pests, was unanticipated by farmers, and that most of the resources used
(land, machinery, family labor) were largely predetermined, and hence uncorrelated with it. This
folklore position was formalized by Zellner, Kmenta and Dreze in their 1966 paper by putting
the producer’s decision within an uncertainty framework and having the producer maximize
expected profits without knowing the realization of . Under these circumstances, there is no
transmission and hence no simultaneity bias. In spite of the eminence of the authors and the
locus of publication (Econometrica), hardly anyone has been willing to offer this rationale for
the use of OLS without feeling guilty about it. The "weather" story seemed especially
inapplicable to industrial data. Moreover, even within agriculture it was perceived that u
contained also expected permanent components such as land quality, and that the growing
availability of panel data allowed a somewhat better solution to this problem.

At the macro level, the statistical estimation of production functions was largely
abandoned for a while, with the emphasis shifting to the acceptance of marginal productivity
theory (and the competition and constant returns to scale assumptions that went with it) and the
use of factor shares as appropriate surrogates for the unknown parameters (Klein (1953), Solow,
(1957)). Somewhat later came the "Duality” revolution in production function theory (Shepard,
McFadden, Jorgenson and Lau, Diewert and others), the associated functional form
generalizations and the move toward the estimation of cost functions and factor demand systems
(Arrow et al. (1961), Nerlove (1963), Christenson, Jorgenson, Lau (1973)). In the rush to
develop an exciting new field of research, the problem of simultaneity was largely ignored (with
the notable exception of Nerlove, who used the regulatory environment within which his
electrical utility firms operated to claim, quite reasonably, exogeneity for his output measures
and factor prices), even though the problem is actually fully symmetric®

In this paper, we focus primarily on the use of panel data and transformations, such as
"within" and first-differences, which purport to eliminate this problem; on the use of lagged
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inputs as instrumental variables; and on the use of additional proxies and equations to substitute
for the unobserved disturbance « (Olley and Pakes (1992).°

Many of these responses correspond to somewhat different interpretations about the
sources of the correlation between x and ». Thus before we proceed to discuss them in greater
detail, we need to be more explicit about the potential components of u, the error in the

production function, and how it affects the producer's input decision.

3. The Anatomy of Error.

To discuss the identification problem in greater detail we need to specify the various
potential sources of the "errors” in equations (1) and (2). Turning to the error in the first
equation first, we can write it, tautologically, as

) u=a-+tete,

where a and e are components of the disturbance that are known, ultimately, by the producer but
not by the econometrician while ¢ is the net error that is introduced by measurement, data
collection, and computational procedures. (It is net in the sense that it combines the effects of
measurement errors in output minus the measurement errors in all the specified inputs:
e= g,-a £,-Pe, ) The distinguishing characteristic of £ is that it is the econometrician's

problem, not the producers. It has no effect on producers behavior, either currently or in the
future. In the useful terminology of Mundlak and Hoch ¢ is never "transmitted."*®

The a and e components, on the other hand, are known to the producer but unobservable
by the econometrician; a, is known in time to affect the current x choice decisions while e
reveals itself only later on and is not predictable ex ante. That is, ignoring errors of
measurement, we are describing the case of "partial transmission” of u , where a may affect
current behavior, while e will not, though it may have an effect on future behavior if its
realization changes the producer's future expectations about » (delayed transmission).

Given this formulation, the e components should be serially uncorrelated, but a, and
hence also x (and possibly also z), may be affected by their past values. The e's represent

unforeseen environmental changes such as unusual weather conditions and unanticipated



changes in unmeasured "effort" due to unexpected demand conditions and are bona fide
"disturbances," independent of current x and z.

The a components represent all the miss-specifications made by the econometrician in
describing the producer’s situation, beyond the mismeasurement of the major observable
variables already encapsulated in . They contain both important left out variables and
functional form approximation errors. These would include unmeasured (by the econometrician)
capital components such as R&D stocks and other intangibles, technology levels and managerial
efficiency, unmeasured input quality (land, labor, and capital), unmeasured effort variables such
as man and capital hours, and, possibly, higher order terms (squares, crossproducts, ...) of x and
z!

The main point about the a components is that they are known to the producer and hence
they are "transmitted,” to the extent that it is relevant, to the choice of x , and also, with some
delay, to the longer run choice of the level of z.'? This is the essence of the simultaneity problem
for production function estimation.

Given this interpretation, equation (2) has to be rewritten as

?) y-e-e~X-¢,+w+v-In(B)

and a should be substituted for « in equations (3) and (4) which implies that what is determined
by the marginal productivity condition is the expected factor share

@) xR+tw-e)-(y-e-€)=In(B)-v
net of measurement errors € and unanticipated components e, and subject to the factor allocation
disturbance v.

In turn, v can also be thought of as containing different components

©) v=m+w

where w represents individual differences in expected prices, both product and input, around



their mean (official deflator) levels, and m reflects potential differences in markups and all other
dewviations from "simple” optimally, including risk aversion factors, functional form
approximation errors, and actual errors in optimization.”” In general, it is doubtful that one could
assume independence between the a component of (1*) and the v component of (2", though this
is an assumption that is often made.

After this long taxonomical digression we are ready to consider the various suggestions
that have been made for dealing with the problem that components of # may also appear in the

reduced form equation for x.

4. The Panel Data Response.

The major response to the Marschak and Andrews criticism came through the increasing
availability of panel data. In that context, it was possible to assert that the major
misspecifications, which are transmitted to the factor decisions, such as differences in land,
entrepreneurial, and labor quality, are largely fixed over time (or at least over the length of the
available panel) and hence can be eliminated by an appropriate "within" transformation.'* Then

(1) can be written as

19 Va= aZt PXgta+ At e,

where the e/s and A/'s are "fixed" individual and time effects and can be eliminated by
subtracting appropriate individual and time means (or by introducing a parallel set of dummy
variables) and we are ignoring the errors of measurement € for the time being. Ignoring also the
time effects 1, to simplify the exposition (they can be subsumed within the z set of variables), we

have

N V- Yi) = @(Ze-2) + P(Xg - %, ) + (e - €;)

where the x;. notation represents averaging over the time dimension for each individual ;. To the
extent that e is "not transmitted" (uncorrelated with x and z), the problem of "simultaneity” has

been solved. The rest being "weather” or other unexpected events a la Zeliner, Kmenta and



Dreze.

To the best of our knowledge, this approach is first stated briefly in Hoch (1955), based
on a suggestion of C. Hildreth, with a fuller version appearing in Hoch (1962). It gained its
popularity, however, from a series of remarkable papers by Mundlak (1961, 1963) and Mundlak
and Hoch (1965). But as empirical work on production functions began to shift back to
industrial micro-data (Krishna (1967), Griliches and Ringstad (1971), Ringstad (1971), Mairesse
(1975), Griliches (1980), and Griliches and Mairesse (1984)), it encountered two problems, one
empinical and the other theoretical. In empirical practice, the application of panel methods to
micro data for manufacturing firms or plants produced rather unsatisfactory results - low and
often insignificant capital coefficients and unreasonably low estimates of returns to scale. The
second, not unrelated problem, is the realization that the within transformation is either not doing
enough, in the sense that there are still potential simultaneity problems left, or too much, in the
sense that this transformation may be aggravating other pre-existing problems, such as errors in
variables.

The theoretical alarm bell was sounded by Chamberlain (1982) who pointed out that the
within transformation which results in the elimination of the a, , introduces e,. into the equation
and requires, therefore, strict exogeneity of the x's and not just their predeterminency. That is,
there can be no delayed transmission, the e,'s must be pure errors. Chamberlain also provided a
framework for specification testing and for a more efficient estimation of equation (1") in the
context of heteroscedastic micro data. His approach can be illustrated assuming the availability
of panel data for three periods and writing the "augmented" conventional regressions (ignoring
the z's and the constant terms for simplicity), where future and past values of x are added to the

conventional specification, as

V=T X T XXy + XXyt 0y,
8 Va= TpuXp T KXy TR Xy + U,

Vi = Ty Xy + KXy HRXy + Uy

Under the null hypothesis that there are no relevant left out variables, the expected "IT-matrix"
equals
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{B
©) m= |0
0

While if there are individual a/'s and they are correlated with the x's, then one can write their
expectation as E(a | X,, X,, X;) = 8,X;; + 8 X, + 8:Xy and the expected I1-matrix is now

p+6, 8, 9,
(10) II. = 5, p+o, o,
8, 5, B+,

Chamberlain showed that each of these assumptions implies a set of restrictions on the
unrestricted IT-matrix and can be tested in this context and, if the relevant null hypotheses are
accepted, the parameters of interest can be estimated in a more efficient manner.

Chamberlain also anticipated the next set of responses along these lines: first
differencing and GMM estimation. To get around the strict exogeneity requirements on x, one
could proceed to first difference (or "longer” difference) the available panel data, rather than
going "within." This also eliminates all individual "fixed effects,” yielding

(11) Yi- Vi =a(z‘-z‘_,)+ B(xt 'Xt-l)+ ct te-¢e,

where {,=a, - a,, is the change in a. If ais firmly fixed, {,= 0, and (11) can be estimated by
Least Squares ff e, is unanticipated and untransmitted to x, and x,,,, even though it may affect
subsequent decisions about x (and z)."* If the "news" in e (or {, ) is transmitted to the current x,
then the difference in x needs to be instrumented. Since the number of available instruments,
lagged ¥’s and z's, depends on the length of the panel and changes from cross-section to cross-
section, the optimal estimation procedures become more complex, calling for the use of General
Method of Moments estimators (see Arellano and Bond (1991), Griliches and Hausman (1986),
and Keane and Runkle (1992), Mairesse and Hall (1993), among others). It can be shown
(Crepon and Mairesse (1995)), that all of these approaches are already implicit in Chamberlain's
I1-matrix approach and the modelling possibilities contained therein.
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The difficulty with this line of attack is that the available instruments are likely to be
quite poor and possess little resolving power. We shall return to this point below. It will suffice
to note here that many economic variables evolve in a random walk like fashion at the micro
level, i.e., their log differences are only weakly serially correlated. If the x's and z's were strictly
random walks, there would be no power at all in their past levels as instruments for current
growth rates (first differences of their logarithms). If they do have power, one must ask what
behavioral theory implies the validity of their use. Lags in adjustments to shocks would do it,
but even if valid, the available power is likely to be rather low. To do better requires bringing in
some additional information from somewhere else: "external” instruments, more theoretical
restrictions on the structure, and/or more equations. This is where the current frontier lies. But
before we describe it, we need to indicate the magnitude of the empirical problem faced by

researchers in this area.

5. The Empirical Reality.

From the beginning the within (covariance analysis) results were not what one had hoped
for. In the original 1955 note by Hoch, when farm effects are eliminated from the analysis, the
estimated returns to scale fall from 1.0 to 0.6, forcing Hoch to interpret this "shortfall” as
reflecting returns to unmeasured (fixed?) entrepreneurial capacity, but leaving him with
unreasonably low estimated marginal returns to the relatively quasi-fixed labor and land inputs.'®
A more recent set of examples is given in Figure 1, taken from Mairesse (1990). It plots
estimates of « and y=«+p from thirteen year panels of manufacturing firms in France, Japan,
and the United States. For each country it graphs estimates based on the thirteen year firm
averages for these firms ("between" in levels), on the total pooled data set in levels (TL), on the
"within" firm deviations from their averages, in levels (WL), and a parallel set of estirnates based
on first differences in these same data sets (to be explained shortly). The important result visible
in this graph, which is true for most of the data sets known to us, is that as one guards oneself
against "left-out-variables” biases by purging various "components” from the available data and
basing ones inferences on progressively smaller fractions of the original data, the estimated
coeflicients tend to move towards zero, with the capital coefficient falling faster than the labor
coefficient and often actually reaching zero.
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It is possible, of course, to respond that the original estimates were indeed biased upward
and that the various "within" estimates are correct. But in most cases the changes and the
implied biases are just too large to be credible. An alternative interpretation is that as we reduce
the amount of variance in x and z that we use to identify the relevant coefficients other
misspecifications overwhelm the remaining signal in the data. Before we discuss this further, we
need to explain briefly the additional estimators introduced in Figure 1.

In going to first differences we eliminate whatever fixed individual effects there might
have been in the data, but we also do more."” One can think of the resulting T-1 set of cross-
sections of differences as another panel and do the whole covariance analysis partition into
"between" and "within” once more. The resulting estimates are not really nested within the
previous framework, they require an expansion and reinterpretation of equations (1) and (5). If

we rewrite (5) as

&) u,=a, +A,te,t e,

where now the "not so fixed” individual effect is the a, = {, + a,,, and 1, = A, + gt is a period
related component, allowing for both common penod effects and differential individual trends.
In this model the change in a ({) is independent of current ¢ (and €). Thus, a could be a random
walk, but it could also depend on lagged e's (delayed transmission). The main difference
between this formulation and (1) is, however, the introduction of individual trend terms which
are not eliminated by the standard within transformation. Thus going to first differences (TD),

we have

(12) du, = {, +c,+ g +de, + de;

where d 1s the first difference operator and ¢ = dA is now the period constant. The major
argument for this transformation is that it allows us to consider (it protects us against) individual
effects that change smoothly over time, but at different rates.'® It is now more reasonable to
interpret de as an unpredictable and hence serially uncorrelated component. If { were not

currently transmitted to the measured independent variables and g=0, then one could estimated
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this equation by ordinary least squares. If { is transmitted, we will need valid instruments to
estimate it, a point to which will come back to again below.

If productivity trends differ across individuals then the first differenced equation will also
contain individual constants, the g's. These can be eliminated in turn by performing another
within transformation on the panel of differences, which is what the WD estimates in Figure 1
refer to. Associated with this transformation is its complement: the "between differences" (BD),
which in our data represent the average growth rates of the various variables for the period as a
whole. The resulting numbers can also be interpreted as a "normalized” long difference, since
Z(dy)/(T-1) = (yr - y)/(T-1). The within differences "protect” us the most against various
individual level and trend misspecifications at the cost of using the most restricted amount of
variance in x and z for the identification of the various coefficients. In our data, which we
believe are quite representative, the between differences transformation eliminates individual
fixed effects with the least impact on the variances of the other variables (relative to WL and
WD).

Returning to Figure 1, we can see that the estimates of « and u decline as we buy more
protection, moving from TL to WL, TD, and WD. In Table 1 we give the numbers for the
French firms (N=441). Column 1 of this table gives the estimated «'s for the various methods
while column 3 lists the "net" variance of z (log of capital), net of its relationship to labor and
time and industry dummies. The last columns provide the ingredients for an errors-in-variables
interpretation of these results, to which we'll return below. First notice, however, that the net
variance of z declines roughly in parallel with the estimated «'s.'® It is clear that a lower net
variance will give us more imprecise estimates (holding degrees of freedom constant), but that
does not imply a larger downward bias per se. The bias must come from some other source
whose influence grows as the "signal" contained in the remaining variance of z keeps declining.?

An attempt to eliminate such biases using twice lagged values of y, x, and z as
instrumental variables in a GMM frame work does not do any better (see the last row of Table
1). The resulting capital coefficient is not statistically significant in spite of the large number of
degrees of freedom. It's net variance is minuscule. (The first stage R? of dz on all the
instruments is only .1).

The simplest and oldest interpretation offered for such results is the magnification of the
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role random measurement errors in z as one reduces the identifying variance by various within or
differencing transformations (and also by adding more variables to the estimating equation).?
With uncorrelated measurement errors, the plim of & = « - a0%m/o?,,, ando?,, is the "net"
variance of z, net of all the other variables included in the estimated equation, and where m is the
multiplier for the error variance introduced by the various transformations. Thus, for example, m
is 1/T for the BL and 2 for the TD estimators. Looking in Table 1 we can see that for, this
sample, random measurement error bias in z would be 140 times larger in the WL estimates than
in the BL ones and 17 times larger in the WD estimates than in the BD (or long differences) one.
If one thought this was the only problem with the data, one could infer both a consistent estimate
of a and an estimate of o?, from the numbers given in the first and last columns of Table 1.
Using all six "observations," a regression of the estimated « on the last column yields .244 and
.0035 as the respective estimates of « and o?,. Dropping the first two observations (TL and BL),
since they may be subject correlated fixed effects bias, gives .161 and .0031 as the respective
estimates. The latter regression has an adjusted R? of .93 and a standard error of estimate .02.%
So this "model” fits rather well. Unfortunately, it does not make much sense in this particular
context.

Errors of measurement in the capital stock are likely to persist. Hence a within or
difference transformation should reduce their role, rather than magnify it! What might be then
an alternative interpretation for these results? The simplest alternative would assert that we have
the timing of the influence of capital wrong. Our measure of capital is based on gross stocks.
That is, a given investment has an assumed constant weight over its estimated life. If there are
gestation lags, difference transformations could produce entirely irrelevant numbers and the
GMM estimates would not be of any help either.?? That would also be true for other
misspecifications in the assumed productivity life-pattern of investment.*

Other sources of misspecification could also contribute to the observed results. (They all
could be guilty!) If some of the short run effects in the e's are transmitted to x, i.e., we do have a
simultaneity problem in the within dimensions, then § would be biased upward and some of this
bias would also show up as a downward bias in «, since x and z are likely to be positively
correlated.? Also, as we tumn to the more short-run aspects of the data (in the within and

differences dimensions), the maintained assumption of a perfectly competitive environment may
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become more and more dubious as firms face a variety of shorter run market imperfections.
We'll come back to this last point below.

6. Other Approaches.

One early "solution” to the simultaneity problem was to assume profit maximization ex
ante (and ex post) and use the observed factor shares as estimates of the relevant production
function parameters. This was first suggested by Klein (1953) (see also the exposition in
Chapter 4 of Nerlove (1965)). Solow (1957) used this assumption and varying factor shares to
compute residual technical change without actually "estimating” (i.e., econometrically) the
possibly more general underlying production function. The difficulty with this suggestion is that
it begs some of the questions one might want to ask of the data, especially about the extent of
profit maximization, competition, and economies of scale. But it may prove useful when it is
applied to only some of the parameters of interest. Thus, Griliches and Ringstad (1971) used it
to "solve" the simultaneity problem in x, estimating effectively a "partial productivity” equation
y - s,x= aZ + u, where s, , the share of variable inputs in total sales, was taken as a consistent
estimator of B, x was a similarly weighted sum of all variable inputs (e.g., labor and materials),
and z was assumed to be predetermined and to provide information on the scale parameter.?
Hall (1988) freed up the coeflicient of s,, assumed constant returns to scale, and estimatedy - z=
m(s,)(x - 2) + u, to test the competitive assumption and estimate the "mark-up" coefficient m
using a number of demand side macro variables as instruments.” A similar approach is also
followed by Klette (1994).

The obvious extension of the factor shares solution is to use factor prices w as
instrumental variables to identify the parameters of interest. This is the essence of the "duality”
approach to estimation. At the micro level, the only available factor prices are usually average
earnings of workers and, possibly also, fuel prices. There are, however, a number of difficulties
in using such price data as valid instruments. Why do wages differ across firms at a point of
time and within firms over time? The first is likely to be related to unmeasured differences in
the quality of labor, the second may fluctuate with unexpected shifts in the amount of overtime
compensation. Even if there are valid regional wage differences and also aggregate time-
movements in the real wage, the use of firm and time dummy variables would largely eliminate
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their contribution from the data, leaving us mostly with inappropriate or erroneous variation in
these numbers. Moreover, the right prices in such an analysis are "expected” prices, rather than
the realized and possibly endogenous ones.?

As suggested by Mundlak (1963, 1994), a related ( but also not very workable) solution
idea is to use the "whole" of equation (2) as an instrument, since it contains both that is the factor
prices w and the errors in optimization v. If all of w is transmitted to the x choice (there are no e's
or ¢'s in (1)), then (2) can be written (ignoring constants) as y-x=w+v and is now independent of
u. If u and v were independent, which might be reasonable after a "within" transformation
which eliminates the common firm effects, labor productivity (y-x) would be a valid instrument
forx in (1). Also, if there were more than one x, the various input ratios x, - X, would also be
valid instruments. But the moment we introduce only partial transmission (#.e., non-negligible
e's, and/or €'s), this is no longer legiimate. What may be possible is the use the lagged values of
such terms (on the assumption that the currently untransmitted news e and errors of measurement
¢ are serially uncorrelated). Then we come back to the use of Chamberlain or GMM type
estimators (i.e. the use of lagged values of x and z and also possibly y as instruments, which we
have already discussed above).

An interesting new approach, which we shall present at some length, is advocated by
Olley and Pakes (1992) in their paper on "Dynamics of Productivity in the Telecommunication
Equipment Industry.” This paper deals with two topics; selectivity and simultaneity, in an
intertwined fashion. The sample selectivity problem may be quite serious for panel data. If
observations (and data) are not missing at random, estimates that are based on "clean" and
"balanced” sub-samples could be badly biased. For example, a bad draw of # may force a firm
or plant to exit from the industry. Such a negative correlation between estimated productivity
shocks and future probabilities of exit was observed by Griliches and Regev (1995) in their
analysis of Israeli industrial firms. They called it "the shadow of death." If the impact of
negative #'s on exit is stronger for smaller firms (the larger ones having more resources to
survive them), then this will induce a negative correlation between « and z (the stock of capital)
among the surviving firms and bias the estimated capital coefficient downward in such samples.
To simplify our exposition, we deal with simultaneity first, but we will come back to selectivity
shortly.
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The major innovation of Olley and Pakes is to bring in a new equation, the investment
equation, as a proxy for a, the unobserved transmitted component of u. Trying to proxy for the
unobserved a (if it can be done right) has several advantages over the usual within estimators (or
the more general Chamberlain and GMM type estimators): it does not assume that a reduces to a
"fixed" (over time) firm effect; it leaves more identifying variance in x and z and hence is a less
costly solution to the omitted variable and/or simultaneity problem; and it should also be
substantively more informative,

In our notation, their argument goes roughly as follows: the investment demand of the
firm at time 7 can be written as

a3 1=1(a,2

where the function i() is allowed to change over time. Assuming (13) can be inverted, it can

be rewritten as

(14) a,=hG,2)

where the potentially observable function h, is now a perfect proxy for the unobserved a,.
Substituting h, for a, into (5) and (1), and ignoring the measurement errors ¢, leads to

(15) i =PBx+¢G,2) e

where, the function ¢, = az, + h, (i, z,), "contains" the unobserved g, variable. Since both 7 and z
are observed, if the form of & or ¢ were known, P could be estimated consistently by OLS.
Note, however, that « is not identified at this point since z, is also in h,. In practice Olley and
Pakes approximate ¢, by a third or fourth order polynomial in i and z to estimate p. Using the
estimated B one can now proceed to estimate «. If z and a, were uncorrelated, one would just

use the partial productivity equation

(16) Yi-Bx,=az+a+te
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More reasonably, if one assumes that z, is uncorrelated only with the change in a,, {,=a, - a,,

(i.e., a, is a random walk), one can estimate a from

amn Vi - BX- oy =a(z-2,)+ { e

where & is the estimated polynomial in i and z, and (&, - «z,,) is proxying for a, ,.*

Retuming to the selective issue, Olley and Pakes add to this system a probability of survival
function which also depends on a,, and &, ,, the unobserved critical level of a which would
cause a firm to exit, and is again inverted to yield an estimate of &, which is a function of both
the estimated probability of survival and a,,. Equation (17) then becomes

(18) V- Bxi=az,+g(dy,-az,, 2, )+ te

where the assumption is made' that E(a, |a,, and survival) = g, (a, ,, 8), where 3,, is proxied by A,,
the probability of survival from the selection equation which is estimated non-parametrically.
The function g, is approximated by a general polynomial (of order 3) in A, and (¢, -«z, ) and
« is estimated non-linearly across all the terms that contain it.*

The main Olley-Pakes results are summarized in Table 2 (taken from their Table 6),
while Table 3 presents an application of a simplified version of their model to data on U.S. R&D
performing firms listed on the major stock exchanges.”? The focus in Table 3 is on estimating
the coefficients of two capitals: "physical” and "R&D." The data and the approach differ
somewhat from Olley and Pakes because we used data separated by five years, rather than
adjacent cross-sections and used only quadratic and crossproduct terms in the polynomial
approximations and parametric assumptions (normality) for the selection equations.

The two sets of results tell largely the same story, though the selectivity problem is
significantly more severe in the Olley-Pakes plant data. The magmtude of this problem can be
seen, in Table 2, in the decline in the estimated capital elasticity « as one moves from the
unbalanced sample (column 3) to the balanced one (column 1). Possibly, because exit is often a
success for our R&D firms (being taken over) rather than a failure, the selection problem is less

severe, in Table 3. Once one shifts to the unbalanced samples, the remaining selectivity (mainly
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attrition) does not appear to be too important (compare columns S and 6 in both tables).

As far as the simultaneity problem is concerned, either it is of no great import in these
data or the introduction of investment and the associated Olley-Pakes procedure does not fully
adjust forit. Looking at Tables 2 and 3, investment is highly "significant” in the production
function, but at the end of the procedure (having allowed for selectivity and unbalance), the
coefficients change only little (compare columns 3 and 5 in both tables).” They do more so in
the Olley-Pakes data, where the labor coefficient is reduced by 12 percent and the capital
coefficient is increased by about 12 percent, which goes in the "right" direction. In our own
data, the changes are smaller and go slightly in the "wrong" direction (labor "up" and the sum of
the "capital" coefficients down), though probably not significantly so.*

The Olley Pakes solution to the simultaneity problem is a clever way to exploit the fact
that the unobserved "productivity shocks" a, are transmitted to more than just one equation and
should be estimated within a system of behavioral equations. It does rest, however, on two very
strong assumptions: 1. that there is only one single-component unobservable in the system, the
a,, which follows a first order Markov process and is fully transmitted to the investment
equation, and 2. that no other varnables or errors appear in it. Macro variables are taken into
account implicitly by letting the g function change over time. Investment will, however, depend
also on individual factors such as interest rate expectations, tax treatments, and changes in future
demand prospects not yet captured in the state variable z,. In principle, there may be additional
instrumental variables and other indicators of a, such as R&D, which could help to solve the
errors in the investment equation problem, except for the extreme non-linearities introduced by
the QOlley-Pakes semi-parametric approach.”

Even more problematic is the assumption that #, depends on the whole of a. If a, consists
of both fixed and variable "omitted" components, i, would not depend on the former if z, had
already fully adjusted to them. In this multifactor interpretation of a,, net investment of i, would
depend primarily on the "news" in a, and not on its level.* Hence, it may not be able to proxy
well for the various other (more permanent) misspecifications contained in a, and solve the bias
problems created by their omission. While being right on its own terms and making a significant
contribution to the treatment of sample selectivity and simultaneity problems, the Olley-Pakes
model does not nest within it the standard fixed effects model. A single first order Markov
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unobservable cannot really capture a mixture of fixed and variable effects. This might also
explain why the "within" results which "do more" are so different, leaving us wiser, but with
much of the original puzzle (the effect of unaccounted for heterogeneity) still intact.

7. Other Problems.

Besides simultaneity and selectivity there are a number of other "garden variety”
problems with such data: lack of information on quality dimensions of labor and capital inputs;
lack of utilization variables; and so forth. A major difficulty has been, however, largely ignored
in this literature: the fact that we usually do not have "quantity" measures of output but rather
just nominal sales (or value added) which are deflated by a common price deflator.” The
assumption is made that "the law of one price" holds: that all firms in an industry charge the
same price and that all have prices move in unison over time. That is wrong if different firms
produce different varieties of the product and operate within somewhat different, though
possibly interconnected, markets. Examples would be cement plants which operate in different
geographic markets, and plants in the "computer equipment” industry, some of which produce
mainframes, while others produce PCs or disc drives. The use of deflated revenue as a measure
of "output” may have serious consequences for the interpretation of the resulting estimates.

This can be illustrated using the simple model in Klette and Griliches (1994): To the
production function (1) add a demand function for the products of the i-th firm:

19 yi=n{@-p)+vp+d
where p, is the firm's own price (or price index), n is demand elasticity with respect to the
relative price of its own products, p, is the aggregate industry price index (relative to the overall

economy price level), v is its elasticity, d are all other demand shifters for the products of this

industry. If the variable that we observe is not "real” output y, but deflated revenue

(20) L=0+p)-p

then, the "revenue production” function is
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2D r=az +px+u+(p,-pp

There would be no problem here if the p/s were random and exogenous. But if firms have a
modicum of market power, at least in the short run, p; will be set by them and will be correlated
with », x, and z. Using (19) and (20) we can solve out for p, and write the pseudo production
function as

@21 r=[az +Bx+u)m-(d+ vp)n

where m = n/(1 + 1) is the "mark-up” coefficient and is likely to be larger than one. Since 4 and
p, are aggregates, they can be "controlled” for by the introduction of period dummy variables.
It is clear, from (21"), that the estimates of « and p will be biased downward on the order of 1/m,
implying diminishing returns to scale in contexts where there actually may be increasing returns.
The size of the bias (the size of the markup) may depend on the time dimension of the data,
being lower in the longer run between dimension, since entry is more likely; and higher in the
shorter run within dimension. This may provide another possible explanation for the facts
reported in Figure 1.

Klette and Griliches show that under certain, not unreasonable conditions, one can
substitute a trend variable for the period dummies and use aggregate output y, as a proxy for the
demand shifters (d + vP,), which will identify the function as a whole. An illustration of their
analysis is given in Table 4, based on data for plants manufacturing transportation equipment in
Norway (N=403, T=6). In their study all the variable inputs are aggregated into one x (using
factor shares as weights). When a production function is estimated by OLS on first differences,
column 1, it yields a non-significant capital coefficient (which is a standard result for such
estimates) and a statistically significant estimate of decreasing returns to scale. Using the more
predetermined employment change as an instrument for x does not change matters much, but
when the aggregate demand shifter y, is added to this equation, it is "significant” and provides a
reinterpretation of these results, implying a "reasonable” elasticity of demand, n =-7.2, and an
associate estimate of mildly increasing returns, 1.06, rather than what appeared to be decreasing
returns before. ¥
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While the solution offered by Klette and Griliches may be problematic, they have raised
an important warning flag. Most micro-studies do not have detailed price data at the relevant
level. To the extent that these missing prices are endogenous, the resulting estimates are likely
to be biased, often badly so, as estimates of the desired "pure” production function parameters.

This reminds us that at the micro level, the firms or plants we analyze differ a great deal,
even within what one might think of as a relatively well defined "industry," i.e. cement or
bakeries. They differ in their geographic location and in their potential for exercising market
power, they differ in the particular assortment of products that they may produce; and because
of the preceding considerations, they may also differ in the inputs and technologies that they use
to produce them.

Using data similar to that used in Figure 1 and Table 1, Mairesse and Griliches (1990)
estimate separate « coefficients for each firm based on 13 years of data, assuming constant
retumns to scale. They find a great deal of heterogeneity in their estimates. Much more than
could be explained by sampling error and/or reasonable dispersion of « at the individual level.
They conclude, not too surprisingly, that the simple production function must be seriously
misspecified. The variegated world of plants and firms cannot really be summarized adequately
by looking only at their capital-labor ratios and size. It is much more complex than that.
Unfortunately, standard census type data do not provide enough additional information or
relevant product-plant characteristics to allow one to pursue a substantive analysis of such
differences much further.*

8. Coda as Prologue.

We have surveyed one strand of research in this area, the attempt to solve the
"simultaneity” problem in estimating production functions from micro data, perhaps in excessive
length (but still leaving large areas uncovered). The main message has been, that in trying to
evade this problem, researchers have shifted their focus to thinner and thinner slices of data,
leading to the exacerbation of other problems and misspecifications. Much of this line of work
has been guided, unfortunately, by what "econometrics" as a technology might be able to do for
this problem, rather than focusing on the more important but technically less tractable problems
of data quality and model specification.
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Instead of throwing away more of the data as "contaminated,” the future, we believe, is in
finding circumstances and data which will provide credible identification." What makes firms
invest differently, hire more or less labor, or expand their R&D program? Is it possible to look
for periods of unexpected tax changes which might impact firms differentially, depending on
their previous history and financial condition? For that, one needs to match detailed financial
data to the standard census-type data sources. One could also use data on capital subsidies in
various countries (e.g. Israel) to construct differential cost-of-capital variables. Data on stock
market values may convey information on expectations about future demand conditions and
R&D opportunities, independent of the current productivity disturbances. The challenge is to
find (instrumental) variables that have genuine information about factors which affect firms
differentially as they choose their input levels, their "location on the isoquant.”

Besides better and more data, we need also a richer theoretical framework to help us
understand why firms are different, not only in their capital-labor ratios, but also in the product
mix that they produce, the quality of their workforce, the technologies they use, their
organizational structures, the markets that they serve. We started our work in this area with the
hope that micro-data may be the answer to the various difficulties encountered at the aggregate
level, primarily because this is the level which our theories claim to comprehend, and because
we believed that this will reduce multicollinearity and provide us with more identifying variance.
We also thought that one could reduce aggregation biases by reducing the heterogeneity as one
goes down from such general mixtures as "total manufacturing”" to something more coherent,
such as "petroleum refining" or the "manufacture of cement." But something like Mandelbrot's
fractals phenomenon seems to be at work here also: the observed variability-heterogeneity does
not really decline as we cut our data finer and finer. There is a sense in which different bakeries
are just as much different from each other, as the steel industry is from the machinery industry.

This paradox arises, in part, from the fact that our theories, while denominated in micro
language of the firm or plant, have really been designed with macro questions in mind. They
deal with reasonable crude aggregates: output, labor, capital which turn out to be rather vague
concepts when we go down to the micro level and have to face the large number of products,
labor types, machines, and technologies. We have neither the data or a convenient language to
describe all this variability effectively.*?
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In spite of all these reservations, the production function framework that we have been
analyzing over the last two decades has its uses. It is a major tool for asking questions about
rates of technological change, about economies of scale, rates of returns to R&D, the relevant
productive qualities of labor, and more, whose answers may not be all that sensitive to the biases
discussed here. Moreover, we are unlikely to give this framework up just because it is imperfect.
But to make further progress we need to infuse it with new data and appropriate theoretical and
econometric models for dealing with the real heterogeneity that is the hallmark of the world we

live in.
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Endnotes

1.

2.

Quoted in O. Bjerkholt (1995).

We shall ignore a large number of other interesting and related topics: alternative
functional forms; frontier production functions; non-parametric measures of productivity;
estimation of cost functions and factor demand structures and much more. See Walters
(1963), Nerlove (1968), Jorgenson (1986), and Mundlak (1994) for reviews of some of
these topics.

In the micro language of subsequent expositions, if all firms are on the same production
function and face the same prices, they would have the same input ratios and there would
be no relevant variability on which to base ones estimates of the production function.

His other major criticisms were: (1) The capital variable should be capital used rather
than capital in place (this issue of "utilization" is still with us); (2) Constant returns
should be tested for, not imposed; and (3), technical change should not be ignored. His
was only one voice in a chorus of criticisms. The work of Douglas was also cnticized on
a number of other grounds; among them disbelief in the existence and/or relevance of an
aggregate production function (see, e.g., the discussion about intra and inter firm industry
production functions in Reder (1943)); and the importance of left out variables: trends,
technology levels, and capital utilization (see, e.g., Schultz (1929), Durand (1937), and
Smith (1940) and (1945)). Douglas (1948) acknowledges most of these criticisms but
does not mention simultaneity or the Marschak and Andrews paper.

This passage is preceded by another similar and equally eloquent passage: “...the
economist cannot perform experiments. That is, he cannot choose one variable as
"dependent," and, while keeping the other, "independent," ones under control, ... watch
the values taken by the dependent, i.e., uncontrolled variable. The economist has no
independent variables at his disposal because he has to take the values of all the variables
as they come, produced by a mechanism outside his control. This mechanism is
expressed by a system of simultaneous equations, as many of them as there are variables.
The experimenter can isolate one such equation, substituting his own actions for all the
other equations. The economist cannot." ibid, p. 143.

Here, and in what follows, we ignore constant terms unless they become important for
the analysis. In Marshak's and Andrews ' own words u (in their notation ¢, the deviations
in the constant term parameter A, of the production function) "will depend on technical
knowledge, the will, effort and luck of a given entrepreneur in a given year, as can be
summarized in the word 'technical efficiency."

(2) can be rewnitten as x = log(B) +y - (w + v) which is the demand function for x in the
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13.

14.

15.

16.
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Cobb-Douglas case. If one allowed free coefficients on y and w, one would be in the non
CRS CES case.

One can also do a sensitivity analysis and convince oneself that such biases are relatively
unimportant in one's own data (e.g., Griliches and Ringstad (1971)).

Factor demand functions, derived from the cost function framework, interchange the
roles of x and y. To estimate them by least squares or related methods requires the
assumption that y is exogenous, uncorrelated with v, which contradicts equation (4), and
that y is not subject to measurement error (e, = 0). Moreover, the expected real factor
prices w must also be measured correctly by the econometrician. In short, life is not any
easier on the "other side.”

This distinction is similar to the distinction made by Frisch (1938) between aberrations
and simuli.

Another possible response, which we will not discuss here explicitly, is to try to reduce
the role and variance of u, and thus lower the remaining biases, by introducing additional
variables into the equation such as R&D stocks and labor quality measures (e.g. Griliches
(1964) and Griliches and Mairesse (1984)).

The last two components represent individual deviations around the point of "average”
behavior approximated by the fitted function. To the extent that they result from changes
in factor and product prices, both anticipated and unanticipated, this may preclude the use
of prices and demand side variables as valid instrumental variables.

To simplify the exposition, 2 was treated as strictly exogenous in deriving equations (3)
and (4). Ifzis also correlated with a than these equations hold only after some
appropriate transformation and/or an additional equation should be appended for the now
endogenous z.

To the extent that these deviations from the standard assumptions are permanent, they
would imply a non-zero expectation for v and vitiate the attempt to estimate p from the
factor share or the more extended factor demand versions of this equation arising from
more general translog and other types of cost functions.

This is the case where parameter estimates based on first differences (FD) would be
consistent though the "within" estimates are not.

Going "within" is not the only way of eliminating "fixed" effects. Differencing over a

single period or more also accomplishes this purpose. We shall return to this point
below.
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Similar results and a similar interpretation appear also in the original Mundlak (1961)
study. See also Griliches (1957).

The idea of individual trend is not new and keeps reappearing in various forms. An early
statement is Mundlak (1970).

If the original fixed effects model was correct, first difference estimators are consistent
but not BLUE. This is the basis for the specification tests suggested in Griliches and
Hausmann (1986). It can be shown that "within" estimator is an optimal combination of
all possible difference estimators.

Instrumental variables based estimators (GMM) would reduce the available net variance
even further but might also reduce some of the other biases.

The story is similar for the estimates of B, as can be seen from the plotted m in Figure 1.

For repeated restatements of this point see Griliches (1974), Mairesse (1978), and
Griliches and Hausman (1986).

Obviously, more efficient GMM based estimates could be computed if one believed this
model.

To simplify matters, let us consider the case where investment is a random walk and has
an assumed life of six years. But let the weights of past I's in the true K be (0, 1, 2,2, 1,
0), instead of all ones. The coefficient of the first differenced incorrect capital measure
will be exactly zero then. If we try the difference lagged one period, its coefficient will
be only one-quarter of the appropriate size, assuming that 7 is serially uncorrelated and
has a constant variance. It is not that capital does not matter. It is that our timing is
wrong and it gets worse as we do various transformations.

If, for example, one constructed the capital stock assuming a declining balance
(geometric) depreciation pattern while the truth were closer to non-negligible gestation
lags and an inverted-U shape, with rising weights for a while, a la Pakes and Griliches
(1984).

See Appendix C in Griliches and Ringstad (1971) for an exposition of this point.

Equation (2) can be rewritten as In(s,) = In(#) - v, where s, = (WX/PY) is the share of X
in total revenue, and gives an estimate of p. The question of what average and
transformation to use for this estimate depends on the assumed distribution of v (is
Ev=0?) and whether maximization is expected to be correct on the median, the
arithmetic, or the geometric average. See Goldberger (1968) and Griliches-Ringstad, p.
73, for additional discussion of this set of issues.
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Abbot et al (1988) and Eden and Griliches (1993) raise questions about the validity of
Hall's instruments. If« contains short run specification errors such as capital utilization
and labor "effort” measures, which are related to expectational errors made by the
decision makers when choosing their "desired” capital and employment levels, then
unanticipated macro shifts may cause such errors and cannot serve as valid instruments in
this context.

This criticism applies also to the literature on cost function and factor demand systems
estimation which leans rather heavily on the correctness and exogeneity of the price data
used in their analyses.

This simplification (that a, is a random walk) is made by us for expositional purposes. If
it were an AR(1) process, there would be a p coefficient in front of the term $,,, - «z, ,.
More generally, Olley and Pakes assume only that a, is an exogenous process and
approximate it by &, + {, , where predicted is &, a polynomialin (&,, - «z ), and
estimate « non-linearly across the various terms.

In their notation a is w and they refer to it simply as "productivity.”

The underlying data set is described in Hall (1990). For a discussion of the concept of
R&D "capital” see Griliches (1995).

Olley and Pakes present also results for a non-parametric kernel estimator which are
essentially the same.

The standard errors in Table 3 are too small because they do not allow for the fact that p
and ¢ are estimated in the previous stage. For the correct way of deriving standard errors
in such contexts, see Pakes and Olley (1995).

The current state of estimating non-linear errors-in-variables models is not completely
hopeless, but it is not easy either.

In the old fashioned accelerator model language, i, would be a function of the change in y,
rather than of'its level.

Though Marschak and Andrews were well aware of that. See also Griliches and
Mairesse (1984) and Hall and Mairesse (1995).

Also, there is a countervailing upward bias in P if « is transmitted to the x decision. It
can be shown (see Klette and Griliches) that the estimated § is bounded by f/m and 1.

Klette and Griliches get similar results for the other three industries they examined. They
also present parallel cost function computations, showing that these are similarly affected
by the use of the wrong output measure.
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40.  Mundlak (1988) discusses a framework which has «'s as functions of other variables. In
his work these coefficient shifters are largely macro variables which does not really fit
our micro data world very well.

41.  The search for "natural experiments” has become important in labor economics but has
not caught on yet in the field of productivity analysis. For examples of the former see
Angrist (1990) and Angrist et al (1995).

42.  For a brief moment in time, we looked at activity analysis and "engineering production
functions” as a possible solution, but the computer resources of the time and the
overwhelming data requirements drove this approach and its practitioners out of the field.
Today, if they still exist, they can be found in business and engineering schools, not in
economics departments. We have given up trying to know something substantive about
specific technologies in particular fields.
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FIGURE 1

ALTERNATIVE ESTIMATES OF THE ELASTICITY OF CAPITAL &
AND THE ELASTICITY OF SCALE .
FOR THE FRENCH, JAPANESE AND AMERICAN SAMPLES
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Table 1: Altemative Estimates of « and Associated Data:
French Manufacturing Firms, 1967-79, N=441

Total Levels 304 j 348 3023 1. 331
Between Levels 315 10.1 2851 077 27
Within Levels 146 12. 0245 923 377
Total Differences 061 34 0085 2. 236.1
Long Differences? 147 3.7 1282 2. 15.6
Within Differences 010 S 0074 1.986 267.7
GMM® 052 5 .0003 - -

(1) Under the assumption of random measurement error in capital ¢, the probability limit of
the estimated « is given by

plim & = « - amo?/o?,
where m is given in column (4), and ¢?, , in column (3), and their ratio in column (5).

(2)  This line is in terms of the longest difference (1979-67). For a parallel "between"
differences calculation, the entries in column (3) and (4) should be both divided by 144 (12x12)..

(3)  The GMM estimates are computed treating the first differences in labor and capital both
as endogenous and using their two period lagged levels (and lagged output) as instrumental
variables. The "net” variance of capital is computed implicitly from the final standard errors.



Table 2: Alternative Estimates of Production Function Parameters:
U.S. Telecommunications Equipment Plants, 1974 to 1986
(standard errors in parentheses)

Labor 851 .728 693 628 .608
(.039) (.049) (.019) (.020) (027
Physical Capital 173 .067 304 219 .339 342
(.034) (.049) (.018) (.018) (.030) (.035)
Age 002 -.006 -.0046 -.001 .000 -.001
(.003) (.016) (.0026) (.002) (.004) (.004)
Time .024 .042 .016 .012 011 .044
(.006) (017) (.004) (.004) (.010) (.019)
Investment - - - 130 -
(.010)
Other Variables - - - - Powers of | Polynomial
h mPand h
# Observations® 896 2592 1758

(1)  The dependent variable in columnns 1 to 4 is the log value added, while in column 5 and

6, the dependent variable is the log(value added) - #*log(labor).

(2)  The number of observations in the balanced panel for regressions in columns 1 and 2 are
the observations for those plants that have continuous data over the period, with zero investment
observations removed. Similarly, the 2592 observations in columns 3 and 4 are all observations
in the full sample except those with zero investrnent. Approximately 8% of the full data set had
observations with zero investment. The number of observations in the last two columns (5) and
(6) decreased to 1758 because lagged values of some of the independent variables are needed in
estimation.

(3)  Consult the text for details of the estimation algorithm leading up to columns 5 and 6.

Source: Olley and Pakes (1992) Table 6.



Table 3: Alternative Estimates of Production Function Parameters!:
U.S. R&D Performing Firms, 1973, 1978, 1983, 1988
(standard errors in parentheses)

Labor 496 .685 578 551 591
(022) (.030) (013) (013) (013)
Physical Capital 460 180 372 298 321 320
(014) (027) (.009) (012) (.016) (017)
R&D Capital .034 .099 .038 .027 .081 .077
(015) (.027) (.007) (.007) (.016) (019)
Investment - - - 110 -
(011)
Other Variables* - - - - Powers of | Polynomial
h inPand k
# Observations® 856 2971 1571

(1)  The dependent variable in columns 1 to 4 is the log of sales, while in column 5 and 6, the
dependent variable is the log(value added) - f*log(labor).

2) The number of observations in the balanced panel for regressions in columns 1 and 2 are
the observations for those firms that have continuous data over the period. Similarly, the 2971
observations in columns 3 and 4 are all observations in the full sample. (Only six observations
had to be discarded because of zero investment.) The number of observations in the last two
columns (5) and (6) decreased to 1571 because lagged values of some of the independent

variables are needed in estimation.

?3) Consult the text for details of the estimation algorithm leading up to columns 5 and 6.

)] The other variables in the equations are: Year, and Year x Industry 357 (i.e. computers)

dummy variables.




Table 4: Estimation Results for Plants in Industry 384: Manufacture
of Transport Equipment, Norway, 1983-89, N=409'

Variable Inputs 913 919 912 1.059
(.009) (.013) (.013)

Capital .005 .005 .005 0.006
(.003) (.003) (.003)

Demand Shock? - - 139 -

(.032)

Intercept .001 .001 -.001 -
(.003) (.003) (.003)

RMSE 0.165 0.165 0.164

¢)) All estimates are based on first differences of the logarithms of the original variables.

(2)  The estimated price elasticity is -1/.139 = -7.19 and the implied markup n/(1+n)=1.16

multiplies the coefficients of the previous column.

(3)  Aggregate industry output.

Source: Klette and Griliches (1994) Table 6.




